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OF INTEGRAL DOMAINS
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Abstract. Let D<R be integral domains having the same quotient field K and

suppose that there exists a family {K(}i6; of 1-dim quasi-local domains having

quotient field K such that D = Rr\{Vt\ i el}. The goal of this paper is to find

conditions on R and the Vt in order for D to be noetherian and, conversely, con-

ditions on D in order for R and the V¡ to be noetherian. An important motivating

case is when the set {KJ consists of a single element V and F is a valuation ring.

It is shown, for example, in this case that (i) if V is centered on a finitely generated

ideal of D, then V is noetherian and (ii) if V is centered on a maximal ideal of D,

then D is noetherian if and only if R and V are noetherian.

Our terminology is that of Zariski-Samuel [15] and Bourbaki [2]. All rings con-

sidered are commutative rings with identity, and except for several propositions

concerning flat ring extensions, we deal only with integral domains. If S and T are

sets, we use S\T to denote {s e S | s $ T} ; sind if V is a valuation ring, we use V(-)

to denote the value of — with respect to an associated valuation. If D is a subring of

a ring R and £ is a prime ideal of D, then we write RP for the quotient ring of R

with respect to the multiplicative system D\P. We use R to denote the integral

closure of an integral domain R; and finally, <= denotes containment and < strict

containment.

1. i?-Krull domains. In proving the main theorems of this paper, we found that

we were frequently using techniques that resembled those encountered in dealing

with Krull rings, and toward the end of our work it became clear to us that a

natural setting for our study is one that generalizes the language and ideas of

classical Krull ring theory. Thus, the concept of an Ä-Krull domain will play a

central role in our development, and we shall carry over to these rings a surprisingly

large number of results, suitably generalized, from the theory of Krull rings.

We begin by fixing some notation and terminology which will remain in effect

throughout the paper. R sind D will always denote integral domains with the same
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quotient field K. A set of domains {Dx}ieI with the same quotient field K will be

said to have FC (finiteness condition) if 0 ̂ ¿ f e F implies £ is a unit of Dx for all but

finitely many i, which is equivalent to the assertion that O^de D implies d is a

unit of Dx for all but finitely many i. A nonempty set {Vx}xel of 1-dim quasi-local

domains with quotient field K will be called a set of R-representatives for D if

{Vx}ie,has FC, F et fite; K, and D = Rn(f)ie¡ vx). Note that when such a set

exists, we must have D<R. If {Vx}ie, is a set of F-representatives for D, we use F¡

to denote the center of Vx on D, i.e. Px is the intersection of the maximal ideal of Vx

with D.  Vx is said to be irredundant (in the intersection D = Rn(f)ie, Vt)) if

A valuation ring is called rational if its associated value group is order isomorphic

to an additive subgroup of the rational numbers. A set {VX}X£, of F-representatives

for D will be called a set of rational R-representatives for D if every Vx, ie I, is a

rational valuation ring; and D will be called an R-Krull domain if there exists a set

of rational F-representatives for D. Thus, an F-Krull domain is a domain D

having the same quotient field F as F and such that there exists a set {Vx}leI of

rational valuation rings with quotient field F such that {Vx}xs¡ has FC, Fdzp)ie/ Vit

and D = Rn(r]ie,Vx).

The concept of an F-Krull domain is a continuation of the line of thought begun

in [12, §5]. When R = K and each Vx is noetherian, then the notion of F-Krull

domain coincides with that of Krull ring. Our goal in this section is to find con-

ditions on F and the Vx in order for D to be noetherian and conversely conditions

on D in order for F and the Vx to be noetherian. We begin by generalizing some

well-known results on Krull rings.

1.1. Lemma. Let {Da} be a set of overrings contained in K of the integral domain

D, and let S be a multiplicative system of D. If{Da} has FC and D = C]a Da, then

Ds=Ç\a(E>o)s- In particular, if {Vx} is a set of R-representatives for D, then Ds

= Rsn (C]jeJ Vf), where {F;}jW is the set of Vx such that Pxn S=0.

Proof. Let f e (~) (Da)s. By the FC, £ $ Da for at most finitely many a, say

£ í Du ..., Dn. There exists í¡eS such that Siie Du i=l,..., n; so ifs=3f ■ -s„,

then s^e D and fe Ds. For the second assertion, observe that (Vx)s = Kif Px n S

¥>0-

1.2. Corollary. Let {Vx)xe, be a set of R-representatives for D.IfP is a prime

ideal of D such that R4; DP, then PX^P for some ie I.

Proof. Take S=D\P in 1.1.

The next lemma plays an important role in what follows. Its proof is basically

that of [12, Theorem 5.1, p. 330].

1.3. Lemma. IfD, R are domains with quotient field K and V is a rational valuation

ring with quotient field K such that F et K and D = Rn V, then V=DP, where P is the

center of V on D.
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Proof. £>p<= V is immediate, so we shall concern ourselves with the reverse

inclusion. If |e V, we must show that there exists de D\P such that d£e R. For

this it is sufficient to exhibit an element de R such that V(d) = 0 sind c/|e R. Since

V and D have the same quotient field, £=a/b, a, be D; and since R<£V, there

exists re R such that V(r) <0.lfb£P, then b is the required element. On the other

hand, if V(b) > 0, then since V is a rational valuation ring, there exist integers

m, nïï 1 such that V(rnbm) = 0; thus, d=rnbm is the required element.    Q.E.D.

The example of [12, Example 5.3, p. 330] shows that 1.3 is no longer valid if one

merely assumes that F is a rank 1 valuation ring rather than a rational valuation

ring.

1.4. Proposition. Let D be an R-Krull domain and let {V/}ie, be a set of rational

R-representatives for D. Then $ = {DP | Adz DF and DP= Vifor some /} is also a set

of rational R-representatives for D.

Proof. Since any DP e i equals some Vt, certainly S has FC and each DFe S

is a rational valuation ring. It therefore remains to see that D = Rn {DP \ DP e $}.

<= is clear, so suppose x is in the right-hand side of the equality but is not in D.

