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ORIENTATION-PRESERVING MAPPINGS, A SEMIGROUP

OF GEOMETRIC TRANSFORMATIONS, AND A CLASS

OF INTEGRAL OPERATORSO

BY

ANTONIO O. FARIAS(2)

Abstract. A Titus transformation T= <a, v} is a linear operator on the vector

space of C°° mappings from the circle into the plane given by (7J")(r) = «a, »>/)(/)

=/(f) + «(0 det [v,f'(t)]v, where a is a nonnegative, C° function on the circle S1.

Let t denote the semigroup generated by finite compositions of Titus transformations.

A Titus mapping is the image by an element of t of a degenerate curve, a0v0, where

«o is a C function on S1 and v0 is fixed in the plane R2.

A C" mapping /: S1 -*■ R2 is called properly extendable if there is a C00 mapping

F: D~ -> R2, D the open unit disk and D~ its closure, such that /Fä0 on D,JF>0

near the boundary S1 of D~ and F|si =/. A C™ mapping /: S1 ->- R2 is called normal

if it is an immersion with no triple points and all its double points are transversal.

The main result of this paper can be stated : a normal mapping is extendable if and

only if it is a Titus mapping.

An application is made to a class of integral operators of the convolution type,

y{t)= —¡l" k(s)x(t — s) ds. It is proved that, under certain technical conditions, such

an operator is topologically equivalent to Hubert's transform of potential theory,

y(t)=f2a* cot (s¡2)x(t—s) ds, which gives the relation between the real and imaginary

parts of the restriction to the boundary of a function holomorphic inside the unit disk.

0. Introduction. A map/: S1 -> R2 is extendable if there is a map on the closed

disk with Jacobian nonnegative throughout and positive near S1 and which agrees

with/on S1. We show that any such map can be obtained by means of a finite

number of growth operations (see text for precise definitions). We also make an

application to a class of convolution operators introduced by C. Loewner to show

they are topologically equivalent to the Hubert transform of potential theory.

The proof is accomplished by approximating/from the inside by a map g which

extends to a holomorphic G whose derivative has no multiple zeros, and then

giving a geometric proof for such g.
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1. Preliminaries. Iff: A -*■ B is a function, [/] denotes the image of/as a subset

of B. If A is a subset of a topological space, then A " denotes its closure.

The set of real numbers is designated by R.

The plane R2 is considered both as the plane of the complex variable z = x+iy

and as parameterized by polar coordinates (r, 6).

We always use D to denote the open unit disk in R2 and S1 is the naturally

oriented boundary of D. S1 will also be considered as parameterized by 9 taking

values in [0, 2n]; in this case, real-valued functions will be identified with functions

on R with period 27r.

All manifolds and maps will be smooth ( = C°) unless otherwise stated. The

differentiable structure of R2 and all its submanifolds considered are the usual ones.

If F: A -> B is a map between oriented manifolds, then the expression "£ is

O.P." means that £ preserves orientation or, equivalently, that its Jacobian is

nonnegative everywhere.

In the set Cm(S1, R2) we consider the Cn-topology, for every n, induced by the

norm

||/||n=   max  max |/«>(0)|,
i = 0.n  eeS1

where/<0)=/and/'0 is the zth-derivative off. The C"-topology is the direct limit

of all the CMopologies.

If A<=^R2 Sind F: A -> R2 is differentiable then JF(z) represents the Jacobian

determinant of £ computed at z e A.

The plane R2 will also be considered as a vector space, with the usual structure.

If V,WeR2 then det [V, W] is the usual determinant form; thus, if V=(VX, V2),

W=(Wx, W2) then det [V, W]=VxW2- WxV2.

2. The topology of immersions.

Definition 2.1. A map /: S1 -> R2 is called extendable if there is a map

F: D~ -» R2 such that/fäO and £|s1=/; in this case £is called an extension off.

If, further, JF>0 on S1, then f is properly extendable and £is a proper extension of

/. If £is a proper extension off which is holomorphic on D, then/is a holomorphic

boundary and £ is a properly holomorphic map.

Proposition 2.1 [10, Theorem 1']. Let f be properly extendable. Then, there

is a homeomorphism <p: S1 -> S1 and a holomorphic boundary g such that f<p=g.

