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STOCHASTIC INTEGRAL REPRESENTATION

OF MULTIPLICATIVE OPERATOR FUNCTIONALS
OF A WIENER PROCESS

BY

MARK A. PINSKYO

Abstract. Let M be a multiplicative operator functional of (X, L) where X is a

¿-dimensional Wiener process and L is a separable Hubert space. Sufficient conditions

are given in order that M be equivalent to a solution of the linear Itô equation

M(t) = 1+ 2  f M(s)B,(x(s))dxi(s)+{ M(s)B0(x(s))ds,
j = 1 Jo .0

where B0,. .., Bd are bounded operator functions on Rd. The conditions require that

the equation T(t)f= E[M(t)f(x(t))] define a semigroup on L2(R") whose infinitesimal

generator has a domain which contains all linear functions of the coordinates

(jci, .. ., xa). The proof of this result depends on an a priori representation of the

semigroup T(t) in terms of the Wiener semigroup and a first order matrix operator.

A second result characterizes solutions of the above Itô equation with Bo = 0.

A sufficient condition that M belong to this class is that E[M(t)] be the identity

operator on L and that M(t) be invertible for each t>0. The proof of this result

uses the martingale stochastic integral of H. Kunita and S. Watanabe.

1. Introduction.    Let {fi/x), O^j^d} be bounded NxN matrix-valued func-

tions on Euclidean Rd. The solution of the Cauchy problem

(i.i) 8it = iAu+ÍB^+B^">    ?>0' XERd>

u(0,x)=f(x),

can be represented as an integral over the paths of the Wiener process by the

formula

(1.2) u(t, x) = Ex{M(t)f(x(t))},

where/= (f,(x),.. .,fN(x)), u = (u,(t, x),..., uN(t, x)); M(t) is the solution of the

Itô stochastic integral equation (/= identity matrix)

(1.3) M(t) = I+Jt   f  M(u)Bi(x(u))dx^u)+¡  M(u)B0(x(u))du.
¡ = i Jo Jo

These results were arrived at independently by D. G. Babbitt [1] and D. W.

Stroock [9]. Stroock observed, in addition, that M satisfies the multiplicative law

(1.4) M(t + s, œ) = M(t, co)M(s, 6toj)

Presented to the Society, June 14, 1971; received by the editors June 17, 1971.

AMS 1970 subject classifications. Primary 60H20, 60J65; Secondary 60J35, 60J55, 35K45.

Key words and phrases. Multiplicative operator functional, martingale stochastic integral,

Hilbert-Schmidt operators, parabolic systems of equations.

(') Research supported by the National Science Foundation Grant GP-9437.

Copyright © 1972, American Mathematical Society

89



90 M. A. PINSKY [May

where 9t denotes the shifted path. We take (1.4) as our point of departure and ask

the question: Does (1.4) imply (1.3)? This is the subject of the present paper.

If 7Y=1, the formula (1.2) includes the classical Feynman-Kac formula (B, = 0

foryVO) and the Cameron-Martin formula (B0 = 0). In the general scalar case

(N= 1), representation theorems for multiplicative functionals can be inferred from

the work of H. Tanaka [10] and A. D. Wentsell [11]; any continuous multiplicative

functional of the one-dimensional Wiener process admits the representation

(1.5) m(t)=j^àcxpjtog(xs)dx(s)

where/is continuous and g is locally square integrable. The form (1.5) is more

general than solutions of (1.3); they coincide if/has two continuous derivatives.

In another direction K. Itô and S. Watanabe [3] obtained a multiplicative decom-

position for multiplicative functionals of a Markov process. Their representation

does not involve stochastic integrals, however.

The main problem in the case A^> 1 is lack of commutativity; since an explicit

representation such as (1.5) is apparently impossible, we settle for a local charac-

terization in terms of stochastic integrals. The first problem is to characterize

"smoothness" of t^M(t). Using semigroup methods we can prove (Theorem

4.2) that a continuous solution of (1.4) comes from a solution of (1.3) whenever

the formula (1.2) defines a semigroup of operators on L2(Rd) whose infinitesimal

generator has a domain which contains all linear functions of the coordinates, in a

suitable sense.

To obtain representation theorems in nonsmooth cases, we impose the further

condition

(1.6) Ex[M(t)] = /

which ensures that / -> M(t) is a vector-valued martingale. Using the martingale

stochastic integral of H. Kunita and S. Watanabe [4] we prove (Theorem 5.2) that

if M(t) is invertible and satisfies a mild second moment condition, then it is given

by a solution of (1.3) where, of course, B0 = 0. The method of proof was suggested

by recent work of C. Doléans-Dade [2].