Then there exists at least one V¡ such that x $ Vh and by the FC there exist at most

finitely many such V¡; call these Vx,..., Vn. Then D = R' n Vxt~\- ■ -n Vn, where

R' = R n (f) V¡), ie 7\{1,..., n}. D + R' since xe R'\D, so we may assume that Vx

is irredundant in this intersection. It follows by 1.3 that Vx is a quotient ring of D.

Therefore Vx e $, and hence xe Vlt si contradiction.

1.5. Theorem. Let D be an R-Krull domain, let {Kj}ie7 be a set of rational R-

representatives for D, and let £¡ denote the center of Vx on D. IfP is a prime ideal of

D such that R<£DP, then the following are equivalent:

(i) Pt<=P implies Pi=P,for all i el.

(ii) There exists je I such that V¡ = DP.

(iii) There exists je I such that Pj=P and V¡ is irredundant.

(iv) P=P,for some je I, P is minimal, and no prime ideal of R lies over P.

(v) P is minimal.

Proof, (i) => (ii). By 1.1, DP = RP n (C\ieJ V,), where {V,}¡eJ are those V¡ having

center P^P. DP + RP, since otherwise R<^ DP; so J+0. J is then finite by the FC,

since £¡c£ implies P¡=P by (i). Therefore we can delete finitely many elements

from {Vj}jeJ to get an irredundant intersection DP = RP n Vx n- • -n Vt. By 1.3,

Vx = DF.

(ii) => (iii). Vj = DP implies P is minimal and V¡ is the only Vx centered on P.

If Vj is redundant, then D = Rr\ (Hi*, V%). But then (i) => (ii) applied to the set of

^-representatives {K¡}i#í implies that there exists V¡, i±j, such that V¡ is centered

on P, a contradiction.

(iii) => (iv). Vj is irredundant implies Vj = DP) by 1.3; and since V¡ is 1-dim, it

follows thatPj is minimal. If now Q is a prime ideal of R such that Q n £>=£, then
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V, = Dp<=RQ. But Vj is a rank 1 valuation ring, so then V, = RQ; and hence R^RQ

= Vj = DP, a contradiction to our hypothesis,

(iv) => (v) => (i). Trivial.

1.6. Application. Let D be an F-Krull domain and let {K¡},e/ be a set of rational

F-representatives for D. (ii) -» (iii) o (v) of 1.5 shows that {irredundant F¡'s}

={V¡ | Fd: Vx and Vi = DPt} = {DP | F is minimal and R<tDP}. We shall denote this

set by S. Note that the characterization £={DP \ P is minimal and R<£DP} shows

that S is independent of the choice of the set of rational F-representatives {Vx}.

Also, we have already seen in 1.4 that «f is itself a set of rational F-representatives

for D. We shall call ê the set of essential R-representatives for D, and we shall call

the centers on D of the elements of S the essential primes of D. Thus, ê is a set of

irredundant rational F-representatives for D; and given any set of rational F-

representatives for D, the subset of irredundant elements is exactly S. (If one merely

assumes that the V¡ are rank 1 valuation rings rather than rational valuation rings,

the example of [12, Example 5.3, p. 330] shows that not every irredundant Vx need

be in $.)

We shall frequently use in what follows a couple of facts involving flatness, one

of which is the following criterion [14, Theorem 2, p. 795]. Let D<=R be domains

with the same quotient field. Then F is flat over D if and only if for any prime

ideal F of D, either R^DP or PR = R. The second fact is that if F is flat over D

and contained in the quotient field of D, then D is noetherian implies that F is

noetherian [14, Corollary, p. 796].

We are now ready to examine the noetherian properties of F-Krull domains.

Theorem 1.10 constitutes part of the main result of this section. Its proof requires

the corollary to the next proposition.

1.7. Proposition. Let !M be a ring and let {@ta} be a set of flat ¡M-algebras (or

^-modules). Let A be an ideal of 3% such that for each maximal ideal M^> A of 0t

there exists an 0ta such that M0laj:0ta. If A' is an ideal of& such that A'3ta^A&a

for each a, then A'^A. Moreover, if for each a, A0ta is finitely generated as an ideal

of 0ta (or finitely generated as an ^-module) and if there exists a finitely generated

ideal B^A such that Bâta^ A¡%a for at most a finite number of a, then A is finitely

generated.

Proof. If be A', then (A:b)3ia = A0ta:b (where A®a:b = {ye®a \ bye A@a}),

[2a, Exercise 22, p. 65] or [11, 18.10, p. 58]. Since b0ta<^A'0la^A@a we have

(A:b)3la=3&a for each a. Thus A:b is contained in no maximal ideal of 3t, so A:b

=8%, i.e. be A and A'^A. Assume now that A0la is finitely generated for each a

and that B<^A, B finitely generated, is such that B0ta = ASHa for all but a finite

number of a, say a= 1, 2,..., n. We can choose A^A, Ax finitely generated, such

that Aßi = A0lx. Then B'= B+A,+■■■+An is such that A0ta^B'0ta for each a.

Thus A = B' and A is finitely generated.    Q.E.D.

The following corollary includes the well-known statement that a quasi-semilocal

domain which is locally noetherian is noetherian [15, II, Lemma 2, p. 327].
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1.8. Corollary. Let Si be a ring and let {Sia} be a set of flat Si-algebras (or

Si-modules) such that for each proper ideal A of Si, ASia^Si0. for at least one and at

most a finite number of Sia. If each Sia is a noetherian ring (or a noetherian Si-

module), then Si is noetherian.

For an incidental application of 1.8, let us consider the following question: Let

ai be si noetherian ring and Six,..., Sin be a set of flat overrings of Si which are

contained in the total quotient ring of Si. Is Si' = r)?=1 ®i necessarily noetherian?

The answer is "no" in general. In fact [7, Example 2.10] gives an example of a

noetherian domain D having quotient rings Du D2 such that Dx n D2 is not

noetherian. However, the following is true.

1.9. Proposition. If Si is a noetherian ring and Six, • • -, ^n are quasi-semilocal

flat overrings of Si which are contained in the total quotient ring of 01, then Si' = f\ Sit

is noetherian.

