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AN EQUALITY FOR 2-SIDED SURFACES WITH

A FINITE NUMBER OF WILD POINTS

BY

MICHAEL D. TAYLOR AND HARVEY ROSEN

Abstract. Let S be a 2-sided surface in a 3-manifoId that is wild from one side U

at just m points. It is shown that the minimal genus possible for all members of a

sequence of surfaces in U converging to S (where these surfaces each separate the

same point from 5 in U u S) is equal to the sum of the genus of S and a certain

multiple of the sum of m special topological invariants associated with the wild points.

In this equality, the sum of these invariants is multiplied by just one of the numbers

0, 1, or 2, dependent upon the genus and orientability class of S and the value of m.

As an application, an upper bound is given for the number of nonpiercing points that

a 2-sided surface has with respect to one side.

1. Introduction and notation. Let S be a 2-sided surface of genus g(S) embedded

in a 3-manifold M3. There is an open connected neighborhood W of S such that

W— S consists of exactly two components, U and V. We define g(S, U) to be n if

there exist a point x and a sequence of surfaces Sx, S2,... such that

(1) the genus of each Sk is n,

(2) each Sk separates x from S in Cl (U),

(3) S=limSk, Sind

(4) conditions (l)-(3) cannot be satisfied for any integer smaller than n.

If no such integer n exists we define g(S, U) to be oo. This concept coincides with

that of limiting genus of U at S or limiting genus of U which is used by Daverman in

[7] and [8]. In [13] it is shown that if S can be locally peripherally collared from

U and S is a 2-sphere in S3 sind g(S, U) is positive, then S is wild from U at g(S, U)

points at most. More generally, in [7] it is proven that if 5 can be locally peripherally

collared from U, g(S, U) is positive, and S is an orientable surface which separates

M3, then it follows that g(S, U)-g(S) is an upper bound for the number of

points at which S is wild from U. The equality developed in this paper sheds some

light on why the above inequalities hold and is of interest in its own right. The

authors are indebted to the referee for his constructive suggestions.

Let us suppose that either S is wild from U at px,.. .,pm sind nowhere else or

else S is tame from U (m = 0). To each point q of S we can attach a nonnegative

integer g(q, U) which is a topological invariant of Cl (U). This has the property
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that g(q, U) is positive only when q is one of the pk and otherwise is 0. Our main

result is that

(S,U) = g(S) ifm = 0,

= 0 if m = 1 and g(S) = 0,
m

= S(S)+ 2 S(Pk, U)      if S is orientable and either m > 1 or g(S) + 0,
k = l

m

= g(S) + 2 2 g(Pk> U)   if m ¥= 0 and 5 is nonorientable.
k = l

Further we are able to show that we can always find arcs Au ..., Am such that

each Ak has pk for an endpoint and g(pk, t/) = LEG (Ak,pk) (where LEG (Ak,pk)

is the local enveloping genus of Ak at pk). If S is locally tame from V at pk, then

we can take Ak to be any arc on S which has pk as an endpoint.

Before attempting to prove anything, however, let us discuss some terms and

notation.

It is understood that a manifold and a manifold-with-boundary are both con-

sidered to be connected. A manifold may or may not be compact, but it does not

have any boundary points. A surface is a compact 2-manifold. Our results are still

true if M3 is a manifold-with-boundary, but then we should stipulate that 5 lies in

the interior of M3.

Let Kbea subset of an «-manifold Mn. Then K is locally polyhedral at a point p

if there is a neighborhood N of p such that K n Cl (N) is a polyhedron in Mn.

We say that K is locally polyhedral if it is locally polyhedral at each point.

Let 5, M3, U, and Vbe as defined earlier. We shall call i/and Kthe (nonunique)

sides of S. If p is a point of S, then we say that 5 is locally tame from U at p if

Cl (U)isa 3-manifold-with-boundary at p. If Cl (U) is a 3-manifold-with-boundary

at every point of S, then S is tame from U. lfp is a point of S where S is not locally

tame from U, then S is wild from U at p.