As a by-product of the methods used to solve (1.3) it follows that all of the

results stated above remain true if, instead of NxN matrices, we work with

Hilbert-Schmidt operators on a Hubert space. Using the representation (2.3) of

the operator norm in terms of Hilbert-Schmidt norms, we can solve (1.3) whenever

the coefficient matrices are replaced by bounded operators. In particular, the

representation formula (1.2) applies to solve certain partial differential equations

with operator coefficients.

Finally, we mention that the results of this paper constitute one aspect of the

general problem of representation of multiplicative operator functionals of a

Markov process. These were introduced in [8], where representation theorems were
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given in the case the underlying Markov process is a chain with a finite number of

states. From the point of view of random evolutions, the novelty of the problems

under consideration here is the appearance of the operators Bx(x),..., Bd(x); their

effect is to intertwine the Markov process in a nontrivial way with the multiplica-

tive functional.

§2 contains notational preliminaries on stochastic integrals and Hilbert-Schmidt

operators. §3 contains an extension of the Babbitt-Stroock solution of the stochastic

integral equation (1.3) in the case \\B¡\\ is bounded by a constant independent of x,

O^j^d. Their construction is further extended to the more natural class for which

B0(x) is locally integrable and B¡(x) is locally square integrable, 1 Sjúd. In §4, we

give the representation theorem in the case \B¡\ bounded, t-^-M(t) smooth.

The main tool used in the proof is the a priori derivation of the integral equation

(4.5); this equation, in turn, uniquely determines the semigroup (1.2). §5 contains

the results on martingale multiplicative functionals.

2. Notation. Rd will denote the real ¿/-dimensional Euclidean space of vectors

x = (x1(..., xd). X=(x(t), !Ft, Px) is a Wiener process on Rd with transition semi-

group

T%t)f(x)=li^^f^lf(y)dy.

This semigroup is a contraction on L2(Rd). ^¡=a(x(s); s^t).

L will denote a separable Hubert space with inner product < , >, |x| =<x, x)1'2.

(Although we treat only real scalars, the complex case presents no difficulties.)

L=L2(Rd;L) is the Hubert space of all measurable, L-valued functions x->/(x),

equipped with the norm ||/||={JB<1 |/(x)|2 dx}112. Jt is the collection of all linear

operators A on L with finite Hilbert-Schmidt norm:

(2.0) MU = 2 \AVk\2 < co,

where {<pk}kil is an orthonormal basis for L. It is easily checked that this norm is

well defined, independent of the basis. We have the inequalities

(2.1) \\A+B\\2i\\A\\2+\\B\\2

and

(2-2) \\AB\\2 ^ \\A\\2\\B\\2.

These show, in particular, that Jt is an algebra; Jt is also a Hubert space.

The standard operator norm is defined by M||0P = sup|X| = 1 \Ax\. Let S£ be the

algebra of all bounded operators. It is easily checked that the two norms are related

by the estimate

(2.2') \\AB\\2i \\A\\0P\\B\\2,       BeJi,   AeJi?.

The following makes this precise :

(2.3) Proposition. ||^||op = sup0#J)e^ Mß||2/||ß||2.
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Proof. Let the right-hand side be denoted by a. Let {xn}ngl be a sequence of

vectors with |x„| = l, \Axn\ -> \A\0V. Let B = Bn be the orthogonal projection on

xn : Bx = {x, xn>xn. Thus ||/í5||¡ = 2fc M#9>fc|2 = 2jc Ofc, xn>2|^xn|2= |^x„|2; but

||5||| = 1; thus ||^ß||2/||Ä||2 = Mxn|^M||op and hence a^M||0P. But íz^M||0P

by (2.2'). Thus the conclusion follows.

If í -> A(s) is a nonanticipating(2) functional of X with values in Ji, with

Px[f0 \A(s)\% í/í<oo]= 1, we can define the Itô stochastic integral (l0 A(s) dx,(s) as

that element B of JÍ such that (B<pk, <pi>=/0 (,A(s)<pk, <p¡y dx¡(s) (k, /^ 1), relative

to a basis {<pk}. It is easily checked that B is thus well defined; x¡(t) is they'th com-

ponent of x(t).