Proof. The Si¡ sire flat over Si sind hence also are noetherian (see, for example,

[la, Corollary 1, p. 804]). Since every nonunit of Si' is also a nonunit in some Sf¡,

it follows that the set of nonunits of Si' is exactly the union of the finite set of

contracted maximal ideals of the Siu Therefore every maximal ideal of Si' is the

contraction of a maximal ideal of some Sik. Finally, since the Sti are contained in

the total quotient ring of Si and are flat over Si, they are also flat over Si' [lb,

Corollary 1, p. 803]. Thus, by 1.8, Si' is noetherian.    Q.E.D.

The next theorem is central to this paper.

1.10. Theorem. Let D be an R-Krull domain, let {V^isI be a set of rational R-

representatives for D, and suppose that the center on D of every irredundant Vt is

maximal. Then R is flat over D, and D is noetherian if and only if R and the irredun-

dant Vi's are noetherian.

Proof. By 1.6 the irredundant V¡ are precisely the elements of S, i.e. the essential

^-representatives for D. Let P be any prime ideal of D such that Äd: DP. Since the

center on D of any element of S is assumed maximal, 1.5(i) is satisfied by P; and

hence by 1.5(iv), P is itself the center of an element of ê and therefore maximal,

and no prime ideal of R lies over P. This implies that PR = R. Thus, R<£DP implies

PR = R, which proves that R is flat over D. It follows that D is noetherian implies

R is noetherian.

We use 1.8 for the converse. As we have seen, for any prime ideal P of D, either

R c DP, in which case PR / R, or R d: DP, in which case P is the center of an element

Voie" and PV^ V. Thus, since S has FC and each element of S is a quotient ring

of A 1.8 applies.   Q.E.D.

Note that another way of stating 1.10 is the following: Let D be an £-Krull

domain whose essential primes are maximal. Then R is flat over D, and D is

noetherian if and only if R is noetherian and the essential primes of D are finitely

generated. Moreover, when the essential primes of £> are maximal, R is completely
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determined by these primes, for it follows from the flatness of F [14, p. 795] that

then R = C\ {DQ \ Q a nonessential prime of D}.

We shall next examine a few examples to determine the bounds for possible

generalizations of 1.10. A simple example in [3, p. 282] shows that there exist 1-dim

local domains F, V with D = R n V being 1-dim quasi-local but not noetherian;

so the hypothesis that the Vt are rational valuation rings in 1.10 cannot be replaced

by the hypothesis that the V¡ are 1-dim local. (The D in this example is also integrally

closed.)

The following modification of [12, Example 5.3, p. 330] shows that the assump-

tion that the Vx are rational valuation rings is also crucial for the flatness assertion

of 1.10.

1.11. Example of D = R n V such that V is a rank 1 valuation ring centered on a

maximal ideal of D and yet R is not flat over D. Let k be the rational numbers, let

x be an indeterminate, and let V be the extension of the /?-adic valuation v of k to

k(x) obtained by defining V(a0 + a,x+ ■ ■ ■ +anxn) = inf{y(a¡) + M> i=0,...,n.

Let D = k[x] n V, let M denote the center of V on D, and let F denote the center of

the x-adic valuation ring of k(x) on D. Then F< M, so there exists a rank 2 valu-

ation ring W of k(x) such that W=> D and W has prime ideals lying over M and F.

If now we let R = k[x] n W, then D = RnV.

It is shown in [12, p. 331] that M is the only nonminimal prime ideal of D and

that any other prime ideal of D is the contraction of a prime ideal of k[x]. Since M

is the center of W on D, it follows that every prime ideal of D is the contraction of

a prime ideal of F. Thus, it will follow that F is not flat over D if we show that

D^R. For sufficiently large n, x/p" $ Fand hence £ D; but W(x) is infinitely larger

than W(p), so x/pn e W and hence e R = k[x] n W.    Q.E.D.

The following can happen if one omits the condition that the center of each

irredundant K( be maximal in Theorem 1.10:

(i) D may be noetherian, but F may not be noetherian,

(ii) F, Vi, ie I, may all be noetherian but D may not be noetherian. (We show

in 1.17 that when D is noetherian the irredundant V¡ are always noetherian.) An

example which shows (i) is constructed in [4, §2], where F is an ^-transform of a

3-dim normal affine ring D and {Vx} is a finite set of discrete rank 1 valuation rings.

To see (ii), it suffices to have a 2-dim, quasi-local, nonnoetherian Krull domain D

having a minimal prime F such that P=^/(x) for some xe D. For then take

R = D[l/x] and V=DP. R is 1-dim Krull and hence noetherian, and D = Rn V

since V is the only essential valuation ring of D which does not contain l/x. The

existence of such a F is proved in [9, p. 28].

The following corollary, whose proof is immediate, includes [6, Proposition 1]

as a special case.

1.12. Corollary. Let D be a Krull domain with the set of essential valuation

rings S, and let J( be any subset of {VeS \ the center of V on D is maximal}. If

R = f~) {V | Ve ê\J(}, then R is noetherian if and only ifD is noetherian.
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We next prove a generalization of 1.12. The generalization requires the following

lemma which is taken from [13].

1.13. Lemma. Let R be an integral domain and let 3P be a set of minimal primes

ofR. If{RP \PeS*>} has FC and R = (~\{RP\ Pe S»}, then 0> is the set of all minimal

primes of R.

Proof. Let Q be a minimal prime of R and suppose that Q $3P. Choosey¥=0e Q,

and let Plt...,Pt be the primes in SP such that yePt (/^l since otherwise

l/yeC]RP = R). Choose xe(Px n- • -n Pt)\Q.

Claim. x"/ye Ç] RP = R, for some n. For any n, xn/ye RP, P^PX, -■-,£(, since

l/ye RP, Py^Px, ■ ■ -,Pt- Moreover, RP¡ is 1-dim quasi-local implies xn> eyRPt for

some «¡, /'= 1,..., /. Choose n = max{«¡}, and then xne yRc Q, a contradiction to

the choice of x.

1.14. Theorem. Let D be a domain, and let J?={minimal prime ideals of £>}.

Assume D = (~~) {DP \ P e Jt), and that {DP\PeJ(} has FC. Let Jibe a subset ofJt

such that every Pe Jf is maximal. Then R = (~] {DQ | Q e Jt\jV} is flat over D.

Proof. By 1.13, theminimal prime ideals ofÄ are exactly {g Dq n R \ Qe^\J/"}.

