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HYPERBOLIC LIMIT SETSO)

BY

SHELDON E. NEWHOUSE

Abstract. Many known results for diffeomorphisms satisfying Axiom A are

shown to be true with weaker assumptions. It is proved that if the negative limit set

L~(f) of a diffeomorphism/is hyperbolic, then the periodic points of/are dense in

£"(/). A spectral decomposition theorem and a filtration theorem for such diffeo-

morphisms are obtained and used to prove that if L'(f) is hyperbolic and has no

cycles, then / satisfies Axiom A, and hence is Q-stable. Examples are given where

L~{f) is hyperbolic, there are cycles, and/fails to satisfy Axiom A.

1. In [10] and [11], Smale obtained results for a diffeomorphism/of a compact

manifold M satisfying Axiom A. Axiom A requires (a) the nonwandering set

Q = Q(/) has a hyperbolic structure, and (b) the periodic points of/are dense in

Q(/). The purpose of this paper is to point out that many of Smale's results may

be obtained under weaker hypotheses. One consequence of our observations is

that most of the known results for diffeomorphisms satisfying Axiom A are true

for those satisfying Axiom A(a) alone.

Our main result is the following. Let L'(f) be the closure of the set of a-Iimit

points of/ Then,

Theorem 4.5. IfL~(f) is hyperbolic andf has no cycles, then f satisfies Axiom A

(and has no cycles).

This gives strengthening of Smale's Q-stability theorem in two directions. On the

one hand, it is not necessary to assume Axiom A(b), and on the other hand, it is

not necessary to assume the whole nonwandering set is hyperbolic.

For the theorem to hold, a natural change in the usual definition of cycle is

needed (see the definitions preceding (3.9) and Examples 1 and 4 at the end of §3).

Our definition reduces to the usual one when/satisfies Axiom A(a).

The basic idea of the proof of Theorem (4.5) is as follows. First we prove that

L"(/) hyperbolic implies that the periodic points of/are dense in L~(f) and that

there is a spectral decomposition theorem. Then, using methods similar to the

proof of Smale's Q-stability theorem, we obtain a filtration theorem for/ In the

case of no cycles, this filtration separates the pieces in the spectral decomposition

of L~(f) from which it follows that L'(f) is the whole nonwandering set.
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126 S. E. NEWHOUSE [May

Another sufficient condition for Q-stability is contained in Theorem (4.7).

Although we deal here only with diffeomorphisms, the corresponding results for

flows may be obtained by combining slight modifications of the methods used here

with the techniques of [7].

At the beginning of §2 we collect several notations and definitions which will be

used throughout the paper. Then we prove a spectral decomposition theorem for

diffeomorphisms such that the closure of the periodic points is hyperbolic.

In §3 we obtain results when L~(f) is hyperbolic. In partícula-, we prove that

L~(f) hyperbolic implies the periodic points of/are dense in L~(f). We also obtain

a filtration theorem and present some examples which show that our results are

true generalizations of Smale's results.

The main results of §4 are Theorems (4.5) and (4.7).

I wish to thank J. Palis and R. C. Robinson for some helpful comments and

suggestions.

2. Here we obtain some results about periodic points. But we first establish

some notation which will be used throughout the paper.

Throughout it is assumed that/is a C diffeomorphism, 0<r<oo, of a compact

C°° manifold without boundary. Let P=P(f) be the set of hyperbolic periodic

points of /and assume 7J#0. Let D = Q(/) denote the nonwandering set off.

For a subset Z><= M, D or Cl (D) will denote its closure in M, and int D will denote

its interior in M.

For x e M, define a(x) = a(x,f) = {y e M : there is a sequence of integers

«¡->co such that f~n*(x) -> y as ;:-> oo}. Let oj(x) = cu(x,/) = a(x,/_1), o(x)

= {/n(x) : -co<«<co}, La = La(f) = {x e M : 3y e M such that xea(y)}, and

La = L0J(f)=La(f-1). Also, setZ," =La, L+ =La, and L=L~ u L +. La, L~, La, L + ,

and L are called, respectively, the a-limit set off, negative limit set off, co-limit set

off, positive limit set off, and limit set off. o(x) is called the orbit of x.

A compact/invariant set A is hyperbolic if there are a continuous splitting of the

tangent bundle TAM = ES© Eu preserved by the derivative Tf of / a riemannian

metric | • | on M, and a constant 0< À< 1 such t ' t |7/(d)| ^ A|d| for v e Es and

|7/(d)| ä A_1|y| for v e Eu. A metric | • | such as that referred to in the preceding

sentence is said to be adapted to A.

Let A be a hyperbolic set, and | • | be an adapted metric. Let dbe the topological

metric on M induced by | • |. For x e A, e>0, let

Wu£(x) = {ye M : d(f-n(x),f~n(y)) ^ e for n à 0},

W(x) = {ye M : d(f-n(x),f-n(y)) -> 0 as n -» oo},

W'Áx) = {yeM : d(fn(x),fn(y)) S e for n ^ 0},

W \x) = {yeM : d(fn(x),fn(y)) -* 0 as n -»■ co}.

We denote that, for x e A, a = u,s, Wd(x)<= W(x) and Wa(x) is a smooth injec-

tively immersed copy of a Euclidean space. Further, W(x) is tangent to E% at x
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(see [2]). For a subset D^ A, let W%(D) = {JxeD Wf(x), and make similar definitions

for Wu(d), WSS(D), and WS(D).

We now proceed to establish some facts about the set P of hyperbolic periodic

points of the diffeomorphism/ Recall we have assumed P+<z.

Let p,,p2e P. We will say that p, is homoclinically related to p2 or h-related to p2,

denoted Pi~p2, if Wu(o(p,)) has a point of transversal intersection with Ws(o(p2))

and Wu(o(p2)) has a point of transversal intersection with Ws(o(p,)).

(2.1) Proposition. The relation ~ on P is an equivalence relation.

Proof. Reflexivity and symmetry are obvious. For transitivity, suppose p±~p2

and/>2~/>3. Let x2 be a point of transversal intersection of Wu(o(p2)) and Ws(o(p3)),

Pi eP, i=\, 2, 3. Since ^"(oí/^)) is a finite union of injectively immersed cells,

there are a point p'2 e o(p2) and a closed disk D2<= ̂ "(o^)) such that p'2 and x2

are in D2. Since Wu(o(p,)) has a point of transversal intersection with Ws(o(p2)),

by the Palis A-lemma [4], Wu(o(p,)) contains disks D\ arbitrarily C1 close to D2.

Thus we can choose such a D\ which will have a point of transversal intersection

with Ws(o(p3)) near x2. So Wu(o(p1)) has a point of transversal intersection with

Ws(o(p3)). Similarly, ^"(o^)) has a point of transversal intersection with

Ws(°(Pi)) and so p,~p3.

We will call the equivalence classes of P, h-classes. For p e P, the Ä-class ofp will

be denoted by Pv.

The following lemma is essentially due to Birkhoff [1, p. 205].

(2.2) Lemma. (1) Let X be a second countable, complete metric space. Let

h: X-> X be a continuous map. If for every nonempty open set V in X, Una o hn( V)

is dense in X, then there is an x0e X such that cu(x0) = co(x0, h) = X.

(2) If h is a homeomorphism, and for every nonempty open set V, Unào hn(V) and

Unio hn(V) are dense, then there is an x0 e X such that a(x0) = oj(x0) = X.

Proof. Since for every open V, Unfeo hn(V) is dense, we have that for every open

V, UnSo hn( V) is a dense open set in X. If {K¡}ie; is a countable basis for the topology

of X, then Hie; (UnSo hn(Vt)) is dense in X by the Baire Category Theorem.

If x 6 Hie; (Unso hn(Vx)), then (An(x) : «^0} is dense in X, so w(x) = X. (2.2.2) is

proved similarly by choosing

xeniu w))nn(u w>).
ie;  VngO /        iel \näO /

If p e P, then a point q of transversal intersection of Wu(o(p)) and Ws(o(p))

such that q $ o(p) is called a transversal homoclinic point of p. Let Hp be the set of

all such points and suppose Hp^0.