The following formula gives a convenient bound on the map A -> B,

(2.4) f A(s)dXj(s) I = f Ex\\A(s)\\22ds
JO 2j Jo

whenever the right-hand side is finite. To prove this, simply compute the Hilbert-

Schmidt norm indicated on the left-hand side in terms of an orthonormal basis

and use the classical relation

(£ a(s) dx(s)^ = £,[£ a(s)2 &].

Equation (2.4) is the central reason for use of the Hilbert-Schmidt norm (2.0).

Presumably the ordinary operator norm ||^||op = sup|A.|=1 \\Ax\\ does not satisfy

(2.4), even if we replace = by á.

A multiplicative operator functional (MOF) of (X, L) is a mapping (/, a>)

-> M(t, co) from [0, oo) x Q to bounded operators on L which possess the following

properties :

(i) <u -> M(t, oS)f is ¿Ft measurable, t>0,feL.

(ii) t -> M(t, oj)fis right continuous &.s.,feL.

(iii) M(t + s, oj) = M(t, w)M(s, 9ta>) a.s. for each s, t^O.

(iv) M(0, oj) = I, the identity operator on L.

If for each pair (t, w), M(t, oS) is a Hilbert-Schmidt operator on L, we will speak

of an ^-valued MOF of (X, L). Otherwise M will be an .Sf-valued MOF of (X, L).

The expectation semigroup is the family of operators {T(t), t^O} where T(t)f(x)

= Ex[M(t)f(x(t))].

3. Solution of a stochastic integral equation. The following theorem gives the

natural extension of the construction of Babbitt and Stroock.

(3.0) Theorem. Let X be a Wiener process on Rd and let B0(s),..., Bd(s) be

nonanticipating, ^-valued functionals with

sup \\Bj(s, a>)||op S B < CO.

(2) V/, {co : A(t, co)eU}e Ft if U is a Borel set in Jt.
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Let AeJt, Ae¿Fs. The equation

d     ft ft
(3.1) M(t) = A+J¡       M(u)Bj(ú)dx¿u)+\   M(u)B0(u)du       (t ^ s)

j = 1 J s J s

has a unique, continuous, Jt-valued nonanticipating solution t -> MA(t). This solution

satisfies

(3.2) Ex\\MA(t)\\22 ¿ 2cxp{2B2(d+l)(t-s)}Ex\\A\\22.

Proof. Let

*o(0 = A,
d     ft ft

Rn+i(t)=2      Rn(u)Bj(u)dxi(u)+\   Rn(u)B0(u) du.
j= 1 Js Js

By the triangle inequality, we have

{¿y*»+i(OIII}1,a = Î{E* ^RMBMdxM

+\E> | Rn(u)B0(u) du
2-| 1/2

2J

Thus by (2.4)

{Ex\\Rn+1(t)\\22}112 Ú BZ {£ Ex\\Rn(u)\\22 duyl2+B^Ex\\Rn(u)\\î duj "

= B(d+l){^Ex\\Rn(u)\\22duy2.

Upon iteration this yields

(3.3) Ex[\\Rn(t)\\22] S ([B2(d+l)2(t-s)r/n\)Ex\\A\\22.

Hence by the martingale inequality,

> APJ max Pn+i(t)-\   Rn(u)B0(u)du

= ±E} 2 f *»(«)*/«) dxi(u)

^(i/x2)B2(d+\)2Ex[\\Rn(T)\\22]

III-S (B2(d+1 )2/X2)([B2(d+ l)2(T-s)f/n\)EX\\A \\

The choice A = 2"n gives a convergent series and hence, by the Borel-Cantelli

lemma, the series 2™= o {Rn+i(t)-$1 Rn(u)B0(u) du} converges uniformly for

s^t^T. On the other hand,

£ Rn(u)B0(u) [ = *} = Px{[ ll*»(«)*o(«0|a äu 2: a|

y\\Rn(u)BQ(u)\\2du\

-x[Ex[\\Rn(u)ü]ll2du

(const)"/^!)1'2       (A = 2"").

Px\ max
ssísr

^-xE*
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Hence the series 2™= o Jl Rn(u)B0(u) du converges uniformly for s ¿ t ;£ T. Let Mn(t)

= Ti = o RáO, MA(t) = \imn1x Mn(t). We have

Mn+1(t) = A+2  f  Mn(u)B¡(u)dx¿u)+\   Mn(u)B0(u) du;
; = 1 Js Js

the second integral clearly converges to J^ M(u)B0(u) du. As for the first integral,

we have

PJ max è A2   \\M{u)-MM)BMdx¿u)
i=l Js

g Ç (fi?) £ Ex[\\ M(u) - Mn(u) ||¡] du.