Therefore PR = R for any PeJf, for otherwise some minimal prime of R would

necessarily contract to P by the maximality of P. If now Q is any prime of D such

that £d: DQ, then £<= Q for some PeJV, by 1.2. Therefore P= Q and hence QR = R,

which proves that R is flat over D.

1.15. Corollary. With the notation and hypotheses of 1.14, R and{DP \ P e Jf)

are noetherian if and only if D is noetherian.

Proof. R is flat over £>, so D is noetherian implies R is noetherian. For the

converse, observe that for any prime ideal M of D, if MR = R, then M e Jf by 1.2;

and then apply 1.8.   Q.E.D.

Our next theorem considerably sharpens 1.10 in the direction "£» is noetherian

implies the irredundant K¡ are noetherian". It and 1.10 should be considered the

principal results of this section.

1.16. Lemma. Let Abe a nonzero finitely generated ideal of an integral domain D

with quotient field K. Then A:A={$e K\ ¿¡A^A} is a ring integral over D.

Proof. It is immediate that A:A is a ring. To see the integralness, we use a

standard argument (see [15a, p. 216]). Let A=(ax,..., an) and let de A:A. Then

^ai = Z;"=iJ¡A. with 3>«6 D- Therefore det (dZ- Y) = Q, where Z is the identity

matrix and Y=(yif); and this is the desired integral equation for d.

1.17. Theorem. Let D, R, V be domains with quotient field K, and suppose that

D = R<~\ V=R(~\ D, that D^R, and that V is 1 -dim quasi-local with center P on D.

If P is finitely generated, then V is a noetherian valuation ring. (Note that if V is

integrally closed, then £><= V, so D = R n V=R n D.)
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Proof. By replacing D, R by their quotient rings with respect to the multiplicative

system D\P, we are reduced (by 1.1) to considering the case where D is quasi-local

with maximal ideal F. Then either PP~1 = D or PP~1=P.

\f PP~1 = D, then F is invertible. Since D is quasi-local, this implies that P is

principal [2a, Theorem 4, p. 148]. Also, since Fis contained in the height 1 maximal

ideal of V, H™=i Fn = 0 [12, Corollary 1.4, p. 323]. These two properties imply that

F is a noetherian valuation ring ([2c, Proposition 9, p. 109]); so D= V, and we are

done.

If, on the other hand, PP~1=P, then F"1=F:F. But P:P is integral over D by

1.16, and hence P~1(= D. If now Q^Pis any other prime ideal of D, then Fc DQ

by 1.2. Therefore if re R and if 8(r)={d e D \ dre £>}, then S(r)d: Q. Thus, y/d(r)

=P; so Fis finitely generated implies that Pn<=8(r) for some n¿tl. Hence rF"c:£)

and reP~n (where by definition P~n = (Pn)'1). Choose re R\D. Then there exists

«^1 such that r eP~n, $P~n + 1.Then rPn~1cR and rPn-1<=p-nPn-1^P-1^D;

so rPn~1<=Rn D = D, and hence rEF~n + 1, a contradiction to the choice of«.

Q.E.D.

1.18. Corollary. Suppose D = R n {V¡ | ie I}, where {F¡}ie/ is a set of l-dim

quasi-local integrally closed domains having FC. If each Vi is centered on a finitely

generated maximal ideal of D, then D is noetherian if and only if R is noetherian.

Proof. Apply 1.17 and 1.10.

The condition R n D = D of 1.17 cannot be weakened to F n Fis integral over

D, as the following example shows.

1.19. Example of domains R, V, D such that D = R n V, Fd: V, V is l-dim quasi-

local and the center ofVonD is maximal, yet R, D are noetherian and V is not. The

F and D will, in fact, be 2-dim local domains with F integral over D. Let k0<k

be fields with k a finite algebraic extension of k0, and let x, y be indeterminates

over k; let R=k[x, y]ix,y) ( = k + M, where Af is the maximal ideal of F); let V be

the rank 1 valuation ring of k(x, y), trivial on k, defined (using the procedure of

[2c, p. 160]) by setting V(x)=l, V(y) = ir; and let V=k0 + N, where N is the

maximal ideal of V. Note that V=k + N and that RnN=M. Let D = Rn V.

Then D = k0 + M, so F is a finite integral extension of D, and hence D is noetherian

by Eakin's theorem [3] (see [10] for a simplified proof of this theorem). On the

other hand V is not noetherian since V is not.

It is possible to construct a more complicated example than the above which

has the additional property that FdiF.

As another application of 1.17 and 1.10, we mention the following corollary,

which includes a situation treated in [15, II, p. 328].

1.20. Corollary. Let V be a rank 1 valuation ring and R be a quasi-semilocal

ring, let D = R n V, and suppose D, R, V all have the same quotient field. If there

exists an element x which is a unit of R and a nonunit of V, then D is noetherian if

and only if V, R are noetherian.
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Proof. The existence of x implies that V is irredundant. Since every nonunit of

D is either a nonunit of R or a nonunit of V, the set of nonunits of D is precisely

the union of the finite number of contracted maximal ideals from R and V. Thus,

D is quasi-semilocal, and the condition on x then implies that the center of V on

D is maximal; so 1.17 and 1.10 apply.   Q.E.D.

The converse to 1.17 is false; for it can be seen that the example of [12, Example

5.3, p. 330] gives a domain D which is an irredundant intersection of rank 1 valua-

tion rings, all but one of which are noetherian and such that an infinite number of

them have nonfinitely generated center. The existence of Krull rings having minimal

primes which are not finitely generated (see for example, [4]) gives another source

of counterexamples to the converse of 1.17. However, if one imposes the further

condition that the center of Kbe maximal, then the converse is easily proved. Thus,

1.21. Proposition. Let R, V, D, P be as in 1.17. If P is maximal and V is a

noetherian valuation ring, then P is finitely generated.

Proof. If M¥=P is a maximal ideal of D, then DM=>R by 1.2. Also, PR = R sind

V=DP by 1.5. Therefore there exists a finitely generated ideal P0 of D such that

P0r=r = Pr an(j P0V=PV. Then P0DM = PDM for every maximal ideal of £>, so

P0 = P.   Q.E.D.