Lemma 2.1. Let f:S1-^R2 be an immersion which represents a positively

oriented Jordan curve. Then, f is properly extendable to an O.P.-diffeomorphism

F: D- -> R2.
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Proof. Choose S>0 such that g : S1 -> R2 given by g(6)=f(6)-8n,(8), where n,

is the outer normal to/ is also an injective immersion [2, Lemma 6, p. 278]. By

Francis [2, Lemma 7, p. 278], there is an orientation-preserving C1 diffeomorphism

G:D--^R2 such that G\si=g and (8G/8r)\s^ = 8nf. Define F,: D' -> R2 by

F,(r, 8) = G(2r, 6) if r£$ and Fj,(r, 6>)=/(ö)-2(l-r)8«/(Ö) otherwise. Then, Fx is

C1 and JFi>0 on D~, F1\si=fand F, is smooth on the annulus ^<r< 1. Hence,

there is a smooth F with JF>0 and which agrees with F, on the annulus f <r< 1.

(This can easily be obtained, for instance, from [6, Theorem 4.2 and Exercise (a)].)

If z is an interior point of [F] we have

Cardinality F~x(z) =     2     sgn JF(y) = degree (F\si, z)
yeF-Hz)

= degree {8-+(f(8)-z)/\f(8)-z\}

= tangent winding number of g = 1.       Q.E.D.

Lemma 2.2. Every normal map is infinitesimally stable. (See [5], [12] for termin-

ology.)

Proof. Let/be normal and let m be a vector field along/ We must construct

vector fields V on S1 and W on R2 such that

u = Wof+f^o v.

Clearly, it suffices to construct W on a neighborhood of [/].

lff~1(f(8))={8}, there is no problem, since we can take V(8) as the unit tangent

vector at 8 and W(f(8)) = u(8)—f^ o V(8) and make W constant along a small

enough segment of the normal to [/] through f(8).

If/(^i) =/(ö2), 81^82, we need only change Fand Win small enough neighbor-

hoods of 0lt 82 so that

W(f(8,)) = u(81)-UV(81) = u(82)-f*V(82)

which can be done since f'(8,) and f'(82) are linearly independent, so u(8^) — u(82)

= C1f'(81)-C2f'(82)=MC1(d/d8)ei)-UC2(dld8)e2). A smooth pasting completes

the proof.    Q.E.D.

The following theorem is basically a very special case of a result of Mather

[5, Theorem 1, p. 267]. Mather's result, however, guarantees the existence of a

neighborhood U with property (1) below in the C°° topology, so our theorem is a

slight strengthening of Mather's result in the special case considered.

This result will be used to show that a constructed map, g, is C "-isomorphic

to a given map, / Our constructions, however, only guarantee that finitely many

derivatives of g approximate those off; thus, we cannot be sure that/and g are

close in the C" topology and so Mather's theorem does not apply. On the other

hand,/and g, being close in the C1 topology, are isomorphic by our theorem.

Theorem 1 (Uniformization Theorem). Every normal map f has a neighbor-

hood U= Uf in the space C°c(51, R2) provided with the C1 topology, such that:
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(1) For every g, h e U there are orientation-preserving diffeomorphisms <p: S1 -^S1,

</>: R2 -*■ R2 such that g ° <p = i/j ° h.

(2) Every g e U is extendable iff there is he U which is extendable.

Proof. Applying Lemma 2.2 to the normal field along /yields a vector field, W,

on R2 such that W°f and/' are linearly independent.

Letting <¡>(X, z, t) denote the flow of the vector field X, we can find 77 >0 such

that ^(W,f(9), t) is defined for every 9 e S1 and \t\<-q and/(ö) is the only point

in [/] n {®(W,f(9), r) : \r\<v}. The set

V = {z : z = ®(W,f(9), r), 9eS\\r\< v}

is open and every one of its points is uniquely representable as ®(W,f(9), r). Let

Vn(8) = {z : diz, [/]) < «8}

and choose 0<8^v/2 such that F2(S)c y.

Let U be the set of all maps g: S1 -> R2 such that ||/-g||i < S. This U will be

seen to satisfy the theorem.

In fact, if g e U, si map d: S1 -> R can be defined by the conditions

<K(W,f(9),Cx(9))e[g],       \Cx(9)\ < v,

and this will induce a map C2: V2-+R such that C2(<f>(W,f(9), r)) = Cx(9). Extend

C2 to a function C on i?2 and define Wx = CW, ^(z) = <D(IF1, z, 1). Then, </> o/and

^ are two immersions with the same image (as point sets) and orientation, hence

i/i °f=g ° <p, as required.

Part (2) follows from part (1) and Lemma 2.1.    Q.E.D.

Proposition 2.2 (Titus, oral communication). Every normal, extendable map

is properly extendable.