By (3.3) the last term is the general term of a convergent series if A = 2~n. Thus the

stochastic integrals converge and we have solved (3.1).

To prove (3.2), apply the triangle inequality to (3.1) to yield

Ex[\\MA(t)\\22) = 2Ex\\A\\22 + 2B2(d+\)2^Ex\\MA(u)\\22du.

An application of Gronwall's lemma completes the proof.

To prove the uniqueness, let Mx(t) and M2(t) be two solutions of (3.1). M=Mx

-M2, rn = inf{? : ||M(0||2 = "}, /(«)=/<„.,„)(«).

Then we have [7]

M(t A t„) = 2   I   M(u)I(u)B¿u)dxlu)+\   M(u)I(u)B0(u)du
j = l Js Js

and hence

Ex[\\M(t A rn)|||] ^ (d+\)2B2 ['Ex[\M(u)I(u)\\l]du;
J s

but the left-hand member is greater than FJ.[||A/(/)/(/)|||], and thus

0 = Ex[\\M(t)I(t)\\22] = Ex[\\M(t)\\22; \\M(t)\\2 < »}.

Letting n -> co gives the result. Hence the theorem is proved.

In the next step we specialize to the case B(u) = B(x(u)) while at the same time

replacing the initial operator by the identity (whose Hilbert-Schmidt norm is

infinite!). Of key importance is the evaluation (2.3).

(3.4) Corollary. Let B0(x),..., Bd(x) be bounded, ^-valued functions on Rd.

The equation

(3.5) M(t) = 7+2 í M(u)Bj(x(u))dx;(u)+¡ M(u)B0(x(u)) du
J=1J0 Jo

has a unique ^-valued solution (t, co) -> M(t, w). It satisfies the multiplicative

property M(t, w) = M(s, m)M(t — s, 9S, co), and the bound

(3.6) Ex\\M(t)\\20V g 2 exp {2B2(d+ l)2t}.

Proof. By the proof of Theorem (3.0), each iterate is of the form Rn(t)=ASn(t),

where Sn(t) is a bounded operator. In view of Proposition (2.3), we must have
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Jo

[|S'n(/)j|op = supi|jl||2 = 1 ||/4S„(r)||¡; let A^A^w) be a sequence of elements of JÍ

such that ||v4j||2 = l, and ||^j5n(/)||2 increases monotonically to ||Sn(i)||0p- Then

Ex\\Sn(t)\\20P = Hm EMMOU = ,im Ex\\Rn(t)\\2 í¿ [B2(d+\)2tf/n\.
i 1

The same argument applies to MA(t) = AM(t). This yields (3.6). To obtain the

multiplicative property, note that if A eJt, t -*■ MA(t, co) is a solution of (3.1) with

A replaced by MA(s, co), Bj(u) = Bj(x(u)). But a simple calculation shows that

MA(s)M(t — s, 9S) is a solution of the same equation; hence the two are equal and

the multiplicative property follows by the identification of the factors of A.

The boundedness assumptions can be relaxed somewhat, as the following shows.

The proof is modelled on a similar argument of H. P. McKean, Jr. [7, p. 36fT].

(3.7) Proposition. Let B0(s),..., Bd(s) be ä'-valued nonanticipating functionals

such that

II*o(í)IIop+¿ \\B¿s)\\U ds < co
;o v. i-i J

for each t>0, with probability one. Then equation (3.1) has a unique continuous

nonanticipating J?-valued solution t -> M(t).

Proof. We give the proof in the case s=0. Let

/(0 = ^{¡BoWU+fjBAsWovjds,

and let s -* T(s) be its inverse; we assume without loss of generality that/(oo) = co.

F(j)=inf{i :f(t)=s}. Let

Z0(t) = A,

Zn+1(t) = 1 f Zn(u)BJu)dx¿u)+{ Zn(u)Bo(u) du.
í=iJo Jo

Then(3)
d        /T(s) 112 II <T(s)

||Zn+1(F(í))||¡ ú (d+ 1) 2 Zn(u)BM dx¿u)\\ +(d+ 1) Zn(u)Bo(u) du
1 = 1   Jo \\2 IIJO

Thus
T(s)d r íT(s) "i

Ex[¡Zn+1(T(s))\\22] ú (d+1) J f[Jo     ||Zn(M)S,(M)||l <fej

Ürns) /-res) -i
|       ||Zn(«)||l||i»o(«)||aJo     ||5o(«)||2<*íJ

á (d+ l)^[Jor(S) ||Zn(«)||l| £ ||AX«)||o2p + í ||5o(")||op} <**]

^(¿+l)F;c[joT<S>||Zn(M)||22a'/(M)]

= (rf+1)£,[£ ||Zn(F(0))||2 ¿o],       0 = /(«),

(3) At this point we use the polar decomposition of the operator B0, together with the

Schwarz inequality.
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where we have used the fact that js? 1. Hence we have the estimate

(3.8) Ex[\\Zn(T(s))\\22] ï ((d+l)sT/n\,       s Í 1.