It is perhaps worth noting that this proposition yields immediately (and hence

provides a simple proof of) the main result, Theorem 3, p. 338, of [5], which

asserts that if a domain D has the property that every DP, P maximal, is a rank 1

discrete valuation ring and D = f) DP is an irredundant intersection, then D is

noetherian.

Let D be sin integral domain with quotient field K. We remind the reader that

an element £ e K is called almost integral (or quasi-integral) over D if there exists a

nonzero de D such that d^ e D for all /= 1, 2,.... An element which is integral

over D is almost integral over D, and the concepts coincide when D is noetherian.

(See for example, [2c, p. 20].)

1.22. Corollary (to 1.17). Let D^R be domains with quotient field K. If W

is a valuation ring of K such that D = Rr\ W and such that W is maximal with respect

to this property (i.e. there does not exist a valuation ring U of K such that U> W and

R c\ U= D), then D is noetherian implies W is noetherian.

Proof. By 1.17, it suffices to see that Ifhas rank 1. If not, there exists a nontrivial

valuation ring W>W. If M' is the maximal ideal of W, then M'^W; also

M' n £>^0 since D and W have the same quotient field. Therefore, if xe W n R

and d+f)e M' n £>, then dxne M' n R<= D, «=1,2,.... Thus, x is almost

integral over £>; and since D is noetherian, this implies x is integral over D. There-

fore xe W,so W n R = D, a contradiction to the choice of W.   Q.E.D.

The 1-dim assumption in 1.17 is essential, as is seen by the following example.

Take R = k[x, y, z, l/x], where x, y, z sire indeterminates over the field k. Let Vx
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be the x-adic valuation ring of k(x, y, z), and let V be the composite of V1 with

some nondiscrete valuation ring containing k[y, z] of the residue field (^k(y, z))

of V,. Then F n V=k[x, y, z] = D since R n Vx = k[x,y, z], but the maximal ideal

of Fis not finitely generated since F has a nondiscrete homomorphic image.

We conclude this section with the following intrinsic characterization of F-

Krull domains. It is modeled after the corresponding statement for Krull rings in

[11, p. 115].

1.23. Theorem. Let D<R be integral domains having the same quotient field K.

Then D is an R-Krull domain if and only if

(i) if P is a minimal prime of D such that Fd: Z)P, then DP is a rational valuation

ring, and

(ii) if xe D, x^O, then xD = (xR n D) n {Q¡ \jeJ}, where {Q¡}je] is a finite

(possibly empty) family of primary ideals for minimal primes P, of D.

Proof. (=>) From 1.6, {DP \ P is minimal and RázDP} is precisely the set S

of essential F-representatives for D. Thus each such DP is a rational valuation ring

and D = Rn{DP | DPeê}. Hence if x e D, x # 0, then xD = xR n {xDP \ DPeê}.

Since S has FC, xDP^DP for only a finite number of the DP e ë, say {DPj \ jeJ}.

If Qj = xDPj n D, then Q¡ is Frprimary and xD = (xR n D) n {Q, \jeJ}.

(<=) Let {F¡ | ie /} be the set of minimal primes of D such that R<^DPt. By

assumption each DP¡ is a rational valuation ring. Also we have DPi<RPi. Hence

RPl = K, i.e. each nonzero ideal of F meets D\PX. If xe D, x^O, and xD =

(xR n D) n {Q, | jeJ}cPh then we claim that Px e {F; | je J}. For xR n D^Pt

implies that some Q^Pi- Thus the stt{DPi \ ie 1} has FC. It only remains to show

that D = R n {DPl | ie I}. We note first that if a minimal prime P¡ of D is such

that R<= DPj, then xR n D^xDPj n D. Hence we may assume that the minimal

primes F; in (ii) are such that R<£DPj. Thus for nonzero xe D, we have from

(ii) that xD = (xR n D) n {xDP¡ \iel}. If $e Rn {DP¡ \ i el} write £=y/x, y,

xe D. Then yexRnD, and y e xDP¡ for each i. Hence y e (xR n D) n {xDP¡ |

ieI} = xD and Ce D.    Q.E.D.

2. Generalizations. We shall now generalize some of the results of §1 to the case

that the Vx are no longer assumed to be rational valuation rings but instead are

merely assumed to be 1-dim quasi-local. Again we begin by sufficiently generalizing

the terminology of Krull rings to fit our need. As before, D and R will denote

domains with the same quotient field K. If "f = {Vx}XEl is a set of F-representatives

for D, D'{t~) will denote the domain F n (Hie/ Fj), which will now play an

important role.

2.1. Lemma. If i/~ = {Vx}ieI is a set of R-representatives for D, then F'(F~) is

almost integral over D (and hence D'^f) is integral over D if D is noetherian).

Proof. If £ e D'iy), then by the FC, £ <£ F¡ for at most finitely many i, say

$ £ Vlt..., Vn. Since Ce Vh £ is almost integral over Vt; therefore we can choose
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ûj^Oe Vi, sind hence in D, such that a^' e Vt for all 7=1, 2,.... Let </=cv ■ -an,

and it follows that dg e D for all j = 1, 2,....

2.2. Lemma. If "T is a set of R-representatives for D, then D'OO is R-Krull and

integral over D if and only if D n R is R-Krull. When this occurs, then D'ft")

= DnR.

Proof. It suffices to show that D'(-f) is integral over D implies D'(f) = D n R

and that D n R is £-Krull implies D'(ir) = D n £. We always have D'(f)^D

n £; and if D'OO is integral over £>, the reverse inclusion is immediate. Suppose

then that D n R is £-Krull. Every element of D'iy) is then an element of R which

is almost integral over £ by 2.1 and hence which is a fortiori almost integral over

D n R. But the rational ^-representatives of an Ä-Krull domain are rational

valuation rings and therefore are completely integrally closed, so it follows that

any element of R which is almost integral over D o R is in D n R. Thus, D'OO

<=DnR.    Q.E.D.

We call D a generalized R-Krull domain provided there exists a set 'f of R-

representatives for D such that D'{V~) is an £-Krull domain and is integral over D.