(2.3) Lemma. Hv is a closed, f-invariant set such that there is an x e Hp such that

a(x) = üj(x) = Hp.
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Proof. That Hp is closed and /-invariant is obvious. For the last statement we

wish to apply Lemma (2.2.2).

To this end, let Vx, V2 be any nonempty open sets in Hp. Thus there are c7¡ e Hp

and open sets Ut in M such that qxe Vi = Ui n Hp, i= 1, 2. Let D\ be a disk in

Wu(o(p)) of the same dimension as Wu(o(p)) which contains a point p± e o(p) and

qx in its interior in Wu(o(p)).

Let D2 be a small disk in Wu(q2) n U2 of the same dimension as Wu(q2) which

contains q2 in its interior in Wu(q2).

Since D\ meets rVs(q2)c Ws(o(p)) transversely, the A-lemtna says that

{Jnäofn(-DD contains disks arbitrarily C1 close to D\. Thus {Jniofn(D2) contains

points in Hp arbitrarily close to qx- Thus, qx e IJnao Cl (fn(D2) n Hv)

cUnäoCl(/"(i/2)n/7p) = Unäo Cl (p(U2 n Hp))^Un±o Cl (f\U2 n /?,)) =

= U^oCl(/"(F2)). So

nn(u/"(Ka)) #0.

Similarly, Vx C\ (\JnuOfn(V2))^0. Since Kx and V2 were arbitrary we may apply

(2.2.2) to give (2.3).

(2.4) Theorem. Let p be a hyperbolic periodic point whose h-class Pp contains

more than one orbit, i.e. there is a point py e Pp such that px $ o(p). Then Hp =PP.

In particular, Hp^0.

(2.5) Corollary. IfPp is the h-class of p, then Pp is a closed, f-invariant set such

that there is an xePp such that a(x) = œ(x)=Pp.

Proof of (2.4). The proof that P„<=Hp is very similar to the proofs of (2.1) and

(2.3). Let px e Pp, px $ o(p). Let x be a point of transversal intersection of Wu(o(p))

and Ws(o(px)) and let xx be a point of transversal intersection of Wu(o(px)) and

W(o(p)). Let DXl be a disk in Wu(o(px)) containing x± in its interior in ^"(o^)).

By the A-lemma, there are disks in Wu(o(p)) which are arbitrarily C1 close to DXl.

Thus Xj e Hp. Hence px e Hp, so PP<^HP.

The fact that HP<^PP is a consequence of the following version of Smale's

theorem on transversal homoclinic points.

(2.6) Theorem (Smale [9]). Let p be a hyperbolic periodic point of the diffeo-

morphism / and let q be a transversal homoclinic point of p. Then in every neighbor-

hood of q there are infinitely many periodic points which are h-related to p.

In [9], Smale made use of Sternberg's linearization theorem, and this required

eigenvalue assumptions other than hyperbolicity and additional smoothness

assumptions. However, he expressed the feeling that Sternberg's theorem was

probably not needed for his result. We wish to point out that a proof very close to

Smale's original one and avoiding Sternberg's theorem can be given using the
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tubular family theorems of [6](2). Taking tubular families for Wu(o(p)) and

Ws(o(p)), one can get continuous coordinates on a neighborhood of o(p) on which

there is a continuous splitting of the tangent bundle TVM=ES © Eu such that, for

xeUnf-\U),

with respect to the splitting Es © Eu. Also this can be done so that \\AX\\ < 1 and

\\DX1\\ <1 on/_1((7) n U. Now one can proceed as Smale did in [9]. However,

for the reader's convenience we will give a different and more elementary proof of

(2.6) in the appendix at the end of the paper.

We will need the following corollary to the proof of (2.4).

(2.7) Corollary. Let Px be an h-class. Suppose p,,p2 ePx and y is a point of

transversal intersection of Wu(p,) and Ws(p2). Then y eP^

Proof. By the first part of the proof of Theorem (2.4), y e HPl. By the second

part, HPl =FX, so (2.7) is proved.

(2.8) Proposition. Suppose P is a hyperbolic set. Then there are only a finite

number ofh-classes of P and their closures are pairwise disjoint.

Proof. If there were infinitely many A-classes, {Px}, let/),, p2,... be a sequence of

points such that pt e Px and P^Pj for i=£j, i,j^ 1.

We may assume, by taking a subsequence if necessary that dim Ws(p¡)

= dim Ws(p¡) for all i, j. Let x be a limit point of {p¡}. Then by continuous depen-

dence of the stable and unstable manifolds on P (see [2]), if/>¡ and/?, are close to x,

thenpi~pj. Similarly, ifPi^Pj, thenPPi C\PPj = <z wherePVi is the /z-class of/?¡ and

PPj is the /z-class of p¡.

The next theorem is the analog of Smale's spectral decomposition theorem [10].

(2.9) Theorem. If P is hyperbolic, then i5=A1u---uA„ where the A¡ are the

closures of the distinct h-classes. Thus each A, is a closed, invariant, topologically

transitive set with periodic points dense. Further, each A, has a local product structure,

i.e.foroO small, W?(A,) n W&AJc A, (see [3]).

Proof. All we need prove is the local product structure statement. Thus we need

to show if x, y e A¡ and e is small then

W." (*) n Wl(y) c A,.

Choose e such that Wge(x) is transverse to Wie(y) and W2e(x) n Ws2e(y) is at

most one point. Then if z e W?(x) n W¡(y) and V is a neighborhood of z, there

are periodic points x,,yx e A¡ such that Wl£(x^) has a point zx of transversal

intersection with W2e(y,) in V. Then z, e PXl = A¡ by Corollary (2.7).

(2) It seems that another proof of (2.6) without Sternberg's theorem appears in [14].
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We now proceed to state and prove a technical lemma which will be needed for

the proof of Theorem (3.1).

We need some notation. By a disk D' we mean a closed ball in some Euclidean

space with the usual metric. If D' is a disk, we let r(D') denote its radius and, for a

real number c>0, we let cD' denote the disk whose center is the same as that of D'

and whose radius is cr(D'). Let 0<s,u be integers and let D=Dsx DU(=RS + U

where Da is a disk in the Euclidean space R" for a = s, u. Assume r(Ds) = r(Du). Let

Dx^D andktg: Dx^Rs+u be a smooth injection. For ze Dx, suppose^: RsxRu

-> Rsx Rw is given by

Ia'  b*\
rrf"U dJ

where Az: Rs -> Rs, Bz: Ru -> Rs, Cz: Rs -> Ru, and Dz: Ru -* Ru. Let

a = sup \\AZ\\,
zeDx

c = sup |C2,|

e = sup {|52d|/|Z)sü| : z e Dx, v is a unit vector in R"},

d = inf {\DgV\ : z e Dx, v is a unit vector in /?"}.

Here the norms || • || are the usual matrix norms, and e is assumed to be finite.

(2.10) Lemma. Using the above notation, suppose there is a subdisk D\<^ Du

centered at y0 e \DU such that if Dx = Dsx D" then g: Dj -> Rs+U is a smooth injec-

tion such that

(1) g(Dx)<=D,
(2) g(Dsx{y0})^D*x\D\

(3) a<\ andd(\-ce(\-a)-1)r(Df)>^r(Du) + r(Dt).

Then g has a unique fixed point in Dy.

Proof. For zeD, let z = (x,y) with xeDs, y e Du, and let 77s: (x, y) \-> x,

ttu: (x, y)t->y denote the natural projections on D.

For each y e D\, the map <px'. x\-> -n-sg(x, y) takes Ds into Ds by (1). Further,

IlT^cpJ ̂ a< 1 for all x e Ds. Thus 9^ is a contraction and, hence for each y e D\,

there is a unique x(y) such that <Px(x(y)) = TTsg(x(y), y) = x(y).

If ip is the mapping (x, y)\-> Trsg(x, y) — x, then since a < 1, the partial derivative

di/i/Bx has rank s on Dx, so the implicit function theorem gives that the mapping

y h> x(y) is smooth.