On the other hand, 2?=i I™ zn(u)Bj(u) dx,(u) is a martingale with respect to the

fields ^v(S). Thus

d      fT(.s)

max
L set

d      fT(s) -i

2 ZMBA«)dx/u)    ï X\
J=lJO 2 J

d        fT(t)

2 Zn(u)Bj(u) dxiu)
J = i   Jo

****

< — E=   X2^X jzn(T(u))\\22du}
1 (d+l)ntn+1

A2    (#1+1)!    '

If we choose A=wrn + 1'22n'2[(H+l)!]-1'2, we get by the first Borel-Cantelli lemma

that

max
L sit

d     ,T(s)

2 Zn(u)Bj(u) dxf(u)
j=lJ o

M¿(n + l)/22n/2

2 - K»+l)!]1
,11 f oo   = 1.

The Lebesgue integral term is estimated by

T(s)

> A
[,T(s)

max   ¡      Zn(u)B0(u) du
sSí   ! Jo

g p[maxJrW||ZB(«)||Í||ií0(M)||0P £ a] £ I22V + 1/(« + l)!

Thus with the same choice of A, we have

fT(s) nj(n-H)/22n/2

max
sát

/*T(S) n^n+l)/22n/2 "I

J0    zMB0(u)du a g [(||+1)!]i/a." t ooj = 1.

Let Af(f) = 2"=0Z„(i). Since/(oo) = oo, this series converges uniformly on com-

pact /-sets and is a solution of the equation (3.1). Thus we have solved the equation

for rj£l. But this restriction is inessential. To solve the equation for túT0, the

estimate (3.8) becomes (2T0)n/n\ and the remaining analysis is as above.

4. Representation of smooth multiplicative functionals. In this section we seek

to characterize the operator M(t) of the previous section. The method leans

heavily on the a priori representation (4.5) of the expectation semigroup. The

quantities of interest are

(4.1a)

and

(4.1b)

B0(x) = lim Ex\Mm^I\
tio       I      t       )

Bj{x) = lim^(MO^MÛ^m 1 ûj£d,

where the limits are taken in the operator norm of &. The main hypothesis of this

section is
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(4.1) The limits (4.1a) and (4.1b) are uniform in x e Rd.

(4.2) Theorem. Let f-> M(t) be an 3?-valued multiplicative operator functional

of(X,L) such that

(a) supfST sup* £*|| M(0|2P = C(T) < co,

(b) t -> M(t) is continuous a.s. from [0, co) -*- £C,

(c) lim^o Ex{\\M(t + h)-M(t)\\2»} = 0 uniformly in x e Rd,

(d) (4.1) holds.

Then for each x e Rd, Px[M(t) = Mx(t), i^0] = l, where Mx(t) is the solution of

equation (1.3), constructed in the previous section.

The proof is broken into several lemmas. Let

T(t)f = Ex[M(t)f(x(t))] ;       T°(t)f = Ex[f(x(t))].

(4.3) Lemma. T(t) is a semigroup on L=L2(Rn, L).

Proof.

f    \Ex{M(t)f(x(t))}\2 dx ú \   (Ex\\M(t)\\0P\f(x(t))\)2 dx
Jr* J R*

ú f   Ex\\M(t)\\2opEx\f(x(t))\2 dx
Jr*

í C(t)\   Ex\f(x(t))\2 dx
Jr"

= C(t)\    \?\2dx.
J R*

Thus T(t) is a bounded operator on L.

To complete the proof, we have

T(t + s)f(x) = Ex[M(t + s)f(x(t + s))] = Ex[M(t)M(s, 9t)f(x(s, 9t))]

= Ex[M(t)Exm[M(s)f(x(s))]] = T(t)(T(s)f)(x).