Thus, if R and D are domains with quotient field K, then £ is a generalized R-

Krull domain if there exists a set {Vx)iE, of 1-dim quasi-local domains with quotient

field K such that {F¡}iE, has FC, R^C\ieI Vh and D = R r\ (f)iel Vt) and such that

D'(f) = R n (Hie; V¡) is £-Krull and integral over D. 2.2 shows that when £ is a

generalized £-Krull domain, the domain D'{f~), even though it is defined in terms

of a set "f of ^-representatives for D, is equal to D c\ R and hence does not depend

on the choice of the set "f. Therefore, in discussing a generalized i?-Krull domain,

we need only write D' rather than D'(y) for this domain. We remind the reader

that R can equal A"in these considerations; thus, for example, noetherian domains

whose principal ideals have no imbedded components are included in our generalized

.R-Krull domains.

The difficulty in dealing with a generalized /?-Krull domain D is that one no

longer has available a set of £-representatives with the good properties of the

essential ^-representatives of an Ä-Krull domain. (We illustrate these difficulties

later in Examples 2.14 and 2.15.) However, we can single out a set of primes of D

which will successfully generalize the notion of essential primes of an £-Krull

domain. Thus, we shall say that a prime ideal P of the generalized Ä-Krull domain

D is an essential prime of D if every prime of D' lying over P is an essential prime

of the £-Krull domain £'. We next give some important characterizations of

essential primes of a generalized £-Krull domain, similar to those characterizations

of essential primes of an £-Krull domain given in 1.5. 2.4 deals with char-

acterizations which are intrinsic in the sense that they do not involve a set of R-

representatives, while 2.6 gives some characterizations which do involve such

a set.

We need the following lemma, which will be used in localizing.
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2.3. Lemma. Let ir = {Vx}xeI be a set of R-representatives for the generalized

R-Krull domain D, and let {V,}js, be those Vx whose center on D does not intersect S.

Then Ds = Rsn (f]M V¡) and (D')S = RS n (C)jE] V¡); and hence if DS^RS, then

Ds is generalized Rs-Krull and (D')S = (DS)'.

Proof. The first assertion follows from 1.1 and the second follows from the first

and the definitions.

The following intrinsic characterizations of essential primes of a generalized

F-Krull domain follow readily from the definitions and the properties of essential

primes of an F-Krull domain given in §1.

2.4. Proposition. Let D be a generalized R-Krull domain and let P be a prime

ideal of D. The following statements are equivalent:

(i) Each prime ideal P' of D' lying over P is an essential prime for the R-Krull

domain D'.

(ii) F is a minimal prime of D and R<^D'Pfor each prime P' of D' lying over P.

(iii) F is a minimal prime of D and R and DP have no common overring <K.

(iv) P is a minimal prime of D and no prime of R lies over P.

(v) F is a minimal prime of D and RP ~ K.

We now wish to relate the essential primes of the generalized F-Krull domain D

to a set {Vi} of F-representatives for D. Let F¡ denote the center of Vx on D. If F

is an essential prime of D, then from 2.4 and 1.2 we have Pe{Px}. Hence each

essential prime of F is a minimal element of the set {Px}. To classify more specifically

the essential primes of D in terms of the set {Px}, we will make use of the following

lemma.

2.5. Lemma. Let D be a domain having a set of R-representatives {Vx}ieI. Let P¡

denote the center of V¡ on D, let P be a minimal element (with respect to inclusion)

of the set {Px}, and let {Vj},eJ be those V, having center P on D. Let {P'e} be the set of

contractions to D' = R n{V¡\ ie 1} of the nonzero prime ideals of the V,,jeJ. Then

any prime ideal P' of D' lying over P contains f~) P'e.

Proof. Let x e C] P¡¡. Then, for any j e J, V¿[x] is a finite Frmodule, and x is in

the Jacobson radical of V,[x]. Therefore, since F, is 1-dim quasi-local, some

power of x is in the nonzero conductor of F, in V}[x\, and thus is in F3. Since J is

finite by the finiteness condition on F-representatives, there exists then a positive

integer m such that xme V, for all je J. Therefore xme Rn{V¡ \jeJ} = DP, the

equality following from 1.1. Thus, there exists se D\P such that sxme D n P'B=P.

If then F' is any prime of D' lying over F, it follows that x e P'.

2.6. Theorem. Let D be a generalized R-Krull domain, and let {Vx} be a set of

R-representatives for D. Let P¡ denote the center of V¡ on D, and let P be a minimal

element (with respect to inclusion) of the set {Px}. The following statements are

equivalent :
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(1) P is an essential prime of D.

(2) £4: D'P' for each prime ideal P' of D' lying over P.

(3) Each V{ centered on P is such that R and V¡ have no common overring < K.

(4) Each V¡ centered on P is such that V¡ is an intersection of finitely many essential

R-representatives for D'.

Moreover, if P is an essential prime of D, then DP = C] {V¡ \ V¡ is centered on P}.

Proof. (1) => (2) and (1) =*■ (3) are immediate from 2.4.

(1) => (4). If £ is essential and K¡ is centered on P, then each maximal ideal M

of K¡ lies over £ in £ and hence lies over an essential prime M n D' of D'. There-

fore D'MnD' is an essential ^.-representative for D'; and since it is also then a rational

valuation ring, D'MnD^ = (Vi)M. But F, is the intersection of its localizations at

maximal ideals, so V¡ is an intersection of essential ^-representatives for £'. That

there are only finitely many such /«"-representatives follows from the finiteness

condition on ^-representatives, since each of these representatives is centered on £

in D.

(4) => (3). If R and K¡ have a common overring < K for some Vt centered on P,

then they have a common valuation overring W<K. But W^> Vt; so if V¡ is a finite

intersection of rational valuation rings, then If must be one of them [11, p. 38].

But then W would be an essential ^-representative for D', si contradiction to £<= W.

We need the following observation for the remainder of the proof: If £' is a prime

ideal of £' lying over P such that Rd: D'P., then £' is an essential prime of £'. For,

by 1.2, £' contains an essential prime Q' of D', and then Q = Q' n D<=P. If Q<P,

the assumption that £ is minimal in the set of centers {£¡} implies ( VX)Q = K for all i.