We shall also use the following notations :

ab—an arc with a and b as endpoints,

Bd—the boundary of a manifold-with-boundary,

Int—the interior of a manifold-with-boundary,

Cl—closure,

d—metric (used for giving the distance between sets as well as points),

diam—diameter,

/-[0, 1],

N(K, e)—the ¿-neighborhood of a set K,

g(F)—the genus of a surface F or of a surface-with-boundary,

ch (F)—the Euler-Poincaré characteristic of F.

Let S, M3, W, U and V be as defined before. We wish to introduce a new term.

Definition. Suppose that S is wild from U at a finite number of points at most.

Let p be a point of S and consider this statement which we label G(p, m) :
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For every positive number e there are a disc with m handles D and a disc D'

such that p e Int (D')^S, D n S=Bd (£) = Bd (£'), Int (£)<=£/, diam (£ u £')

< e. If G(j9, m) is true and G(p, m—\) is not true, then we define g(p, U) to be m.

If G(p, m) is false for m = 0, 1, 2,..., we define g(/?, U) to be co. Notice that this

is in some sense a generalization of Burgess' concept of local spanning in [4].

The surface 5 can be locally spanned from U at p if and only if g(p, U) = 0. If

g(p, U) > 0, then S is wild from U at p. This definition can of course be immediately

extended to the situation where 5* can be locally peripherally collared from U.

We wish to use this concept of g(p, U) in proving our equalities and shall show in

the last section that it is equivalent to the idea of local enveloping genus that we

referred to earlier.

Letting S, M3, W, U, and V be as defined earlier, we establish our equalities by

breaking them up into inequalities which we establish separately. The following

lemma gives us an upper bound for g(S, U).

Lemma 1. Let us suppose that S is wild from U at the points px,.. .,pm and nowhere

else (this proof is also valid if S is tame from U, i.e., if m = 0). Then

g(S, U) á g(S) + 2 g(Pk, U)      if S is orientable,

g(S, U) á g(S) + 2 2 g(Pk, U)   if S ¡s nonorientable.

Proof. We may suppose that each g(pk, U) is finite since otherwise the inequality

is trivial.

Choose a point x of U not lying in an arbitrary ^neighborhood N(S, e). There

exist pairwise disjoint discs A, • • •> An and pairwise disjoint discs with handles

Hx,...,Hm such that, for i=l,..., m,p¡e Int ( A)c S, H, n S=Bd (/£) = Bd (A),

Int (A)c U, Hi has g(p¡, U) handles, and diam (Ht u A)<«-

We may suppose that each surface Hk u Dk is contained is some open 3-ceIl

and that Uk is the complementary domain of Hk u Dk which lies in that open 3-cell.

By [1], we may assume that M=(Su U)-\Jk = i (A u Int Dk) is a 3-manifold-

with-boundary, and Bd M = (S-\JZ=1 A) u (UT-i Hk).

Let £ be a regular neighborhood of Bd M in M such that R<=N(S, e). Call £

the component of Bd (£) that lies in U. By construction, £ separates x from S

sind has genus equal to g(S) + Jig(pk, U) if S is orientable or g(S) + 2 *Zg(pk, U)

if 5 is nonorientable. From the existence of such a surface £in any e-neighborhood

of S, the conclusion of the lemma follows.

2. Some intermediate lemmas. Before we can prove the inequality in the

opposite direction (except, as we shall see, for the case when 5 is a 2-sphere wild

from U sit a single point), we shall need to establish some lemmas.

Lemma 2. Let S be a surface or a surface-with-boundary in a 3-manifold M3 and

let O be a neighborhood of S. Then there are a neighborhood N of S and a homotopy

h: /Vx /->■ O such that S^N^O, h0 = the identity map, andhx is a retract map of N

onto S.
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A proof of this can be found on pp. 97, 121, and 122 of [10].

The next proof amounts to a generalization of certain constructions used by

Burgess in [5], but the details are sufficiently involved to make it worth going over.