In the following lemma, recall that

Let Pf=(B-V)f+Bj, ü=T°(t)f. Since F° maps L2 functions into C00 functions,

the composition PT°(t) is well defined; further we have the following estimate,

whose proof in the finite dimensional case is due to Babbitt. The proof below is

entirely parallel to Babbitt's.

(4.4) Lemma. \\PT°(t)f\\úK(t)\\f\\ where KeL^T] for each F>0.

Proof. PT°(t)f=B0(x)a + 2t=1 Bi(x)(dû/8xi); the first term is trivially estimated
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by ||jB0||oo||«||2. F°r tne second term, we apply the convolution estimate ||a*/3||2

= HUHU t0 the expression

da
dxi i

(x-y)i exp(-\x-y\2/2t) ,
d/2       j\y)uy

R"        t (2TTtf

~(hrt)dl2

= (2[nty>'lfl

1/2

Thus \\PT0(t)f\\^(\\B0\\o0+2f=1(2/7Tt)ll2\\Bi\\oo)\\f\\ completing the proof of the

lemma.

(4.5) Lemma. T(t)f-T°(t)f=P0T(s)PT°(t~s)fdsJeL.

Proof. Since both left- and right-hand sides are bounded operators on L, it

suffices to prove the equation on the dense subspace consisting of those/for which

d2f/dxt dXj is bounded and eL, 1 íkiíkjúd. We have (to within o(\))

ni)/-n'i/-£,pw-*w)i

where we have set P6g(x) = Ex[((M(8)-I)/8)g(x(8))] and used the simple Markov

property twice, after an initial application of the multiplicative property of M.

Note that for g eL,

Póg-PT°(8)g = Ex[(M(8)-I)/8-B0(x)]g(x)+PEx{g(x)-g(x(8))}

+ Ex[((M(8)-I)/8)(g(x(8)))-g(x)-(B.V)g].

We now write the final expression above as I + II + III + IV, where

1    C2"(]       /¿-_1\

.v - I¡|^){í4íííp^)BW2-.),-iw-(i..V)r}}.
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where g=T°(t — k&)f, 8 = 2"". The first term is clearly a Riemann sum for the

right-hand side of (4.5). To estimate II, we note that

pi = èIM^)*#/fl = ̂ -nH^(s)ds)\\n.

By assumption (4.1), limá^0 «i(S)=0.

To estimate III, we write PT°(8)g-Pg=$P $60 T°(u)Ag du; thus

1   [2ÍÍ]     Ik—1\1 / f2_n \
|III||2 í 1 2iC(^)i(jo     K(u)dujim

á^J' nK(u)du^toC(s)ds]j\\Af\\.

Since KeL1, the first factor goes to zero when n^-co.

Finally, to estimate IV, note that if x, y e Rn, g(y)-g(x) = (y-x)-Vg(x)

+ (y-x, D2g(£)(y-x)}, where D2g denotes the Hessian of g and £ is a point on

the line segment joining x and y. Thus the last curly brace in IV equals

((x(S)-x)-/i)-Vg(x) + a term^\x(8)x\2\D2f\œ. Hence

+ |JP2/UF.[A/(^_nn)~/|x(2-")-x|2]|

g £2(2-")(£c(í)*)|V/|2+(í7(í/+2))1'2£3(2-«)|Z)2/|(£ C(í)cfe)

where we have used condition (4.1) in the first term. On the second term we have

used the Schwarz inequality on the expectation, followed by condition (c) of the

theorem and the evaluation Ex\x(8) — x\i — d(d+2)82. The lemma is now proved.

(4.6) Lemma. The integral equation (4.5) has a unique solution t -* T(t) which is a

bounded operator on L.

Proof. If Fi(/), T2(t) are two solutions, we have for feL,

[Tx(t)-T2(t)]f = f (Tx(s)-T2(s))PT°(t-s)fds,
Jo

\\Tx(t)-T2(t)\Uf\\ Í P \\Tx(s)-T2(s)UK(t-s)\\f\\ ds.
Jo

Thus we have the inequality F(?)^J0 F(s)K(t—s) ds, where

F(t) = mw-F^oiiop.

By simple iteration it follows that F(t)=0.