Proof. Let/be normal and extendable. Construct^ from/by moving along the

inward normal, say g=f-8nf. By the Uniformization Theorem, if S is small

enough then g is extendable, say to G. Use a bump function to construct a map F

on the disk of radius 2 which agrees with g for O^r^ 1 and grows from g—f—8nf

to/for l^r^2; further, £ has positive Jacobian for r>l, provided S is small

enough.    Q.E.D.

Remark. Normality is necessary in the previous proposition, for/(0) = cos 9

+ i cos2 9 sin 9 is an extendable immersion which is not properly extendable.

Proposition 2.3 (Titus, oral communication). The set of properly extendable

maps is open in the ^-topology of CX(S1, R2).

Proof. If £ is a proper extension of/ there is an annulus containing S1 on

which £is a local diffeomorphism, and whose image is an open set V. The neighbor-

hood U off can be taken so that each g e U is an immersion mapping inside V.
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The map y = F~1 o g is a diffeomorphism S1 -> R2 which extends to a O: D~ -*■ R2

(Lemma 2.1); G = F° 0 is the desired proper extension of g.   Q.E.D.

Lemma 2.3. Let f be normal, extendable and real analytic. Then, f has a proper

extension which is holomorphic on a neighborhood of S1.

Proof. Since / is real analytic, for each 8Q the function g(8)=f(eie) admits a

power series expansion about 80; if we restrict the values of 8, this will give a

power series about exp (i80) which will converge in a disk about exp (id0). In the

intersection of any two such disks both power series coincide with/on an arc and

thus they coincide in the entire intersection. In this fashion, we obtain a function

Fj holomorphic on a neighborhood of S1 and which extends/

For r0< 1 sufficiently close to 1, the restriction of F1 to the circle r = r0 extends

to a function, G, with nonnegative Jacobian. Paste G and F1 together to get an F

with F=G for r^r0 and F=F1 for r^r„ where r0<r1< 1.    Q.E.D.

3. Titus transformations.

Definition 3.1. A Titus transformation, T, is a linear operator on the vector

space Cco(S1,R2) given by

(3.1) (Tf)(8) = f(8) + C(8) det [V,f'(8)]V,

C: S1 -> R nonnegative, V fixed. We use the notation 7==<C, V"). The set of all

finite compositions of Titus transformations is a semigroup, X.

The effect of a Titus transformation can be represented by an elementary opera-

tion of growth along a fixed direction, growth understood in the sense of moving

to the outside of an oriented curve.

The following properties are easily verified:

(Tl) Every Titus transformation is an invertible operator,

(T2) <0, F> = <C,0> = identity,

(T3) <c1( vy o <c2, f>=<c1 + c2, vy,

(T4) <C, tV) = (t2C, Vy for every real number t,

(T5) for A e GL(/?2), define A* e GL(Clo(S1,R2)) by A*f=A of, then,

a*o(c, vyo(A*y1 = <(detAy-c, Avy.

In (3.1), C is called the coefficient of T. Norton [7, Theorem 2.1, §2.1] proved

that, for the case of constant coefficients, the only relations are those expressed by

T2, T3 and T4; it is clear, though, that his arguments hold for the general case as

well. Thus, every SezZ can be expressed uniquely as A* ° Tn °- • -° Tu where

AeGL+(R2) and each Ti = (Ci, Vxy is such that maxC¡ = l and Vx, Vi+1 are

linearly independent. Hence it makes sense to talk about S e S having constant

coefficients.

A "degenerate" map S1 -*■ R2 is one whose image lies in a one-dimensional

subspace. Denote by A the set of all such maps.
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Definition 3.2. A Titus map (or T-map) is a map S1 -> R2 in S (A). The set of

all T-maps is denoted by S.

Thus, a T-map has an elementary geometric meaning: it represents a curve

obtained from a "degenerate" curve by applying growth operations finitely many

times.

Proposition 3.1 (Titus, oral communication). Every T-map is extendable.

Proof. Let/: S1 -> R2 be a T-map; then, it can be expressed as

f=(A*oTno...oT1)f0,

where/0 e A, Ti = iCi, K¡> and A e GL + (R2). By induction, it suffices to prove

(a) Every/0 e A is extendable.

(b) If/is extendable and T=(C, V} is a T-transformation, then Tf is extendable,

(a) is clear, an extension of/0 being F(r, 9) = <p(r)f0(9), where <p is a bump func-

tion going from 0 to 1 as r goes from 0 to 1.

To prove (b), let £ be an extension off; by using the bump function <p, we can

assume that £ is defined on the whole plane and F(r, 9)=f(9) for r â 1. Define G

on D~ by

G(r, 0) = F(<p(2r), 9) if r g i,

= (0(2/-I)C, F>/)(0)      ifr^i.