But then R<=RQ = DQ<=D'Q; the equality following from 2.3; and this contradicts

the fact that Q' is an essential prime of D'. Thus, Q=P; and therefore Q'=P'

since D' is integral over D.

(2) => (1). In view of 2.4, it suffices to show that £ is a minimal prime of D.

Since £' is integral over D, we need only show that each prime £' of D' lying over

P is minimal. By the above observation, any such £' is an essential prime of D'

and hence is minimal.

(3) => (1). Let {V,};eJ be those Vt having center £ on D, and let {P'ß} denote the

set of prime ideals of £' that are contractions of nonzero primes of the Vj, je J.

(3) assures that £4: D'P¿ for each P'B; so by the above observation, each P'e must be

an essential prime of the £-Krull domain D'. Since D' has only finitely many

essential primes lying over £, {P'ß} is finite. By 2.5, each prime of D' lying over £

must then be in the set {P'ß}, i.e. £ is an essential prime of D.

For the final assertion of the theorem, observe that, by 2.4, £ is minimal and

RP = K for a"v essential prime P of D. Hence, by 2.3,

DP = fi {V, | Vt has center P on £}.       Q.E.D.

We are now ready to examine noetherian properties of D, R sind the V¡.
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2.7. Theorem. Let D be a noetherian domain having a set {Vx)ie¡ of R-representa-

tives such that Fd:P|is/ F¡. Then D is a generalized R-Krull domain. Moreover, if

V e {Vx} is centered on an essential prime of D, then V is noetherian. Thus, for example,

if for each i, R and Vx have no common overring < K and there are no proper contain-

ment relations among the centers F¡ of the Vx on D, then all the V{ are noetherian.

Proof. If D is noetherian, then the integral closure F of F is a Krull domain [11,

Theorem 33.10, p. 118]. Hence by 2.2, F is a generalized F-Krull domain. If Fis

centered on an essential prime F of D, then DP<= V<^K and by 2.4, F is a minimal

prime of D. Thus V lies between a 1-dim noetherian domain and its quotient field.

By the Krull-Akizuki theorem [11, Theorem 33.2, p. 115], Fis noetherian. The

last assertion follows from 2.6.

2.8. Theorem. Let D be a generalized R-Krull domain and let {FJ be a set of R-

representatives for D. If each V¡ is centered on an essential maximal ideal of D, then

R is a flat D-module. In this case, D is noetherian if and only if R and every finite

intersection of the V¡ are noetherian.

Proof. Let F be a prime ideal of D. If Fd: DP, then by 1.2, F contains and hence

must equal the center of some F¡ on D. Hence by 2.4, no prime of F lies over F.

Since F is maximal, we have PR = R. Thus F is a flat F-module [14, p. 795].

Moreover, 2.6 implies that

A = D (yi I vi has center F on D}.

Hence if F and every finite intersection of the F¡ are noetherian then, by 1.8, D is

noetherian. Conversely, D noetherian implies R is noetherian since F is a flat

F-module contained in the quotient field of D. To show that D noetherian implies

that every finite intersection of the F¡ is noetherian, it will suffice by the Krull-

Akizuki theorem to show that if Pu..., Pn are essential primes of D, then

n?=i A, is 1-dim and noetherian. By 1.9, Hf=i A, is noetherian and since each

nonunit of f)f=1 DP¡ is contained in U?=iFiA, we see that the contractions of

the PxDPi are the only nonzero primes of D"=i A,- Hence H"=i At is 1-dim.

Q.E.D.
In order to apply 2.8 in showing that R and the F¡ noetherian imply D is

noetherian, it is useful to have sufficient conditions that every finite intersection of

the Vi be noetherian. We note the following consequence of the approximation

theorem for independent valuation rings.

2.9. Proposition. Let {Wx}f=1 be a family of l-dim quasi-local domains with

quotient field K such that each W{ is a finite intersection of valuation rings. Assume

that for i^j, Wt and W¡ are not dominated by a common valuation ring. Then

T= n?= i ^F¡ is 1 -dim, has quotient field K, and if Qx is the center of Wt on T, then the

Qx are the only nonzero primes of T and TQi = Wx for each i.
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Proof. The nonunits of £ are contained in (J?-i 0¡ and hence every maximal

ideal is some Q¡. Thus, all assertions will follow if we show TQt = W¡ for each /'.

By the approximation theorem [15b, p. 45], there exists yeK having positive

value in each valuation dominating W¡ sind negative value in each valuation

dominating W, for j -¿i. Thus W¡[y] is a finite If ¡-module with y in the Jacobson

radical of JPiLy]. Hence for some positive integer m, ym is in the conductor of Wt

in Wx[y] and therefore in the maximal ideal of W¡. Thus l+ym is a unit of Wt

having negative value in each valuation dominating W¡ for j=£i. Let x= 1/(1 +ym).

Then W¡[x] is a finite W^-module, and for j^i, x is contained in the Jacobson

radical of W,\x]. We conclude that for some positive integer /, x1e (p]J#i ßi)\ßi.

Hence ( W,)Ql = K for j* i. Thus by 1.1, we have £0l = f|?= i ( W¡)Ql = Wt.    Q.E.D.

2.10. Corollary. Let {1F¡}"=1 be a family of l-dim (noetherian) local domains

with quotient field K such that for i+j, Wx and W¡ are not dominated by a common

valuation ring. Then T=C]fml W¡ is a l-dim (noetherian) semilocal domain.

2.11. Corollary. Let D be a generalized R-Krull domain. Assume that there

exists a family {F¡} of noetherian R-representatives for D such that each Vt is cen-

tered on a maximal ideal of D. If for each i, R and V{, and V¡ and V¡, for yV i, have

no common overring < K, then R is noetherian implies D is noetherian.

Proof. By 2.10 every finite intersection of the V¡ is noetherian. By 2.6 each Vt

is centered on an essential prime of D. Hence by 2.8, R is noetherian implies D is

noetherian.

If we restrict ourselves to the question of when D is noetherian implies R is

noetherian, we can replace the assumption in 2.8 that each V{ is centered on an

essential prime of D by an assumption only involving the K¡. We use (F¡:F,) to

denote the conductor of F, in F¡, i.e. (V¡: Vl) = {ae V¡ \ aV¡<= F¡}. Note that if F¡

is a finite Frmodule, then ( Vt : Vt) / 0.