Proof of the Theorem. It now follows that if t -> M(t) is a MOF of (X, L)

satisfying the hypotheses of the theorem, we have that, for feL, Ex[M(t)f(x(t))]
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is the same as if M were constructed according to the Itô equation of §3. But now

by the multiplicative property, the same holds true for

Ex[M(t)f(x(t))g,(x(h))g2(x(t2))- • -gr(x(tr))]

where 0^.t1<t2< ■ ■ ■ <trg,t, and g,,...,gr are scalar L2 functions. By standard

measure-theoretic arguments, such g's generate all of 3Ft. Thus if G e J8;, Ex[M(t)G]

is the same as if M were constructed according to the Itô equation of §3. But

M(t) e J^. Hence for each x, M(t) is almost surely given by the Itô equation of §3.

Finally, by the continuity of M, we have, for each x,

Px[M(t) = M,(t), t ^ 0] = 1.

5. Martingale multiplicative functional. The smoothness assumptions (4.1) can

be partially dispensed with if we assume the normalization

(5.1) Ex[M(t)] = I

where / is the identity operator on L. Coupled with the multiplicative property,

this implies that M is a martingale relative to the fields {J^}. The natural tool to

use here is the martingale stochastic integral, introduced by H. Kunita and S.

Watanabe [4], and further developed by P. A. Meyer [5] and his students. The main

result is

(5.2) Theorem. Let t -> M(t) be a continuous Jt-valued MOFof (X, L) where X

is a one-dimensional Wiener process and L is a separable Hilbert space such that

(a) s\xpxeR,oulèT Ex[\\M(t)\\\] = C(T) <co,

(b) (5.1) holds,

(c) M(t) is invertible for each r2:0.

Then there exists an Jt-valued function x -> B(x), locally square integrable, such

that Px[M(t) = M1(t), iäO] = 1 where Mx is the solution of

M,(t) = 1+ I   Mx(s)B(x(s)) dx(s),
Jo

constructed in (3.7).

To prepare the apparatus for the proof, let us first find the increasing process

associated with M. We use the following general fact.

(5.3) Lemma. Let {M(t),^t,t^0} be a continuous martingale with values in a

Hilbert space Jt, such that £,[||M(i)||2]<°o/or each t^O. Then there exists a real,

increasing J^ adapted process {A(t), /ä0} such that

(5.4) E[\\M(t + s)-M(t)\\z | J*n = E[A(t + s)-A(t) | Jfl,       0 S t < t+s.

Proof. Let {<pk}k^i be an orthonormal basis for L; Mk(t) = (M(t), <pfc> is a real,

locally square integrable martingale, and hence by a theorem of Meyer [6], there

exists an increasing adapted process Ak(t) such that

E[\\Mk(t + s)-Mk(t)\\2 | áfl = E[Ak(t + s)-Ak(t) | Jfl;



1972] MULTIPLICATIVE OPERATOR FUNCTIONALS 101

set A(t) = 2kiiAk(t). A(t) is well defined since 2icsi EAk(t) = %kil E\\Mk(t)\\2

= F||Af(?)||2<°o. Now if B is any <^j measurable set, we have

E[(M(t + s)-M(t))2IB] = 2 E[(M(t+s)-M(t),<pky-IB]
kil

= 2 E[(Ak(t + s)-Ak(t))-IB]
kïl

= E[(A(t + s)-A(s))IB].

Hence (5.4) is proved.

We first define the stochastic integral §0f(s) dM(s) where M satisfies the con-

ditions of Lemma (5.3) and/is a real adapted process such that

(5.5) E i f(s)2 dA(s) < co
Jo

for each ;^0. Indeed, if f(t)=f([2nt]2~n), for some »£1, set

Çf(s)dM(s)=      2    f(k2~n)[M((k + l)2-n)-M(k2-n)]
Jo OSkSE'l]

+f([2nt]2-n)[M(t)-M([2nt]2-n)].

It is easy to check that this definition does not depend upon n. For such/, we can

use the evaluation (5.4) to check that

(5.6) f(s) dM(s) = E\tf(s)2dA(s).
Jo

Thus the mapping/^ ¡0f(s) dM(s) is an isometry if we use the norm (5.5) on/.

It is easy to show that any/satisfying (5.5) can be approximated in this norm by

/'s for which the stochastic integral is already defined. Thus we can extend the

mapping/^ §0f(s) dM(s) by an abstract completion using (5.6).

In the applications below, the condition (5.5) is too stringent. We need to con-

sider the class of adapted mappings t^f(t), such that

(5.7) \tf(s)2dA(s)
Jo

< co 1.