Consider the mapping q>2: y \-> Trug(x(y), y) on Df. We claim <p2(Dx)=> D\ and

<p2 is a uniform expansion on D\. Once this is shown, it follows that <p2 has a

unique fixed point yx and hence (x^), yx) is the unique fixed point of g in Dx.

So we first show <p2 is an expansion on DJ. Let v be a unit vector in Ru. Then

|7>2(t>)| = \Cx'(y)v+Dv\
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where TMy),y)g=(è  d) and x'(y) is the derivative of y i-* x(y) at y. Further, x'(y)

= —(A — I)~1B where / is the s x s identity matrix. Thus,

|7>a(»)| ^ \Dv\-(c(\-a)-1)\Bv\

ê \Dv\(\-ce(\-a)-1) ä d(\ -ce(\ -a)-1) > 1

where the last inequality follows from (3). So,

(4) \Tv<p2(v)\^d(\-ce(\-a)-1)>\

which shows <p2 is an expansion.

It remains to show <p2(D\)^ D^. From (3) and (4) it follows that <p2(Df) contains

a disk of radius \r(Du) + r(D\) centered at <p2(y0). But y0 e \DU and (2) implies that

Va(j'o) e \D\ Thus \<p2(yo)-yo\ <¥(DU), so <p2(D\y D\.

Several conversations with R. C. Robinson were helpful in working out the

proof of Lemma (2.10).

(2.11) Remark. If D'1 exists for z e D±, then e = supzeDi {\\B,.D^1\\}. In the

application of Lemma (2.10) to the proof of Theorem (3.1), one cannot use the

version of the lemma in which e is replaced by e' = sup2sDl {\\BZ\\ ■ ||Z)2_1||}. For, in

the proof of (3.1), it is essential to keep the appropriate counterpart of e or e'

bounded as one takes larger integers N. In general, the counterpart of e' will not

remain bounded, whereas that of e will.

3. In this section we establish some properties of diffeomorphisms with hyper-

bolic negative limit sets.

A slight change in the proof of our first result will also yield a proof of the so-

called Anosov closing lemma which says that if / satisfies Axiom A(a), then

p=n(f/£i)(3).

(3.1) Theorem. IfL~ is hyperbolic, thenP=L~.

Proof. First note that L~ =L, u- • -uL,0 where L¡ is closed invariant, the

hyperbolic splitting on Lt has constant dimension, and L^L, for \f^i<j^n0.

Secondly, an argument used by Smale [11, p. 782] applied to/-1 shows that, for

each y e M, there is an i such that a(y)<^L¡.

We show if x0 e L¡ and V is any neighborhood of x0, then there is a periodic

point in V. Let x e V C\La. We show there is a periodic point in V near x.

Choose a compact neighborhood U of L¡ such that there are semi-invariant disk

families W¡, W%, through U (see [3]). If E\ (E^) is the tangent space to W&z)

(W%(z)) at z, then Ë* © Eu is a continuous splitting of TVM which is preserved by

Txfforxef-\U)rMJ.

Assume U and V are small enough so that

(1) Es and Eu are defined onf~\U) n U nf(U).

(2) ¡Ty>||<l on U r\f-\U) and UTTVI < ! °n Unf(U).
(3) V<^ U and for uu u2 e V, W$(u,) n W¡(u2) is a single point.

(3) Another proof of the Anosov closing lemma is in [12].
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Let

Vx =    U    Wt(z),        V2 =    U    W(z).

Then it is proved in [3] that Vx and V2 are neighborhoods of x in M. Let .yo e ^

be such that xea(y0)cLt. Then there is an integer nx>0 such that if n^nx,

f-n(y0)e U. If S>0 is small enough, f~n( Wï(y0))c U for nttij. since/-1 is a

contraction on each W¿(z).

Let exp* denote the exponential map associated to the riemannian metric on M.

We claim

(4) there are a disk D = Dsx DU<=^EX© E%, a subdisk Dx^D, integers Nx>N2

> «!, and a diffeomorphism gx : exp* (D) —> D such that the map

g = gxf^-^gx-'lDx

satisfies the hypotheses of (2.10) and exp (-D)c V.

Once (4) is shown, we can apply (2.10) to get a fixed point zx of g in Dx. Then

g\\zi) is a fixed point offNi~N^ in F.

We now prove (4).

For a linear map H from one Euclidean space to another \\H\\ denotes its norm,

and m(H) denotes its minimum norm which is defined by m(H) = infM=1 \Hv\.

Let e > 0 be small enough such that if E{ and Ei are subspaces of TXM=E% © E%

which are e-close to Ex and El, respectively, in the induced metric on the Grass-

mann bundles of M, then the following is true. There is a linear automorphism

H:EX®ES^EX@EZ such that H(E\) = Ex, H(E\) = Ex, and if

7/=(/+ai      °2  )    and   //- = (/+t75      °6  )

\   a3        I+oJ \   0-7        I+°8/

with the 7's denoting identity operators, then ¡o-J <\ for /'= 1,..., 8 and w(/+cr()

>i for i=l54,5,8.

Choose D = Ds x Du<= Ex © Ex and S > 0 small enough such that

(5) exp*(D)<= Uc\VxC\V2r\V= V3,

(6) the manifolds {exp* (zx Du) : z e Ds} are e-C1 close to each other, and the

manifolds {exp* (Ds xz) : ze Du} are e-C1 close to each other.

(7) TyiWud(zx) is e-close to TyjV"6(z2) for yt, z, e exp* (D), yt e W%(z¿, i= 1, 2.

(8) For z 6 exp* (D), there is a tubular neighborhood retraction rz:Fz^- W¿l2(z)

such that

(a) F^{Jye^z)W¡(z)nV3;

(b) the tangent spaces Tz/~1(y1) and Tl2r'1(y2) are e-close to those of the

W¡(zt) for z, e exp* (D), >>, 6 W^z,) n exp* (D), i = 1, 2;

(c) there is a neighborhood K4 of x such that K4c,nt exp* (D) n K3 and such

that if z e K4 then int rru exp*1 (Fs)=> Du and 77s exp*1 (F^cint Ds;

(d) there is a Sj >0 such that for y e W^(z) and z e exp* (D), rVl^y)^ Fz.

The tt" and tts in (c) are the natural projections on Ex © £*.
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Let 7V>0. If z,f~N(z)e Vt, let 2W be the connected component of f~N(Fz)

nexp*(£>) containing f~N(z). If A>0 is large enough, z,f~N(z)eVi, and

ye W¿l2(z), then/""(>>) eexp* (D). In this case, let £Wiî/ be the connected com-

ponent of f~N(r~1(y)) n exp* (D) containing/"N(y).

If g is a diffeomorphism of a subset of exp* (D) into D, we define its i-sub-

manifolds to be {g~1(D$xz) : z e Du} and its w-submanifolds to be

{g-\zxD*) : ze Ds}.

To define a diffeomorphism from exp* (D) to D it suffices to say what its s-

submanifolds and w-submanifolds are. This is what we will do to prove (4).

Since/"* stretches each W*t and contracts each W%, there is an integer No>no>0

such that if Nt N0, then

(9) if /""(z) eU for O^n^N, z, f~N(z) e V±, and y e Wfa(z), then tts o exp"1

°f~N\sN y is a diffeomorphism of SWi!/ onto Z>s.

Assume N^N0 so that (9) holds. Define a diffeomorphism g£: HN -> D so that

its j-submanifolds are the zZN<y and these submanifolds are e-C1 close to each

other and to exp* (Ds x 0). Extend g$ to exp* (D) such that its s-submanifolds are

e-C1 close to each other and to exp* (Ds x 0).

Now define a diffeomorphism g% : exp* (D) -* D such that its s-submanifolds

are those of g^ and its w-submanifolds are {exp* (z x Du) : z e Ds}. By (6) and the

construction of g%, the s-submanifolds of g, are e-C1 close to each other and the

t/-submanifolds of g% are e-C1 close to each other.