Lemma 3. Suppose that S is a 2-manifold in a 3-manifold M3 such that U is a

complementary domain of S and p is a point of S. Let 8, D, and A be a positive real

number, disc, and annulus respectively such that p e Int (D)<^S, A n 5'=Bd (D)

= one of the boundary components of A, A — S^ U,A — S is locally polyhedral, and

diam (AVJ D)< 8.

// 8 is sufficiently small, then given S, D, and A as described above, there exists a

positive real number a such that the following holds:

If F is a locally polyhedral 2-manifold in U n N(S, a) which intersects A and is in

general position with respect to A, then there exists a component C of F—A such

that diam (C) < 78.

Proof. Choose a disc D' in S so that p is a point in the interior of D'. There is a

positive real number e such that the intersection of N(p, 5e) and S is contained in

the interior of D'. Suppose that 8, A, and D are as described in the hypothesis

and S<e. Clearly D is a subset of Int (£)'). Let J be the name of that boundary

component of A which lies in U. By using Lemma 2 and looking at collections of

3-cells which contain D' in the unions of their interiors, we see that there are a

positive real number a', a neighborhood N of D', and a homotopy ht of N in M3

such that rt0 = the identity map on N, hx is a retract map of N onto D', ht(N) does

not intersect J for O^t^l, a' <e, N(D', a') is a subset of N, and if x and y are

points of N and the distance from x to y is less than &', then there exists an arc xy

in N such that diam (xy) < 8.

Then we can find a positive real number o and a subannulus A of A such that

a < a', Bd (D) is one of the components of Bd (A), and N(D', a)nA <=-A'^N(D', a').

Now let F be as in the hypothesis. It follows that F intersects A only at points

of A'. By using the methods of Wilder [14, p. 66] and "walking over" D and "up

the side" of A', we may construct an arc pa such that a is a point in F, Int (pa) is

contained in U—A, pa is contained in N(S, a'), and diam (pa)<8.

It follows that pa is contained in N(D', a'). Let C = the component of F—A

containing a. Now suppose that diam (C) is greater than or equal to 78. Then

there is an arc ab in C such that the distance from a to ¿ = 38 and for z in Int (ab)

the distance from a to z is less than 38. Since ab is in N(S, a), there must be a point

c in S which is a distance less than a from b. It can be easily shown that b is in N

and c is in Int (D1) and hence also in N. By the way we constructed N, there exists

an arc be in N such that diam (be) < 8. It follows, in addition, that ab is contained

in N and that be does not intersect A or D. Let cp be an arc in N such that Int (cp)

does not intersect A or D, and let J' be the continuous image of a simple closed

curve which can be obtained by considering the union of pa, ab, be and cp. Since

J' is contained in N, it can be homotopied into D' and from there into U without
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intersecting /. On the other hand, J' intersects the disc D u A at the point p only

and there it pierces it. But this shows that the mod 2 linking number of J' with /,

calculated with respect to the fixed surface-with-boundary D u A, must be both

0 and 1, an impossibility. Therefore diam (C)<18.

Lemma 4. Let S, M3, W, U, and V be as in the Introduction and let S be wild

from U at a finite number of points at most. Then there is an e > 0 such that if F is a

surface in U with the property that F separates S in Cl (U) from the set of points

of U which are more than a distance e from S, then F is of the same orientability

class as S.

Proof. Suppose that S is orientable. By Theorem 2 of [12], there exists a positive

number e^ such that N(S, ex) can be embedded in S3. Let e = ex/2. This automatically

ensures that £can be embedded in S3 and hence is orientable.

Now suppose that S is nonorientable. We can find two Moebius bands M and

M* on S such that neither one contains any of the points at which S is wild from

U sind M<=Int (M*). By Theorem 1 of [3], there is a homeomorphism h such that

h: Int (M*) x [0, 2] -» Cl (U), h(x, 0) = x for every x e Int (M*) Sind

A(Int (M*) x (0, 2]) <= u.