Let Fn = inf {i^O : §0f(s)2 dA(s)^n}. According to the condition (5.7), there exists

an integer N=N(oj) such that Fn= +co for n^N(<o). For any «<co we have

¡tf(syio.TJs)dM(s) f = E f f(s)2Il0,Tnl(s) ds Ú n.
Jo Jo

Thus the stochastic integral jt0',Tn f(s) dM(s) = fo f(s)Il0,Tni(s) dM(s) is well defined

for »=1,2,... and independent of« for n^N(oj).

Thus we can define §0f(s) dM(s) as the trivial limit of JÓAr"/(í) dM(s), when

« -> co. We can summarize the above as a

(5.8) Proposition. Let {M(t),^t, iäO} be a continuous martingale with values
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in a Hilbert space Jt such that E[\\M(t)\\2]<co for each r^O. Let t^>f(t) be an

^i adapted mapping such that \l0f(s)2 dA(s) <oo almost surely, where {A(t), i^O}

is the increasing process constructed in Lemma (5.3). Then we can define the stochastic

integral p0f(s) dM(s) as a locally square integrable martingale satisfying the

estimate (5.6), whenever the right-hand side there is finite.

We now return to the case at hand, where Jt is the Hilbert space of all Hilbert-

Schmidt operators over L, and M arises as a MOF of(X, L) satisfying (5.1), where

A' is a one-dimensional Wiener process. If / -> H(t) is an ^-valued mapping,

adapted to {J^} and satisfying

(5.8) Px[ÇjH(s)\\2dA(s)<œ\ =1

we can define the stochastic integral J"0 H(s) dM(s) by the formula

(5.9) f H{s) dM(s) =   2  9H®<Pi¡t<H(syPla<pl->dAf(s)
JO Jc.lgl Jo

where {<pk} is a complete orthonormal set in L. It is easily checked that this ex-

pression is independent of the choice of basis.

Proof of Theorem (5.2). Let H(t) = M(t)~1 in (5.9) and let us form the stochastic

integral C(t) = §'0 M(s)'1 dM(s), an element of Jt. For 0^t<t+s we have

C(t+s)-C(t) = f M^ + u)'1 duM(t+u) = \' Mit+uyiMiOdiMfa 8t)
Jo Jo

= Ç m(u, ej-1 duM(u, et)
Jo

= ((' MiuyidMijA-Ot

= c(s, et).

Thus {C(t), i§0} is a continuous additive functional of the Wiener path; further-

more C(t A rn) has mean zero, where T„ = inf {t : \x(t)\ =n). Hence, by a theorem of

H. Tanaka [10], C(t) admits the representation

(5.10) C(t) = i B(x(s))dx(s)

for some ~#-valued function x -> B(x), such that ¡K ||5(x)||2 dx<oo for each com-

pact set K.

Now we claim that

(5.11) j" M(s)dC(s) = M(t)-I.

Indeed, if/is a simple, real, adapted process, we have



1972] MULTIPLICATIVE OPERATOR FUNCTIONALS 103

rt [2»¡] pfc2-n

f(s)dC(s)= 2 A(k-1)2-*) M~\s)dM(s)
Jo fc = 0 J()c-1)2-»

f«+/([2"i]2-n) M~\s)dM(s)
J[2"(]2-"

[2"t]    i-k2-n

= 2   I /((fc-l)2-)tf-1(i)</M(s)
k = 0 J(fc-1)2-"

+/([2"/]2-n) f M-Hí)í/M(í)
J[2«tJ2-n

[2nt\    i%k2~n

= 2      ' /(^M-Hi)^^)
k = 0 J{k-1)2-n

+/([2"i]2-n) f M'\s)dM(s)
J[2"i]2-»

= f f(s)M-\s)dM(s);
Jo

by continuity, the equality between the two extreme members holds also for all/'s

satisfying (5.5), as well as those satisfying the more general (5.7). The definition

(5.9) further extends this to ^-valued functions s -> H(s). Now let H(s) = M(s).

This yields (5.11) and hence we have

M(t) = 1+ { M(s) dC(s) = /+ f M(s)B(x(s)) dx(s),
Jo Jo

which was to be proved. This completes the proof of Theorem (5.2).

Remark. The above proof depends only on being able to give a reasonable

definition of the stochastic integral {'„ M_1(s) dM(s). Thus, we only need to

assume that {M(t), i^O} is a semimartingale, i.e. M(t) = M0(t)+M(t), where M0

is a martingale and t^M(t) is of bounded variation. By reasoning analogous to

C. Doléans-Dade, [2], we can show that C(t)=jt0 M'1 dM is again a semi-

martingale as well as an additive functional of X, and hence obtain (1.3) with

5o^0.
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