Now we assert that it is possible to choose 7V1>N2>NQ such that f~Ni(y0),

f-N*(y0) 6 K4 and if z=f~^(y0), ¿W^M^-*,). and gl=g?i-\ then g, is

the diffeomorphism required in (4). That is, g,fNl'N2gî1 satisfies the hypotheses of

(2.10).
For N^N0, set

nggyyTW)-1 = (^ *j

on g,(ZN) with respect to the splitting Ex © E% on Z). To prove the last assertion it

suffices to show that, as N -> co,

(io) Molleo

and

(11) m(D0)(\ - l|Coi SUP;'vJ^'^Uoo.
V A — ll^oll /

This will complete the proof of Theorem (3.1).

Let

J     \ o   dJ
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with respect to the splitting Es © Eu on SN. Then,

/I+a,      c2  \/AN     0 \//+"5      «-e   \

" \   o3       I+cJ\0      DN)\   a7       I+aJ

, 8, and m(I+ a¡) > %, / = 1, 4, 5, 8. Then if (0, u) e {0} x Eux

/fi0   r\      /¿0    f?0\/0\

\A>   »/      \C0   A>/W

so

\b0v\ <       tVIMwII INI Kl
|A>i>| ~ tV^Í^-tVMjvII   w(/+°r4)l^|—fVMwl

where t?! = DN(I+ o-g)v. As N-+co, ||y4w||->0 and m(DN)->cc, so |üi| —s-oo.

Since ||<r2||<4 and m(/+(j4)>|, for A large, |fi0i;|/|Z)0t)| <-J-. Thus for N large,

sup|„| = 1 |fi0t-|/|£)0i;| ^}. Further, using the expression in (12), it is easy to see that

m(D0) -> oo as N -> oo. A similar but easier calculation using the construction of

the s-submanifolds on SN shows that ||^0|| ^eJ^H where e, is a constant inde-

pendent of N. It also follows from the construction of the s-submanifolds on S„

that ||C01| á^Moll where e2 is a constant independent of N. Thus, as N^od,

||C01| -> 0 and \\A0\\ -> 0. From these facts (10) and (11) follow.

Combining Theorems (3.1) and (2.9), we obtain

(3.2) Theorem. If L~ is hyperbolic, then L"=A,u---uAn where the A¡ are

pairwise disjoint closed invariant topologically transitive sets with periodic points

dense. Further, each Ax has a local product structure.

(3.3) Proposition. For L~ = A, u • • • u An as in (3.2), and xeM, a(x) meets at

most one Af.

Proof. Use the argument at the bottom of p. 782 of [10] for/-1.

(3.4) Corollary. M=Wu(A1)kj-■-\j W"(An).

Proof. If x e Af, there is an i such that a(x)<= At. Since A¡ has a local product

structure, there is a y e A¡ such that x e Wu(y) by Theorem (1.1) of [3] applied

to/"1.

Following Smale's convention, if P is hyperbolic we will call the sets A, of

Theorem (2.9) basic sets.

A sequence M = Mn^Mn.1^ ■ • • =>M1=>Afo = 0 of compact submanifolds with

boundary such that/(Afj)<=int M ¡is called a filtration for f In [11] Smale constructs

a filtration which "separates" basic sets if/satisfies Axiom A and has no cycles.

In this case, if A¡ is a basic set, then WS(A¡) n WU(A¡) = A¡ is, of course, the smallest

closed invariant set containing At. We show below that if the negative limit set

L'(f) is hyperbolic, even in the presence of cycles, one can obtain a filtration for

»   G 3
where ||<Ti||<i, i=l,..

and |i;| = 1,
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/which "separates" certain closed invariant sets. In case the limit set L(f) is

hyperbolic, these sets turn out to be the intersections of the stable and unstable

manifolds of c-loop classes of basic sets (see definition below). Our filtration will

be constructed by modifying the methods in [11].

We will also examine some consequences of the filtration theorem.

For the remainder of this section we assume L~=L~(f) is hyperbolic. Thus

L- =P = Ax u• • • u An as in Theorem (3.2) and M= Wu(Ax) u• ■ • u Wu(An).

We define two relations on {AJ.

1. A, £i A, if there is a sequence A1=All,..., Air = A, such that Cl (Wu(Aik))

n Ws(A¡kti)jí0 for \¿k<r.

2. A, ;>2 A, if there is a sequence A( = Atl,..., A¡r = Af such that Cl (Wu(Aik))

nCl(Ws(A¡k+i))¿0 for lg,k<r.

We will show that these relations are the same, i.e. A, ^ A¡ if and only if

A, ^2 Aj. To each of these relations there is a corresponding equivalence relation

~fc defined by A¡ ~k A¡ if Af ̂ kA¡ and A, §jkA,, k = \, 2. It will follow that the

equivalence classes of these two relations are the same.

Let y'x,.. .,y'm be the distinct equivalence classes of {A¡} under ~x. Note that

{y'i) is partially ordered by y[ £2 y'¡ if there are A¡ e y\, A, e y] such that A¡ ^ Aí.

Let ^ be a simple ordering on {y'(} such that if yj^yj, then y'¡ >xy'i (i-e., y\ does

not strictly precede y[ in the ^ ordering). We will call such a simple ordering a

filtration ordering for {y¡}.

For f=l, ...,m, a = u, s, define W(y'i) = \J {W°(A) : A e /,}. Write (J y\

= U{A: Aey\}.
We will need a lemma due to Smale.

(3.5) Lemma (See [11]). Suppose F is a compact f-invariant subset of M and Q

is a compact neighborhood of F such that (\ao fn(Q) — F. Then there is a compact

neighborhood V of F such that V<^ Q andf(V)^int V.

Proof (due to Smale). Let Ar= Q r\f(Q) n • • • nfr(Q), r^O.

Then A0^>A±^ ■ ■ ■ and rii6o^i = F. Since/(F)<=F, there is an integer r>0

such that Ar<=int Q and/L4r)cint Q. But then f(Ar) = Ar + 1<=Ar and f(Ar) = Ar + ],

y'^O. Thus there is an integer r±>0 such that/ri(/4r)<=int Ar. If ^ = 1, we are done,

so suppose ri>l. Let i^0<= int Q be a compact neighborhood of Ar such that

/ri(W0)c:int Ar. Let Wx = (W0 nfi-\W0)) u AT<=int Q. Since ^-U \,fT^x(Ar)

= ^ri-1+rc/irnint/ri-1(lf0)cint W0 n int/ri-1(»o)c:int (W0 n/ri"1(lf0))and

f^-\W0 r\fri-\W0))^Pri-2(W0)<=-ii\XAr. Thus/ri-1(^i)<=int Wx. Continue by

downward induction to prove the lemma.

(3.6) Theorem. Let ^ be any filtration ordering for {y[} and label {y[} such that

y'm > y'm -1 > • ■ • > Vi where y\ > y] is taken to mean y\ ä y) but y\ j= y'¡. Then there is a

filtration for / A/ = Afm=>A/"m_1=' • • •=>Af1=>Mo = 0, such that for 1 ̂ /¿w

(1) Uyicint(M,-A/l_1),
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(2) flnao/" Cl ((M,-M,-ù)<= W\y\),
(3) (J^CHWW^mtMi,

(4) r\niofn(Ml) = {Jm W«(y'i) = UjilCl(W"(y'j)),

(5) ify'i>y'i, then Cl (W(y',)) nMx = 0.

Proof. Say that / satisfies (*)k if there is a sequence Mk^>Mk-l^> ■ ■ ■ =>0 of

compact manifolds with boundary such that f(Mx)<^int Mx and (l)-(5) hold for

lgigjfc.
To  begin,  take   V to  be  a compact  neighborhood  of  Wu(y[)  such  that

V n U;>i(U y!) = 0- Then if x £ rWo/B(*0> then <*(*)<= F, so x e ^"(yi). Thus

nn6o/n('/)= «/%i) = Cl (^u(yi)). By Lemma (3.5), there is a compact neighbor-

hood V of Cl ( Wu(y'1)) suchthat K<= Kand/(F)<=int K. Further, we may suppose

V is a compact manifold with boundary. Taking M, = V, we see that/satisfies (*)t.