Choose e so that h(Mx 1) is a distance more than e from S. Let F be as in the

statement of the lemma. By [2] we may assume £ to be polyhedral. There is a

positive number 8 such that £n h(M x I)<^ h(M x (8, I)). Since Mx [8, 1] is locally

tame in Int (M*) x [0, 2], by Theorem 9 of [1] we may assume that h(Mx [8, 1]) is

polyhedral (we can adjust it by a very small homeomorphism of Af3 onto itself)

and satisfies all the earlier requirements put on it. We may then further assume that

£ and /¡(Bd (M) x I) sire in general position with respect to one another. It follows

that £ n h(M x I) consists of a finite number of polyhedral surfaces-with-boundary

Fx, ...,£„ such that for k=l,.. .,n, Bd (Fk)^h(Bd (M)xl),

lnt(Fk)^h(lnt(M)xI),

and \Jk = x Fk separates h(M x 0) and h(M x 1) in h(M x /).

From Lemma 4 of [9] we see that at least one of the Fk must be nonorientable.

Thus £ is nonorientable.

3. The main theorem. Since we have Lemma 1, all we have to do is find an

appropriate lower bound for g(S, U). Then in the next section we shall show how

to replace g(p, U) by the local enveloping genus of a suitable arc at an endpoint.

Theorem 1. Let S be a 2-sided surface in a 3-manifold M3 and let W be an open

connected neighborhood of S such that W—S consists of two components, U and V

(the two sides of S). We suppose that S is wild from U at the points Px, ■ ■ -,pm and

nowhere else. Then

g(S,U) = 0   ifg(S) = 0andm= 1,
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g(S, U) = g(S)+ 2 g(Pk, U)   if S is orientable and either g(S) ^ 0 or m + 1,
k=l

and
m

g(S, U) = g(S) + 2 2 g(Pk, U)   if S is nonorientable.

Prior to giving a proof of Theorem 1, we first offer a rough outline of how it

goes. We essentially start with one collection (out of infinitely many collections)

of m annuli each sticking into U except for a boundary component on S circling a

wild point of S, and we suppose we have a surface of genus g(S, U) in U which is

sufficiently close to S, separates the boundary components of each annulus in the

collection, and is in general position with respect to these annuli. We then surgically

alter this surface until we ultimately obtain at the end of the operation a surface

with genus no greater than the original surface and with all the special properties

of the original one except that the new surface intersects each annulus nicely in

exactly one simple closed curve provided, as is eventually shown, each annulus is

small enough. This new surface is made up of two types of pieces: (l) m small

discs with handles, each cut out by an annulus, and (2) a large connected piece

which is what is left when the small discs with handles are removed. The inequality

is then established by showing that the sum of the genera of the small pieces must

be no smaller than the sum (or twice the sum) of the local enveloping genera of

the wild points of S and that the genus of the large piece must be no smaller than

the genus of S.

Proof of Theorem 1. Before getting into the thick of difficulties, we consider the

case in which Sisa 2-sphere which is wild from U at a single point. It follows from

the fact that a neighborhood of 5 may be embedded in S3 [12] and from [6] and

[ 1 ] that g(S, U) = 0. So we may suppose that either g(S)/0or»i^2.

Step 1. We need first of all to construct a number of objects which will be used

in the proof. We suppose W chosen so close to S that W can be homotopied onto

Sand any point of S will go onto itself (guaranteed by Lemma 2). For i,j=l,..., m

and k= 1, 2,..., we can find discs Dik and annuli Axk such that px e Int (Dik)<=S;

Bd (A*) = one °f the boundary components of Aik ; Axk — Sc U; Jik is the name we

give to the boundary component of Axk in U; diam (A,k u Dxk) < Sk, where 8fc is a

positive number chosen sufficiently small to make Lemma 3 work for Dik and Aik

0 = 1,..., m) and such that Sfc< 1/(7 x 2k); and (Aik u Ak) ^ (Aik u Djk) = 0 if

We then know that for every k we can find o-k such that 0 < ak < 8fc and the con-

clusions of Lemma 3 hold for ak with respect to 8k. By [2] we may suppose each

Axk—S is locally polyhedral. For k—\, 2,..., let Gk be a connected polyhedral

3-manifold-with-boundary in U such that Gk contains all points of U which are a

distance greater than or equal to ak/2, Gk contains Jlk,..., Jmk, and any surface

F in U which separates S from Gk in Cl (U) must have the same orientability

class as S (Lemma 4).
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Next for k= 1, 2,... and /= 1,..., m, we choose A[k such that A'ik is a subannulus

of Aik, Bd (Afc) = one of the boundary components of A'ik, and A'ik^N(S, ak).