2.12. Lemma. Let D be a domain with a set of R-representatives {F}je/. Assume

that I is finite, say I={1,..., n), that each V¡ is centered on a maximal ideal of D

and that Cí = (Fj: F¡)#0, 1=1.r, Then D is noetherian implies R is noetherian.

Proof. Let D' = R n {V¡ | ie I}. C= f)"-1 (Q n D) is a nonzero ideal of D

and CD'^D; thus D' is a finite £-module and hence noetherian. In particular, R

is noetherian if £cn"=i Pi! so we may assume R^Of^x F(. Then since D is

noetherian, D' is an £-Krull domain by 2.7. Let i' denote the essential £-

representatives of D' and let £t denote the center of F¡ on D. For any D'P. e S',

£¡cz£' (^ d for some ^ by 1.2. It follows from our hypothesis that £' n D is

maximal; and hence £' is maximal, since £>' is integral over D. Thus, D' is

noetherian implies that R is noetherian by 1.10.

2.13. Theorem. Let D be a domain having a set of R-representatives {F}i6/.

Assume that each V¡ is centered on a maximal ideal £¡ of D and that (F¡: F()/0/or

all i e I. Then D is noetherian implies that R is noetherian.
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Proof. By Cohen's theorem, it suffices to see that any prime ideal Q0 of F is finitely

generated. Let Q = Q0 n D, and let A be a finite set of generators for Q. If Q<=pt for

some /', then Q is contained in only finitely many of the F¡, say P„ ..., Pn ; and in this

case, if 5=F\U?=i Pu then Rs is noetherian by 1.1 and 2.12. Thus, if Qcpi for

some /, then we can find a finite subset B of Q0 such that BRS=Q0RS. Let C=A if

QdrFj for all ie I, and otherwise let C=A u B. Claim: Q0 = CR. It suffices to show

that Q0RMo<^ CRMo for every maximal ideal M0 of R. Let M=M0 n D. If F<= DM,

then RMo=DM and hence Q0RMo=QDM = ADM^CRMo. If Fd:FM, then F<=M

for some /' e / by 1.2; therefore PX = M since F¡ is assumed maximal. If Q d: A/, then

ÔoFMo = FMo = ^1FMo = CFMo. On the other hand, if Q^M=PU then ÄscüMo;

and hence Q0RS = BRS, which implies Q0RMo = BRMo<=CRMo.   Q.E.D.

We conclude with two examples which illustrate the difficulties that can arise in

considering generalized F-Krull domains.

2.14. Example of a generalized R-Krull domain D = R n Vxn V2 such that V2

is irredundant but its center on D is not minimal. Let k0 < k be fields with k algebraic

over k0, let x be an indeterminate over k and y be an element of k[[x]] of strictly

positive order such that x, y are algebraically independent over k ; let

R = k[x,y\x,y)[l/x]; let V1 be the x-adic valuation ring of k(x, y); let F2 = Ä:[[x]]

nk(x,y) (=k + M2, where M2 is the maximal ideal of the valuation ring V2);

let F2 = â:o + M2; and let D = R n V1n V2. Note that k[x, y\x,y) = k + M, where M

is the maximal ideal of k[x, y](XtV). Moreover, k + M<^V2 and M2 n k[x, y]ix¡y)

= M. Also, Rn V1 = k[x,y]ix¡y). Therefore D = k[x,y]ix¡y)n V2=k0 + M, and

D' = k[x,y]ix¡y)n V2 = k + M. Thus, D' is integral over D and R$D'M = D'.

Therefore D is generalized F-Krull. However, Mis not a minimal prime ideal of D

since M is not a minimal prime of D'. Note also that no two of the rings F, Vu V2

have a common overring < K.

The following example is taken from [13]. It justifies the hypothesis that D' is

integral over D in our results on "F and the F¡ noetherian imply D is noetherian".

2.15. Example of a domain D = R n V with R and V noetherian, V centered on a

maximal ideal of D, R and V having no common overring < K, and yet such that

D' = R n V is not integral over D. Hence, by 2.1, D is not noetherian. Let A: be a

field, and let x, y be indeterminates over k; let R = k[x, y, x/y] and let Vy be the

y-adic valuation ring of k(x, y). Note that Vy = k(x) + M, where M is the maximal

ideal of Vy. Let F= k(£) + M, where £ is chosen by means of the following lemma.

Lemma. There exists £e k(x)\k such that k(Ç) n k[x] = k.

We shall delay proving the lemma and proceed with the example.

Let D = Rn V, and let D' = Rn Vy. (Note that Vy=V.) Claim: D' = k[x,y].

For, the essential valuations of k[x, y] are exactly the />-adics, where p is an irre-

ducible polynomial in k[x,y\. Therefore k[x, y] = C\ Vp, where Vp denotes the

/>-adic valuation ring. But the only Vp which does not contain F is Vy. Therefore

R n F¡,<=n Vp = k[x,y\. This proves the claim.
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Now let £ denote the ideal yk[x,y]. Then D = Rn V=k[x,y] n V=k[x,y]

n(k(0 + M) = (k[x]+P) n (k(£) + M) = (k[x] n k(0)+P=k+P, and D' is cer-

tainly not integral over D since both y- D' and (x, y)D' lie over £; hence, by 2.1,

£> is not noetherian.

We note that £ is not minimal since, for example, {fy-(x+y) \fe k[x, y]} is

easily seen to be a prime ideal of D which is <£. Also, R is not flat over £', since

(x,y)R^R and R<^D[xy), and hence £ is a fortiori not flat over D.

Proof of the above lemma. Let £ = (x2+ l)/x=l/x+x. Then x is a root of Z2

— fZ+1, so [k(x):k(£)] = 2. Let W' denote the 1/x-adic valuation ring of k(x) sind

IF the x-adic valuation ring of k(x). IF and W' are then conjugates over k(£) sind

hence Wn k(0= W n k({). But

k[x] = (\{Wa\ Wais si valuation ring of k(x) over k distinct from W'}.

Hence each valuation ring of k($) over k is dominated by some Wa. Thus

k[x]nk(0 = (naWa)nk($) = k.
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