Now suppose / satisfies (*)k. Then Cl (Wu(y'k + 1)) u Mk is a closed set which

does not meet Uj>fc + i (U 7;)- Let ^be a compact neighborhood of Cl (Wu(y'k + 1))

v Mk such that  Vn[Jj>k + 1({Jy'j) = 0. Then if x 6 fWo/W, «(*)<= K, so

x e Uisis. ^tt(y;) ̂  ^ = Uiit« ^u(y;)- Thus rwo/w = u>s*+i ̂ "M
= U;Sk: + i Cl ((Wu(yy)) is closed and in the interior of V. Again applying (3.5) there

is a compact submanifold with boundary Mk + 1 such that Hnäofn(V)<=-f(Mk + {)

cint Affc + 1<= K. Now clearly properties (1), (3), and (4) hold for lfí¡i£k+l. If

xer]niofnCl((Mk + 1-Mk)), then a(x)<=(Mk+1-Mk) n L" = (J y¿+1, so (2)

holds. Finally, since/(A/fc + 1)cint A/&+1, if Cl (lfs(yy)) n Mte + 1#0, then PP(yy)

n Affc +17a 0, so U (yy) n V^ 0. Hence, by the construction of V, y'k +1 ä yj which

shows that (5) holds. Thus /satisfies (*)k + 1 and we are done.

Remark. For basic sets A, and Ay, call a sequence from A¡ to Ay as in the defini-

tion of S?! a c-path from A¡ to A¡. Let 0>(Ai) = {Aj : there is a c-path from A¡ to Ay}.

The techniques in the proof of (3.6) can be used to show that for any A¡, there is a

compact   neighborhood    V   of   Cl ( WU(S?(A¡)))   such   that  /(K)<=int V   and

fl fn(V) = Cl (W"(&(AX))) = W"(0>(K)).

(Of course, W*(?(A,)) = Ua^a,, ^W)

(3.7) Theorem. 7/"A¡ ̂ aAy, rAen A¡ ̂ A,-.

(3.8) Corollary. The equivalence relations ~, and ~2 give the same equivalence

classes.

Proof of (3.7). We prove that if A¡ ̂ , A}, then A¡ £2 Ay. If A¡ ̂ 1 A¡, there is a

filtration ordering ä such that [Ay]*> [AJ1 where [A]1 is the equivalence class of

A under ~u A = A¡ or Ay.

Let {Mt} be a filtration corresponding to è as in Theorem (3.6). Then if

A4 ̂ 2At, an easy induction on the length of a sequence from A¡ to Afc as in the

definition of â2 shows that A^M,. But since Ay n Mx = 0, we get A¡ ^2 Ay.
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We will use the notation A¡~ A¡ to mean A¡ ~x A, or A¡ ~2 A; which is justified

by Corollary (3.8).

By analogy with the usual definition of cycles in the case of Axiom A (see [5] and

[11]), we define an r-cycle to be a sequence Aio,..., Air such that A(o = Air and

Wu(Aik) n ws(Alk+l)^0 forOSk<r where W"(A) = »"(A)-A, a = u, s. A cycle

will mean an r-cycle for some r. The reason we need to use Wa(A) instead of W(A)

as in the case of Axiom A is that 1-cycles (our definition) can occur for L~ hyper-

bolic (see Examples 1 and 4 at the end of this section), whereas they cannot occur

for diffeomorphisms satisfying even Axiom A(a).

Define a c-cycle (for closure cycle) to be a sequence A,0,..., Air such that Aio

= Air and (Cl (Wu(Aik))- Aik) n Ws(Aik + 1)¿0 for Oik<r.

A sequence Aio,..., Air such that A,0 = Air and Cl (Wu(A¡k)) n Ws(Aik+i)^0

for 0^A:<r will be called a c-loop. Also we will call the equivalence classes of {A¡}

under ~, c-loop classes.

The proof of the following lemma was worked out with the aid of J. Palis.

(3.9) Lemma. Suppose Aj^Aa are basic sets such that (C\ (WU(AX))- Ax) r\

Wu(A2)^0. Then (Cl (W(Ax))- Ax) n W\A2)±0.

Proof. Since A2 has a local product structure, there is a proper fundamental

neighborhood Kfor W\A2) (see [3]). Moreover, we may choose Kto be arbitrarily

close to a proper fundamental domain £)<= WS(A2)-A2. By Theorem (1.1) of [3],

V' = Uniofn(V) u W(A2) is a neighborhood of A2 in M. But then for e small

enough, V is a neighborhood of W(A2). Since (Cl ( W(A^)- Ax) n Wu(A2)^0,

(Cl (^"(A^-A,) n (WH(A2)-A2)Ï0. But then (^(AJ-AJ n Unäo/W

/0 so (Wu(Ax)-Ax) n F#0. Since F was arbitrarily close to D,

(C\(W\Ax))-Ax) n WS(A2) * 0.

(3.10) Proposition. A c-loop class contains a cycle if and only if it contains a

c-cycle.

Proof. Suppose y is a c-loop class which contains a c-cycle. We prove that y

contains a cycle. The converse is obvious.

For Ax, A2 e y, call a sequence A¡0,..., Ais a proper sequence from A± to A2

if Ai0 = Alf Ais = A2 and W\Aik) n W%Aik^)^0 for Oik<s. Let (A¡0,..., A¡r)

be a c-cycle in y.

If for each 0S/<r there is a proper sequence from Aj to Air, taking y = 0, we

get a cycle in y. If there is a 0ij<r such that there is no proper sequence from

A, to A(r, let/o be the largest such integer. Then there is no proper sequence from

Afi  to A,, ...lio lto+i

Let x€(Cl(Wtt(Ajyo))-Aj}ù)n ^s(AÍJü + i). Let Ay, be the basic set such that

xe ^"(A^). Then since xe W*(Aij + l), xe Wu(Ah), so we may apply Lemma

(3.9) to conclude that Af >! Ay,. Now assume Aifc^A, is defined for kfív such

that Aijo>xAJk and W\Aik) n Ws(AJk_i)^0.
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If any two of the Ayk's are equal we have a cycle so we may assume they are all

distinct. Let x e (Cl ( Wu(Aif )) — AXj ) n Ws(AJv). Since there is no proper sequence

from A¡ío to A,v, if Aiv+l is the basic set such that xe Wu(Ah+i), then Aiv+l# Alj ,

and A¡ío>j A/v+1. So we get a sequence of distinct basic sets (A/>+1, Ayv,..., Ah)

such that Wu(Aie) n Ws(AJei)^0 for 2^e<v-l-l. Continuing as above, since

there are only finitely many basic sets, we eventually get a cycle.

A basic set A is called a source if WS(A) = A.

If A is a source, there is a compact neighborhood V of A such that/_1(l/)

<=int V.

(3.11) Proposition. If y is a c-loop class which is maximal with respect to the

partial ordering >x (hence >2), then y has only one element, and that element is a

source.

Proof. Suppose y is maximal with respect to >,. Choose a filtration ordering

with y as its largest element. Let M=Mm=>Mnx-1^ ■ ■ ■^>M,=>0 be the corre-

sponding filtration for/so that 1J y<=irit (Mm — Mm.,). By Theorem (3.6) if A is a

basic set such that ^"(A) n (Mm-Mrrx_1)^0, then [A^^y. Thus A ey since y

is maximal. Thus Afm — M„_!<: Wu(y). So Wu(y) — Mm_, is an open neighborhood

of Ws(y). Thus there is a A e y such that ^"(A) contains an open subset of Af.

Let £>0. Then Unao/nW(A)) = WU(A) so W?(A) contains an open subset of Af,

say V. Since the periodic points of A are dense in A, there is a periodic point p e A

such that W%(p) n V^ 0. By an application of the A-lemma, Ws(o(p))

CC1 (Uniof~n(V))- Further, as observed by Smale, if A is a basic set, then

Ws(A)<zCl(Ws(o(p))). Thus, ^S(A)<=C1 Ws(o(p))aCl([Jni:0f-n(V))^W?(A).