Now we describe a condition which will be useful in the rest of the proof. We

say that a polyhedral surface £ in U satisfies condition (Cfc) if and only if

£ separates S from Gk in Cl (U),

F is in general position with respect to each Aik, and

£ n Aik<= Int (A'lk) for /" = 1,..., m.

Note that £ must have the same orientability class as S, that £ n Aik must

contain a component which is an essential simple closed curve in Aik, sind that £

is contained in N(S, ak). Finally, for k= 1,,2,..., we choose A/"fc to be a polyhedral

surface in U such that it satisfies condition (Ck) and g(Mk)=g(S, U).

Step 2. For i=l,..., m and fc=l, 2,... we know that Mk n ^ifc consists of a

finite number of simple closed curves in Int (A'lk). Suppose that for fixed /' and k

there exists a component £ of Mk n ,4jfc such that £ bounds a disc £ in ¿4^. We

wish to show that we may so modify Mk as to avoid this situation.

We may assume that Mk has no points in common with Int (D). By cutting Mk

apart along £ and attaching two new discs to the cut ends of Mk, we can manu-

facture a set N such that N satisfies condition (Ck) (though N might not be con-

nected), N n Aik = (Mk n Aik)-L, ch (A^) = ch (Mk) + 2, and N consists of a single

2-manifold or two disjoint 2-manifolds.

Now if A7 is a single 2-manifold, then g(N)<g(Mk)=g(S, U).

Suppose that N consists of two disjoint 2-manifolds Nx and N2. We know that

N separates Gk from S in Cl (U) and we wish to show that either Nx or N2 alone

does this. Suppose not. There are disjoint arcs Bx and £2 such that £¡ has endpoints

q¡ and r¡ in Gk and 5 respectively, Int (£¡)c U, sind Bt n N¡ = 0. There exist arcs

Cx sind C2 such that Cj goes from qr to q2 in Gk sind C2 goes from rj to r2 in S.

Let J be the simple closed curve obtained by taking the union of £1; £2, C1; and C2.

Clearly £2 must pierce Nx sin odd number of times to get from S to Gk, so the

mod 2 intersection number of J with Nx is one. But by the way W was chosen, we

can homotopy J into 5 and thus prove that the mod 2 intersection number of /

with Nx is zero. Contradiction. Thus we may assume that Nx separates Gk from S

in Cl(U). Hence Nx satisfies condition (Ck). Now using the facts that ch(N)

= ch (Mk) + 2, that Nx sind Mk sire of the same orientability class, and that ch (Ay

is less than or equal to 2, it clearly follows that g(Nx)isg(Mk) = g(S, U).

It is clear from the above description that we can replace each Mk by a 2-manifold

Pk such that Pk satisfies condition (Cfc), g(Pk)ikg(S, U), and for i= 1,..., m each

component of the intersection of Aik and Pk is a polyhedral simple closed curve

which is essential in Aik.

Step 3. We should like to show that by a process similar to that of Step 2 we

can so modify Pk as to reduce the number of components of Pk n Aik to one and

ensure that Pk still satisfies condition (Ck) and has genus not greater than g(S, U).

Unfortunately we cannot always do this, but in those cases where we cannot, we
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will be able to show the existence of a disc on Pk the boundary of which is one of

the components of Pk n Axk.

Let us consider a choice of k and ; such that the intersection of Pk and Alk

contains at least three components. Then there are two such components F, and

F2 such that F, and F2 bound an annulus A* on Axk and Int (A*) misses Pk. There

exists a solid polyhedral torus T in U such that Axk n Bd (T) = F, u F2, Aik n T

= A*, F is contained in U—Gk, T n Pk = Bd (T) n Pk = the union of two disjoint

polyhedral annuli Q, and Q2, and F, is essential in Int (Q¡) for 7= 1, 2.