An easy check shows that G(l, 9) = (Tf)(9), JG(r, 9) = 2<p'(2r)JF(r, 0)äO for r^¿

and /c(r, 6) = 2<p'(2r- l)C(0){det [K,/'(0)]}2/V^O for r ^. Thus, G is an extension

of Tf.   Q.E.D.

4. The classification theorem. Throughout this section, / (with or without

subscript) denotes a map Sl -*■ R2.

Lemma 4.1. Iffe S and tfi is an O.P.-diffeomorphism of S1, then f° </< 6 3.

Proof. Direct computation.

Definition 4.1. f is said to be inside f2 iff there is a 8>0 and a vector field,

V(9), along/j such that

(1) {fi(9) + tV(9) : |/|<8} has exactly one point in common with either [/J or

[/a,
(2)det[F,/;]>0, i=l,2.

Using the direction V(9) to grow locally from/j to/2 in a neighborhood of/i(0),

and the compactness of S1, we get the following.

Lemma 4.2. Iffx is inside f2, there is JeE such that f2 = Tfx.

If F: [/-> JÎ2, (7 open in i?2, is a map with /F>0 on some circle r = r0, si local

argument and compactness will show the existence of an e>0 such that whenever

r0 — EÚrx<r2Sr0 + e then £|r = ri is inside £|r = r2. Again by compactness, Lemma

4.2 yields
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Proposition 4.1. Let Vbe an open set containing the annulus 0<a^r^b, and let

Fe C"(V, R2) with JF>0 on V. Then, there is Tel, such that F\r=b = T(F\r = a).

Lemma 4.3. Let F be a conformai diffeomorphism of the disk of radius 2 into R2

such that F(D~) is a convex set whose boundary has positive curvature everywhere.

Then, the restriction of F to S1 is a T-mapping.

Proof. The lemma is proved by a direct geometric construction; we project the

image of S1 onto a diameter of the convex set F(D~) along a direction perpendicu-

lar to that diameter.   Q.E.D.

The Implicit Function Theorem together with Proposition 4.1 and Lemma 4.3

yield a proof of

Lemma 4.4. Let F be holomorphic on D~ with F'(z)^0 there. Then F\sieS.

Proposition 4.2. Let F be holomorphic on D~ and assume F' has only simple

zeros there. Then, F|si 6 S.

Proof. Let us assume first that F' has exactly one zero, say, at z0 e D.

Since F"(z0)^0, /"behaves locally as G(z) = z2, Thus, we can choose a< |z0| <b

such that the images of the circles |z|=a, |z|=z0 and |z|=6 are (locally) as in

Figure 1. Let/,/2,/3 be the restrictions of F to these circles, respectively. It is clear

how to go from/i to/3: first, move/x so that the new map, say g,, goes through

F(z0); then create g2 inside/2 (in the geometric sense) with a cusp (simple zero of/2')

at z0; a third growth step will create an immersion g3 inside/3 (in the sense of

Figure 1. Image by F of circles near a zero of F'
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Definition 4.1), and use Lemma 4.2 to see that/3 = 7Ji for some FeE. The result

in this case follows now from Lemma 4.4 and Proposition 4.1. Since F' has only

finitely many zeros, an iteration of the argument above yields the result in the

general case.    Q.E.D.

Lemma 4.5. Every holomorphic boundary is a T-map.

Proof. Let F be a proper holomorphic extension off. Approximate F by a proper

holomorphic map G satisfying: (i) G' has only simple zeros; and (ii) the restriction

of G to S1 is inside/(G can be a polynomial approximation to F, for instance).

Use Proposition 4.2 and Lemma 4.2.    Q.E.D.

Lemma 4.6. Every normal, real analytic, extendable immersion is a T-map.

Proof. Let/be a normal, real analytic, extendable immersion. By Lemma 2.3,

there is a disk U^> D~, an annulus £/=> V^S1 and a map F: U^ R2 holomorphic

in V and with JF > 0 on V. By [10, Theorem 1' and proof of Lemma 4], there is an

interior map /: U-*■ R2 such that /|7 = F|v.

By [13, p. 103] there is a homeomorphism H,: U-> U and a holomorphic map

F^.U-^R2 such that /=Fj ° Hx.

By [9, Theorem 2] there is a homeomorphism H2: D~ -*■ D~ and a properly

holomorphic map F2:/)"-> R2 such that /|D- =F2 ° H2. From Stoilow's proof,

we can take F1|D = F2, H1\D = H2.