Here the last inclusion follows since ^"(A) is closed and /"^invariant. Thus

WS(A)<= W?(A) for all e>0. But f~\>o W?(A) = A, so Ws(A)a A and we are done.

(3.12) Remark. 1. The preceding results are true with L+ replacing L~ where

the obvious changes are made; e.g., if L+ is hyperbolic, then P=L+ = AX u- • ■

u An, Af = WS(A,) u - - • u Ws(An), there is a filtration for/"1 as in Theorem (3.6),

etc.

2. IfL=L" uL+ is hyperbolic and Mm => Afm_j =>■•■=> A^ =>0 is the filtration

for/as in Theorem (3.6), then C^_m<n<my(Cl(Mi-Mx.1))=Ws(yl) r\ W\yt).

For, if x e DnSo/n(Cl (Mx-Mx-,)) then w(x) e M,-Mx.„ so x e Ws(yx).

3. Clearly, if/satisfies Axiom A(a), then L is hyperbolic. In [5], Palis shows that

if/satisfies Axiom A and has a cycle, then/may be perturbed to given an Q-

explosion. Notice that Remark (3.12.2) can be used to give some kind of control on

the size of the Q-explosion. That is, if g is close to / then Q(g) is close to

\Jisi£m(W*(yi)nW(7i))-
Before proceeding, we consider some examples. All of these examples will be

diffeomorphisms on the two-sphere S2.

1. This example is such that L~ is hyperbolic, but L+ is not hyperbolic. It also

shows that minimal elements of a filtration ordering do not have to consist of
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single basic sets (see Proposition (3.10)). We take/to be the time-one map <px of

the flow cpt pictured below.

Figure 1

Here, for <pt, there is an expanding spiral source at infinity. There are two hyperbolic

saddle points and three expanding spiral fixed points as in the picture. The saddle

points taken together form a minimal element in the filtration ordering and all

orbits except the saddle connections and the fixed points spiral in to the saddle

connections.

In this case L~(f) is the set of fixed points of/so it is hyperbolic. L+(f) is the set

of fixed points together with the saddle connections (which are the stable and

unstable manifolds of the saddle points).

2. Here P(f) is hyperbolic and finite, but L~(f) and L + (f) are neither. Again

/is the map <px for a flow <pt. This flow is described as follows. On a two disk Du

let i/it be a flow transversal to the boundary whose co-limit set is two spiral sources

and a figure eight as in Figure 2a.

Figure 2a Figure 2b
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Here <¡it has only three critical points, so P(f)=P(f) is the set of those three points.

Let r)t be the inverse of the flow t/tt on another copy D2 of Dly i.e. ■qi(x) = t/j_t(x)

(see Figure 2b). Then r¡t has three critical points and its a-limit set is not hyperbolic.

Now glue the two disks Dx and D2 together along their boundaries and fit ifit and r¡t

together to give a flow as required.

3. This example was shown to me by J. Palis. In it the limit set L(f)=L~(f)

u L+(f) is finite and hyperbolic, but Q(f) is neither.

Start with a flow ¡pt having two sources, two sinks and two saddle points xlt x2

connected by trajectories as in Figure 3a.

Q-+

Figure 3a

The circles represent the sources and sinks and all the critical elements are

assumed hyperbolic. Thus <px =/ satisfies Axiom A and has a 2-cycle. Now by a

slight change of <px =/ in the space of diffeomorphisms we make one component

of Wi(x1) — {x1} have nonempty transversal intersection with one component of

Ws(x2) — {x2} as in Figure 3b.

Q-*

Vs = vu

Figure 3b
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This can be done so as not to change the other components Vs (Vu) of Ws(xx)

-{xx} ( Wu(x2) - {x2}). Of course, VS=VU. For the new diffeomorphism g, Q(g)

will consist of P(g) u Vs.

We can also make Q countable and keep L finite by making Vs and Vu intersect

nontransversely in an appropriate way. An example is depicted in Figure 3c.

Figure 3c

4. Here we have L hyperbolic, Axiom A(a) is not satisfied and there is a 1-cycle.

Start with the familiar horseshoe example of Smale on S2. Thus Q(/) consists of

a source p0, a sink/?!, and a Cantor set A on which/is topologically conjugate to a

shift automorphism on two symbols. This is pictured in Figure 4a.
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There is a single fixed point x0 e A such that one component V, of Wu(xQ) — {x0}

is contained in Ws(p,) and one component V2 of W3(x0) — {x0} is contained in

W*(p0).

There are open intervals Vs and Vu in the other components of Ws(x0) - {x0}

and Wu(x0)-{x0} such that Cl (Vs) and Cl (Vu) are closed intervals bounded on

one side by x0. We suppose Vs and Vu are as depicted in Figure 4b, so that Vs n V"

consists of four points.

Figure 4b

Now one can modify the diffeomorphism away from A so as to produce a unique

tangency y off A of Vs and V. This is depicted in Figure 4c.

The modification can be done so that one gets a diffeomorphism g such that

(a) Q(g) = D(/)Uo(y).

(b) For each x e M and each small neighborhood U of y, o(x) n U has at most

two points.

It follows from (a), (b) and the construction of such a g, that L(g) = Q.(f) and g

has a 1-cycle (A0, A,) with A0 = Ai = A.

4. In this section we complete the proof that if L~(f) is hyperbolic and there are

no cycles, then / satisfies Axiom A. We also give another sufficient condition for

O-stability. The latter result is that if P is hyperbolic, L^P (see definition before

(4.7)), and there are no c-cycles, then / satisfies Axiom A (and has no cycles).

(4.1) Theorem. Suppose L~(f) is hyperbolic, andf has no c-cycles. Then L~ =P

= Q, so f satisfies Axiom A. Further, f has no cycles, so fis Cl-stable.
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i

A     *

*W
Figure 4c

Proof. Let L"(/) = A1 u- • u An as in Theorem (3.2). Since/has no c-cycles,

each c-loop class has only one element. Let {A„} ̂  {An _ x} ä • • • ;> {AJ be a filtration

ordering for/with filtration Mn=>Mn-x=> ■ ■ ■=> Mx=>0 as in Theorem (3.6). We

claim

(4.2) for each l é i £ n,      f|     fn(Cl (A^-M,^)) = A;.
■ oo < n < oo

This will prove that L~ = Q, so L~=P=Q.. Thus we will have that/satisfies

Axiom A. Clearly, the hypotheses imply that /has no cycles. Further, once (4.2)

is proved we will, in fact, have a filtration for/exactly the same as the filtration

Smale obtains in [11]. Then Q-stability will follow as in his proof by proving

D-stability on each M¡- Aft-*. This last step follows from Theorem (7.3) of [2].

So we need only prove (4.2). Fix i. By (3.6.2), DnSo/n(Cl (Mt- */,_!))<= W^AJ.

We claim

(4.3) O P(Cl (Mt - Mt _ x)) <= W(At).
»so

Once this is shown (4.2) follows since we will have

A; c      0     /n(Cl (Mt - Mt - x)) c W-(At) n WS(A() = A,
- oo <n< oo

where the last equality holds since there are no 1-cycles.

For the proof of (4.3) suppose x e f]nSofn(C\(Mi-Mi^1))- Then cu(x)

cCUA/j-A/i-i), so cü(x)cnna0/n(CI(A/i-A/¡_1))c: Wí(Ai) where the first

inclusion follows from the /-invariance of co(x) and the second one follows from

(3.6.2).



144 S. E. NEWHOUSE [May

Since there are no 1-c-cycles, ^"(A,) is a neighborhood of A¡ in WU(A,) for

e>0. But co(x) is a compact subset of WU(AX) and (Jnào/'W(Ai))= WU(AX). So

there is an integer n1 >0 such that co(x)<=fni(W%(Ax)). Since w(x) is /_1-invariant,

tüWcnnao/"n(/ni(^'"(Ai))) = A¡. But A¡ has a local product structure, so

x e WS(AX) and (4.3) is proved.

(4.4) Remark. Example 4 in §3 gives a diffeomorphism such that L=L~ ul*

is hyperbolic, each c-loop class has only one element, and there is a single 1-cycle.