Let N=(Pk u Bd (F))-(Int (Q,) u Int (Q2)). Then N consists of either one or

two new 2-manifolds and ch (A/) = ch (Pk).

Case I. Suppose N is connected. Then N satisfies condition (Ck) and g(N) =

g(Pk) = g(S, U). The only important difference between N and Pk is that N n Axk

has two components fewer than Pk n Aik.

Case 2. Suppose N consists of two disjoint 2-manifolds, N, and N2. From the

proof given in Step 2, we see that we can assume that N, separates Gk from S in

Cl (U). Clearly Nx satisfies condition (Ck).

Subcase i. Suppose g(N2) = 0. We know there is an annulus A on N2 such that

N2 n Bd (T) = A and N2 — A is a subset of Pk. Then there exists a disc H on 7V2

such that H is a subset of Pk and Bd (H) is one of the components of Bd (A).

We can find an annulus Q* such that Q* lies on either Q, or Q2 and the boundary

components of Q* are Bd (H) and one of the simple closed curves F1; F2. Then

H u Q* is a disc on Pk the boundary of which is an essential simple closed curve

on Aik.

Subcase ii. Suppose N2 is nonorientable and g(N2) = l. Taking A as defined in

Subcase i, a few simple genus calculations show that A must separate A2 and that

one of the components of A2 —Int (A) must be a disc H. We then go on to the same

conclusion as in Subcase i.

Subcase iii. Now consider any possibility other than the two subcases discussed

above. Then ch(N2)-¿0 and hence g(N,)-¿g(Pk), so that we obtain a situation

like that of Case 1.

Now let F be a polyhedral surface in U satisfying condition (Ck) and consider

the following statements :

F—i: F n Aik consists of a single simple closed curve which is essential in Atk,

and g(F)úg(S, U).

F* i: Every component of F n Aik is essential in Aik, and one of these com-

ponents bounds a disc on F.

It follows from the above considerations that for k = 1, 2,... we may replace

Pk with a surface Sk satisfying condition (Ck) such that either Sk-i is true for

each / or Sk * i is true for some i.

Step 4. We shall now show that for all but a finite number of k the statement

Sk — i is true for i= 1,..., m.

Suppose not. Then for an infinite number of k we know that Sk * i is true for
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some i. We may as well suppose Sk * 1 is true for an infinite number of k. If

Sk * 1 holds, then there is a disc D' on Sk such that Bd (A) is one of the components

of Sk n Alk. There exists a subdisc D of D' such that Bd (D) is a component of

Sk n ^iic for some i (say /= 1) and Ajk does not intersect Int (D) for any / By

"walking" up the side of A,k, we can construct an arc p,a such that

p,a-Pl^(U-Alk) n N(S, ck),

p,a intersects Sk a finite number of times,

a is a point in Gk, and

diam (p,a) < 8k.

Case 1. Suppose mâ2. Then there are arcs ac, cd, and dp, such that ac is in Gk

and does not intersect Sk, d is a point of S, cd^A2k, and Int (dp,)^ V.

Let / be the union of pxa, ac, cd, and dp, (we may assume 7 to be a simple

closed curve). Now let A* be the subannulus of A'lk bounded by Bd (Dlk) and

Bd (D), and consider the 2-sphere S' obtained by taking the union of Dlk, A*,

and D. We can homotopy J into S (by virtue of our choice of W) and then into

S— Ant- Hence the mod 2 intersection number of J with S' is zero. Since J pierces

S' at/Jj, there must be another point at which J intersects S'. From our construction

it follows that there is a point b in the interior of p,a such that b is a point of £>.

By letting prb (the obvious subarc of pta) take the place of pa in the proof of Lemma

3, we can show as in that lemma that diam (D)<78k< 1/2". Now let D* be the

disc D u A*. Since diam (D*)< l/2fc_1 and A? must exist for an infinite number

of k, it follows that S can be locally spanned from U at p, and hence that S is

locally tame from U at p, [4, Theorem 10]. But this contradicts the hypotheses of

our theorem.