Since F, |v = I° //f' |v = F° H{ 1\v,F1\visa local homeomorphism, thus a local dif-

feomorphism [13, Chapter VII, Corollary 1.21]. Since //1 = F1"1 o Flocally, H,\v is a

diffeomorphism. Since by continuity f=(F,\si) ° (//i|s0> /e ^> by Lemmas 4.5

and 4.1.    Q.E.D.

Theorem 2. Every properly extendable map is a T-map.

Proof. Let/be properly extendable.

Since the normal, real analytic immersions are open and dense ([12], [2], [8]),

it is easy to see that / is the limit of a sequence of such maps, each of which is

inside/ The theorem then follows from Lemmas 4.6 and 4.2.    Q.E.D.

Theorem 3 (Classification Theorem). A normal immersion is extendable iff

it is a T-map.

Proof. Theorem 2, Proposition 3.1 and Proposition 2.2.   Q.E.D.

5. An application to integral operators.   It is a simple fact (which can be obtained,

for instance, from [4, Lemma 2]) that an extendable map represents a curve of
nonnegative circulation (i.e., nonnegative winding number about any point of the

plane not on its graph). The converse, however, is not true; the map in Figure 2

(under a suitable parametrization) is normal and has nonnegative circulation, but

it is not extendable(3).

(3) Its tangent winding number is 0, while for any normal extendable map the tangent

winding number is at least 1 (see [9]). The example is due to Titus.
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Thus, it is natural to ask when a map of nonnegative circulation is extendable.

Our methods can give a positive answer under fairly general assumptions. Clearly,

it is desirable that these assumptions be reasonably simple and include at least the

holomorphic boundaries, the nicest maps which are both extendable and of non-

negative circulation.

Figure 2. Example of a curve with nonnegative circulation which is not extendable

Consider the operator on the set of continuous functions with period 2n given by

(5.1) y(t) = -f "k(s)x(t-s)ds,

where k is integrable in [0, 27r]. Loewner [4] proved that a necessary and sufficient

condition for the plane curve x=x(/), y=y(t) given by (5.1) to have nonnegative

circulation for every such x is that (after a possible change on a set of measure zero)

k be real analytic on (0, 2w) with derivative given by

(5.2) k'(s)=r   e~srdp(r),       0 < s < 2n,
J — oo

the integral taken in the sense of Stieltjes-Lebesgue relative to a nondecreasing

function p.

If F(eie) = x(9) + iy(9) is a holomorphic boundary, then by the Hilbert transform

/■2JI

(5.3) y(9) = P.V.       cot(s/2)x(t-s)ds,

provided j(0) = 0. Here, the letters P.V. mean the integral must be taken in the

sense of Cauchy's principal value (see [3]).

We note that (5.3) is closely related to (5.1), since

d f°°     te~st
Js(-cots) = csc2s = j_^T-FTtdt,
ds

[14, p. 260] and

p'(t) = t/(l-e-^) ^ 0.

The only difference is that k(s) = cot(s/2) is not integrable, so (5.1) becomes a

singular integral.
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From what has been said, it is natural to consider maps/: S1 -*■ R2 given by

f(9) = x(9)Vx+y(9)V2 where K1; V2 is a positively oriented base and

y (6) =  -P.V.        k(r)x(9-r)dr,
Jo

where k satisfies the following conditions :

(i) k' is given by (5.2);

(ii) k(s) = h(s)/sa(2n—s)a for some O^a^l and some function h Lebesgue

integrable in [0, 2n] ;

(iii) P.V. J2" k(s) ds exists and is finite;

(iv) If «>0, ¡l" k(s) ds is not defined.

By [1], [4] all such maps have nonnegative circulation; they will be called BL-

maps. From the paragraph above, every holomorphic boundary is a BL-map; we

will show that, up to homeomorphisms, the converse is true.

From the work of Benson, Loewner and Norton ([1], [4], [7]) we can conclude:

Proposition 5.1. The set ofT-maps with constant coefficients is dense in the set

of BL-map s under the ^-topology.

Proposition 5.2. Every normal BL-map is properly extendable.

Proof. Proposition 5.1 and the Uniformization Theorem.

From this and Proposition 2.1 we get:

Theorem 4. Every normal, BL-map is, after a topological change of parameter,

a holomorphic boundary.

This means that, given a normal BL-map / there is an O.P.-homeomorphism

<p: S1 -> S1 and a properly holomorphic map £: D~ -> R2 such that £|sl=/° <p.
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