Also, Lj= Q and Axiom A(a) does not hold.

We now come to our main result.

(4.5) Theorem. Suppose L~(f) is hyperbolic andf has no cycles. Then f satisfies

Axiom A.

Proof. Since/has no cycles, it has no c-cycles by Proposition (3.10). Now (4.5)

follows from (4.1).

(4.6) Remark. 1. Using Theorem (4.5) one can obtain, of course, that Axiom

A(a) and no cycles imply Axiom A(b). Also using Theorem (3.6) and a result

similar to the theorem in §1 of [13], one can prove that if/satisfies Axiom A(a)

and every c-loop (A¡0,..., A¡r) is 2-related in the sense that for Oái, lúr,

Cl (Wu(Ah)) n Ws(Ax¡)^0, then / satisfies Axiom A(b). However, it is still

unknown if Axiom A(a) implies Axiom A(b) in general.

2. J. Robbin has recently proved that if/is C2 and satisfies Axiom A and the

strong transversality condition, then / is structurally stable [8], thus confirming

part of a conjecture of Smale. Using Theorem (4.5) and some other well-known

results, Robbin's theorem may be restated in the following way. If/is C2, L~(f)

is hyperbolic, and for x,yeL'(f), Wu(x) is transverse to Ws(y), then/is struc-

turally stable.

For V a closed subset of M, let L°(V)=V and L%(V) = {ye V : 3x eLy\V)

such that y e a(x) and a(x)c V}, for A/>0. Note that, for A>0, LNa(V) = {y e V :

there is a sequence x0, xu ..., xN in V such that xN=y and x¡ e a(xx_1)'^ V for

l^ijgJV}. Let L%(M)=L% so that L\=La as defined earlier. Notice also that

pcz,£c ... citc Q for all A>0.

Our final result is the following.

(4.7) Theorem. If P is hyperbolic, L^Pfor some N>0, and there are no c-cycles

for the basic sets in the spectral decomposition ofP, then f satisfies Axiom A.

Proof. Let A>0 be such that L%<=P. We prove that La^P and then (4.7)

follows from (4.1).

Let P = A1 u- • -u A„ as in Theorem (2.9). Since there are no c-cycles, each

c-loop class has only one element, so there is a simple ordering An;> An_j^ ■ • •

ä A1 such that if A, ä Ay, then Cl ( H^u(Ay)) n WS(A¡) = 0, i.e. Ay >x A,, as defined

before.
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Say that / satisfies (*)k if there is a sequence of compact submanifolds with

boundary MkpMk-x^ • • -^Mx such that for liiik

(a)k AiCintiA/i-Mi-i),

(b)kf(Ml)<^mtMi,

(c)k fïnSo/WHU^ W\Aj) = yjjiiC\(W\Aj)),
(d)fc LM)c\Jl£fSk Ay.

Then one proves by induction on k that / satisfies (*)k for 1 i kin. It follows

from (d)„ that La^P.

We will prove (*\. The induction step for (*)k + 1 from (*)k is similar, so we omit

its proof.

Let Kbe a compact neighborhood of Cl (^"(Aj)) such that V n A¡ = 0 for i> 1.

Now L^P, so L~(K)c Aj. We claim that LNa(V)<^ Ax implies that l£-\V)<^ Ax.

For, if xeLNa-\V), then a(x)<=/_£(K)c: A„ so x e Wu(Ax). But there is ay

eL%-2(V) such that x e a(y) and a(v)c F. Also a(y)^L^~\V)^ W(Ax). Now,

as in the proof of (4.3), a(y)<=Ax since there are no 1-c-cycles. But xea(y), so

xeAx.ThusLZ-^V^Ax.

Proceeding by downward induction we get that La(V)<= Ax. But then C\niofn(V)

= H/u(A1) = Cl(H/,i(A1)). Now, as in the proof of Theorem (3.6), by Smale's

lemma, there is a compact submanifold with boundary Mx such that f(Mx)

cintAf! and fïn8o/n(Afi) = Wi(A1). Again as in the proof of (4.3), Mx

= C)niofn(Mi)cW(Ax). So Wu(Ax)<= Ws(Ax) and hence lf"'(A1) = A1. This

proves (*)x.

Questions and Remarks. 1. Does (4.7) remain true if one replaces the no

c-cycles assumption by the assumption that there are no cycles?

2. Let Fx=P, F2=L', F3=L, and F4 = £X Say that/is Frstable, i'=l,...,4,

if there is a neighborhood Jf of/in Diff (M) such that if g e jV, there is a homeo-

morphism h: F¡(f) -*■ Ft(g) such that hf=gh. Is Frstability equivalent to F¡-

stability for i,j=\,..., 4? Is it true that/is L~ stable if and only if L~ is hyper-

bolic and there are no cycles? Palis has shown (unpublished) that if/is /^-stable

and F¡ is hyperbolic, then there are no cycles. Therefore, the main part of the last

question is: does ¿"-stability imply L~ is hyperbolic? By the closing lemma this

can be reduced to: does F-stability imply that P is hyperbolic?

3. There are easily constructed examples where P is hyperbolic, there are no

cycles, and F§¡L~. Hence, by the closing lemma, it follows that P hyperbolic and

no cycles is not sufficient for P-stability.

Appendix: The homoclinic point theorem. Here we give a fairly elementary

proof of Theorem (2.6) based on the stable manifold theory for a hyperbolic

fixed point and Lemma (2.10).

We first need a lemma due to Hirsch and Pugh [2].

Let E, F be Banach spaces and give FxFthe norm |(x, y)\ =max {|x|, \y\}.

Lemma 1. LetT=(¿  %) be a linear map from Ex F to itself such that D'1 exists.
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Let r¡<l. If

(1) \\A\\ ■ WD^W + ¡BD-'W + \\C\\-\\D-1\\<r] and
(2) M||-||JD-1||+2|C||-||i)-1||<l,

then there is a unique linear map P: F-> E such that \\P\\ <rj and

(3) T(graphP) = graphP.

Further, if m(D)— ||C|| > 1, then T\glsiph P is expanding (recallm(D) = inf|„| = 1 \Dv\).

Proof. Condition (3) can be written T(Py,y) = (Pu,u) where u = CPy+Dy or

APy + By=PCPy + PDy for y e F. Thus as linear maps, AP+B=PCP+PD, or P

is a fixed point of the map H: P>-> APD-1 + BD~1-PCPD-1.

Let Jfv be the complete metric space of bounded linear maps from FtoE with

norm less than or equal to v where v= \A\ ■ ||Z>_1|| + l-ßß-1!! + ||C|| • ||Z>-1||.

For PeJf„ \\H(P)\\ è ¡A\\ • ¡I»-1!! + ¡BD^W + ¡C\\ ■\\D-1\\=y<v by (1). Thus,

H maps 3^v into itself.

Similarly, by (2), H is a contraction and so has a unique fixed point P.

Also, if (Py, y) e graph P, then, since ||P||<1, \T(Py,y)\ = \CPy+Dy\

^(m(D)-\\C\\)\y\>\y\ = \(Py,y)\.
This proves r|giaphi, is expanding and completes the proof of Lemma 1.

Now returning to the notation of Lemma (2.10), suppose

IAZ    B\
T,g = yc     DJ    for zeD„   and

where Tug'1 is assumed to exist.

By analogy with the definitions of a, c, e, d before Lemma (2.10), define

ax = 'mf{\A,wv\ : w eg(D,), v is a unit vector in Ru},

b, =   sup   || Äj,,, ||,       d=   sup   \\Dll0\\,

e, = sup {|Clu,»|/|^110i'| : w 6 g(D,), v is a unit vector in Rs}.

Notice if Alw is invertible for all w, then e1 = supwegiDl) \\C1V)Aï^\\, and if Dz is

invertible for all z, then e = sup2eDl ||BZDZ11|.