Case 2. Suppose S is not a 2-sphere and m=\. There is a simple closed curve L

on S such that L does not intersect p, and L is not nullhomotopic in S. We can find

an annulus A satisfying the requirements that L is one of its boundary components,

A—L is contained in U, and A—L is locally polyhedral and in general position

with respect to D. We may assume that we are considering k so large that A,k

and D,k do not intersect A and Bd (A) — L is contained in Gk. We can construct

an arc ac so that ac does not intersect Sk and c is a point of A. Now suppose D n A

contains a simple closed curve L' which is essential in A. Let H=the disc on £)

bounded by L' and 5 = the subannulus of A bounded by L and L'. Using Lemma 2

and our choice of W, we can shove the singular disc H u B into S and then use it

to show that L is nullhomotopic on S. Since this contradicts our choice of L, we

see that every component of D n A must bound a disc in A. Hence we can construct

an arc cd in ^4 such that dis a point in S and a/does not intersect D, Alk, or Au-

The rest of the proof is a copy of Case 1.

We therefore conclude that Sk * i can be true for at most a finite number of

k and i.

Step 5. For this last step, we shall consider only values of k for which Sk - i is

true for i'=l,..., m.
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We see that g(Sk)-¿g(S, U) sind that since each Sk separates S from Gk in Cl (U)

we have lim Sk = S. For sufficiently large k, we see from Lemma 3 that there are

pairwise disjoint discs with handles Clk,. ■., Cmk, components of Sk — Int (Alk),

..., Sfc-Int (Amk) respectively, such that diam (Cik)<78k< 1 ¡2k. Let Afk = tne

subannulus of Aik between Bd (Cik) and Bd (Ak)- Since Cik U Afk is a disc with

g(Cik) handles which is contained in U except for its boundary, is "cupped" over

Pi, sind is of diameter less than 1/2"-1, we then see that we may assume we are

working with a value of k for which g(Cik) is greater than or equal to g(ph U).

LetC0k = Cl(Sk-U?=iQk).

We consider first the case in which S is orientable. We have

m m

g(S, U) £ g(Sk) = 2 g(Ciu) ̂  g(C0k)+ 2 g(p» u)-
i = 0 1=1

It is now necessary only to show that g(C0k) is greater than or equal to g(S).

This is trivial if g(S) = 0, so suppose g(S)^=0. There exist in 5 pairwise disjoint

discs with one handle /£, ■ ■ -, HN (where N=g(S)) containing none of the points

Px,.. -,Pm- Let H be the union of /£,..., HN. Since S is locally tame from U sit

every point of H, there is a homeomorphism h from Hxl into Cl (U) such that

h(x, 0) = x and h(x, t) is a point in U for />0 and x e H. We may assume k chosen

so large that h(Hx I) intersects Sk only in Int (C0k) and Sk separates //and h(Hx 1)

in Cl (U). Furthermore we may suppose by [ 1 ] that h(H x (0,1 ]) is locally polyhedral

and thus may be assumed to be in general position with respect to C0k. It follows

then from Lemma 2 of [9] that for i= 1,..., N we can find a handle on some com-

ponent of C0k n h(Ht x I). These are clearly distinct handles for distinct values of

;', and thus g(C0k)^g(S).

The case in which S is nonorientable is treated in the same way except that

Hx,..., HN sire Moebius strips and one uses Lemma 4 of [9]. The 2 in front of

2¡m=i g(Ph V) arises from the fact that g(pt, U) is obtained by counting handles on

a disc while g(S, U) is found by computing the genera of nonorientable surfaces

approaching S. This finishes the proof of the theorem.

4. An application. Daverman in [8] defines a concept, the local enveloping

genus of a crumpled cube at a point, which we shall denote g'(p, U) and generalize

to 2-manifolds in 3-manifolds in the following way:

Definition. Let S be a 2-sided surface in a 3-manifold M3 such that S has U

for one of its two sides. Let W' be the union of U, S, sind Sx I where every x in S

is identified with (x, 0). We know from [11] that W' is a 3-manifold at each point

of S. Choose a point p of S and let A be the arc px I. We then define g'(p, U) to

be the local enveloping genus of A at p. Now we need to define local enveloping

genus of A sit p.

Definition. Let A be an arc in £3 with endpoints/> and q. Consider the statement

H(p, n): For every positive real number e there is a sphere with n handles K such

that K separates p and q, the intersection of K and A is a single point in Int (A),
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and K is contained in N(p, e). If H(p, ri) is true and H(p, n—l) is not, then we

define the local enveloping genus of A at p, LEG (A, p), to be n.

Not surprisingly, this turns out to be the same as our g(p, U), and we sketch

here a proof of the equivalence of the concepts.

Lemma 5. Let S be a 2-sided surface in a 3-manifold M3 such that S has U for

one of its sides. Let p be a point in S such that S is locally tame from U at every

point except possibly p. Then g(p, U)=g'(p, U).

Proof. Let W be the union of U, S, and Sx I where all the points x in S are

identified with (x, 0). Let A be the arc pxl. Then g'(p, U) = LEG (A, p), the local

enveloping genus being calculated in the 3-manifold W.

Let H be a disc with g(p, U) handles which is "cupped" over/? in the manner

described in the definition of g(p, £/). We can attach a disc D to H in such a way

that Int (D) is contained in Sx(0, 1), the intersection of A and D consists of a

single point, A pierces D at that point, and Bd (D) = Bd (H). Since the sphere with

g(p, U) handles which is formed by taking the union of H and D can be constructed

in an arbitrarily small neighborhood of p, we conclude that g(p, U) is greater than

or equal to g'(p, U).

Now we have to prove that g(p, U) is less than or equal to g'(p, U). We see that

we can find a sphere with handles Q, a simple closed curve C, and an annulus B

such that A intersects Q in a single point r and pierces it there, Q can be assumed

to lie in some arbitrarily small neighborhood of p which has been chosen before-

hand, the genus of Q=g'(p, U), B=Cx /<=Sx/, CxO bounds a disc A on S such

that/? lies in Int (£>'), Cx^ bounds a disc D" on Q such that r lies in Int (A),

and B intersects Q in precisely the set C x %.

Let Q' be the disc with g'(p, U) handles and boundary CxO which is obtained

by taking the union of Q — D" and Cx [0, £]. Since S—Int (Dr) can be collared

from U by [3] and that part of Q' which intersects Sx I lies in (S-Int (D'))xl,

it is not very difficult to construct a homeomorphism h on Q' such that h is the

identity on Bd (Q') and /¡(Int (Q')) is contained in U. Because h(Q') corresponds

to a disc with handles as described in the definition of g(p, U) and h(Q') can be

constructed in an arbitrarily small neighborhood of p, it follows that g'(p, U) is

greater than or equal to g(p, U).

The concept of g'(p, U) has the advantage that it can be applied to any 2-manifold

embedded in a 3-manifold. Abandoning the temporary notation g'(p, U) in favor

of the symbol g(p, U), we give the definition of nonpiercing point and generalize

Theorem 5 of [8].

Definition. Let S be a 2-sided surface in a 3-manifold M3 such that S has U

for one of its sides, and let/? be a point of S. We say that/? is a piercing point of S

with respect to U if and only if there is a neighborhood N of /? in Cl (U) and a

homeomorphism h from N into E3 such that h(S n N) can be pierced at p by a

tame arc.
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Theorem 2. Let S be a 2-sided surface in a 3-manifold M3 such that S has U

for one of its sides. Then the number of points of S which are nonpiercing points with

respect to U is less than or equal to

1 ifg(S) = g(S, U) = 0,
g(S, U)-g(S)        if S is orientable and either g(S, U) ± 0 or g(S) ± 0, and

\(g(S, U)-g(S))   if S is nonorientable.

Proof. The proof is the same as that of Theorem 5 of [8] except that where

Daverman uses [7] and [13], we use Theorem 1 and Lemma 5 of this paper.
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