Lemma 2. Suppose the hypotheses of Lemma (2.10) are satisfied and g(Dx)

c (\DS) x Du. Let y) < 1, and let z1 = (x,, y,) be the fixed point of g in D±. Suppose,

(1) a/d+e + c/d<r],

(2) ald+2c/d<l,
(3) d-ol,

and

(1)' dja. + e. + bja^-r,,

(2)' d1la1 + 2b1/a1>l,

(3)' a1-b1>l.
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Then,

(4) zx is a hyperbolic fixed point of g,

(5) Wu(z, g, Dx) = {z e Dx : g~ n(z) £ Dx for all n^O and g " n(z) -> zx as n -> oo},

and Ws(z, g, Dx) = {z e Dx : gn(z) e Dx for all n^O and gn(z) -+zx as n->oo} are

smooth manifolds,

(6) // (d- c) dist (zx, boundary Dx) > dist (zt, Ds x 0), then gWu(zx, g, Dx) has a

unique point of transversal intersection with Ds x 0,

(7) W\zx, g, Dx) has a point of transversal intersection with 0 x D".

Proof. Applying Lemma 1 to TZlg and T^g'1, we see that there are unique

TZlg invariant subspaces F", Fs in Rs+U such that

(a) F" is the graph of a linear function P": Ru -*■ Rs such that ||FU|| <r¡ and Fs

is the graph of a linear function Ps: Rs -> Ru such that ||FS|| <r¡, and

(b) \\TZig-i\E«\\<l, \\TZlg\E°\\<l.

Now (4) follows easily from (a) and (b). Also (5) follows from the stable and

unstable manifold theorem for the hyperbolic fixed point zx.

Let it": D -> D", a=s,u, denote the natural projections on D.

To prove (6), we will show that

(c) gWu(zx, g, Dx) is the graph of a smooth function <pu: TrugWu(zx, g, Dx) -> D"

such that if &(<vu) is the Lipschitz constant of <pu, then =S%>") < °n < 1, and

(d) the center 0 of Ds is in nugWu(zx, g, Dx).

We first prove (c). Let z1=(x1, yx)- From the unstable manifold theorem for the

point Zx, if D$2 and D2 are small disks in Rs and Ru centered at xx and yx, then

W(zx,g, D2xDl) = C]ni0g\Ds2xDl)^{zeD2xDl:g-\z)^z} is a smooth

manifold tangent to F" at z^ Thus, if Z)| and D\ are small enough,

gW(zx, g, D2 x Dt) is the graph of a smooth function <p0:w^Wu(zx, g, D2 x Dl)

-» Ds such that -S?(<p0) < V-

Let Wt= W\zx, g, D\ x Dl) and let Wu= W\zx, g, Dx).

For />0, define lV¡'=g(rViu.1) n Z>i. We claim, for each i>0, gW? is the graph

of a smooth function <p¡: n"grVtu -»■ Z)s such that &(<p%)<-q, and there is an integer

«0>0 such that W7 = W/„u0= Wu for j^n0. Once the claim is proved, (c) follows by

taking the function <pn¡>.

Suppose <p¡: iFgWf ^r D$ has been defined such that graph (<p¡)= gW? and

&(<p¿<r,<l.

By (3), the mapping ^jb-irug(<Pi(y),y) is a uniform expansion and hence a

diffeomorphism  on  iPgW? n D\ (recall D^tt"/)!).  Further, ifi,(iruglV? n £>?)

On 7r«gWi"+1, define w + iOO^OptGAf HjO), </-f W) and observe that

graph ((p1 + 1) = gW?+1.

To prove ^(c^ +1) < ■>?, it suffices to prove the following fact.
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Let v = (vs, vu) be a tangent vector to gWf n D, at z = (<px(y), y) (so vs = Ty<px(vu)

and \vs\l\vu\ <r¡<l). Then, letting Tzg(v) = (v\, vf), we have |t>i|/|i>ï| <i?.

Indeed, r^(»)=(»i, i>?) = 0427>,(t>») + Ä2t;u, CzTy<px(vu) + Dzvu), so if vu = Dr1w,

then

Kl ^(M,||-||¿)z-1|| + ||g^-1||)|H'| ^a/¿+e

mm     (l-IIQH-lß-MDkl   '-i-c/d

since || Ty(px || < 1.

But, since t;< 1, (1) implies that (a¡d+e)¡(l-c¡d)<T). Thus •S'te +1)<■*?.

Now each map */ix is a uniform expansion (in fact

inf{]T„0((o")| :yeir*gW? r\ Du \vu\ = 1} > d-c > 1),

^öjcii)«, t^Z^ <=££>*, and JS?(9¡)< 1. Thus there is an integer w0>0 such that

'",UWZ0 = D\. Further, if n0 is the least such integer, then W? = W£0 for/ä n0. Notice

also that W^fc^c.... Since Wu^\Jtio W?, we have that WU=W%0. This

completes the proof of (c).

For the proof of (d), since 0no expands everywhere more than d-c and

(d- c) dist (zj, boundary Df) > dist (zl5 Ds x 0), it follows that the center 0 of Du

is in the image of >/ino which equals irugWu. This completes the proof of (6). The

proof of (7) is similar.

We now apply Lemma 2 to prove Theorem (2.6).

Let/? be the hyperbolic periodic point of the diffeomorphism/. Let q be a trans-

versal homoclinic point of p. Let Z> = Ds x Du be a disk in TqM such that there is a

diffeomorphism gj : D —*■ M such that

(D Si(0)=î,
(2) ^(D5 x 0)c Jf"(9),   ft(0 x /)«)= W\q),

(3) the manifolds gi(-Dsx y), y e Du, are C1 close to each other, and the mani-

folds g,(x x Du), x e Ds, are C1 close to each other.

We claim if D is small enough, there is a subdisk £>?<= Du, an integer 7Y>0, and

a diffeomorphism g2: D -> Af such that

(4) g2(D° x 0)c If «(?), g2(0 x ö-)cz ^«(<,),

(5) if D1 = DsxD\ and g=ga V^alo!» then g satisfies the hypotheses of

Lemma 2.

After this has been shown, Theorem (2.6) will be proved, for g2(zi) will be a

hyperbolic point off which is /¡-related to p.

Once D is chosen small enough, the disk D\, diffeomorphism g2, and integer N

are constructed in a way similar to the analogous constructions in Theorem (3.1).

One defines the w-submanifolds of g2 ({g2(x x Du) : x e Ds}) and then the s-

submanifolds ({g2(Ds xy) : y e Du}) of g2. We will indicate how to define the u-

submanifolds of g2.

Using the A-lemma one can show that, given e > 0, there is a small real number p.

and an integer N > 0 such that there is a connected component SlV offN(g,(Ds x p.D"))

n g,(D) satisfying
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(6) the manifolds HNx=fN(gx(xxfj.Du)) n I,N for xeDs are e-C1 close to

gi(0xD»),

(7) the manifolds f~N(gx(Dsxy) n Ew) for y e Du are e-C1 close to g1(DsxO),

(ß) fN  expands  a  large  amount  on  the  manifolds  g1(xx/iDu) r\f~N(LN)

=f-N(^,x),xeD\

(9) /~w expands a large amount on the manifolds gx(Dsxy) n SN, j; e Z)u.

Now define a diffeomorphism g2 : £> -> gi(D) whose w-submanifolds are

{^(x x jlc£)u)} and such that there is a subdisk D\c.Du such that g2(£>sxZ>ï)

=/-*(£„).

Then define g2 : D -> gi(Z>) as follows. Take the u-submanifolds of g2 to be those

of g'2. lr\f~N(LN), take the s-submanifolds of g2 to be

{f-N(gx(Dsxy)fM:N):yeD%

and off/~w(EN) take them so that all of the i-submanifolds of g2 are e-C1 close to

gx(D*xO).

The computations needed to prove that e, Dly N, and g2 can be taken so that the

hypotheses of Lemma 2 are satisfied for g = g2 1fNg2¡Dí are similar to those in the

proof of Theorem (3.1) and will be left to the reader.

Remark. Here again, as in the proof of (3.1), one cannot use the weaker version

of Lemma (2.10) in which e is replaced by sup2eDl {||F2|| ■ ||Z)2-1||} (see Remark

(2.11)).
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