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SUBHARMONIC FUNCTIONS IN CERTAIN REGIONS

BY

JOHN L. LEWIS

Abstract. In a recent paper Hellsten, Kjellberg, and Norstad considered bounded

subharmonic functions u in \z\ < 1 which satisfy a certain inequality. They obtained

an exact upper bound for the maximum modulus of u. We first show that this bound

still holds when u satisfies less restrictive hypotheses. We then give an application of

this result.

1. Introduction.    Let «a 1 be subharmonic in {|z| < 1} and put

m(r) = m(r, u) =  inf u(z),       M(r) = M(r, u) = max u(z)
|2| = r 1*1 »r

when 0<r< 1. Recently, Hellsten, Kjellberg, and Norstad [6] have shown that the

condition

(1.1) m(r) ^ cos ttA Af (r),

where A is a fixed number in (0, 1) and r is arbitrary subject to 0<r< 1, imposes a

restriction upon the growth of M(r). In fact they proved the following theorem.

Theorem A. Let «a 1 be subharmonic in \z\ < 1. Let X be a fixed number in (0, 1)

and suppose that condition (1.1) is satisfied for 0<r< 1. Then there is an extremal

subharmonic function

U(z) = Re j- tan y I   —l_¡2      dt j-,        |arg z| ^ tt,

for which (1.1) AoWi with equality and such that

(i) M(r)ál/(r)^^

where the constant is best possible.

We shall consider a condition of type (1.1) under less restrictive hypotheses on u.

To this end, let £2 denote a region contained in |z| < 1, and suppose that

(1.2) bdün{|z| = r} ¿ 0

when 0<r< 1. Here bd Q denotes the boundary of Q. Let u^ 1 be subharmonic on

Q. and put M(r) = M(r, «) = supu,=r u(z), M(r)+ =max {Af(r), 0}, when 0<r<l.
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Given £ e bd Cl, we write, as in Beurling(see [1, p. 22, b]), W(Ç) = \im sup^j u(z).

Furthermore, if lim2^t u(z) exists, we shall denote this limit by u"(£).

Finally, suppose that u satisfies the condition

(1.3) u-(Q^cosnXM+(\t\),

when £ e bd Q. and 0< |£| < 1. Here (1.3) corresponds to (1.1). Under this assump-

tion we have

Theorem 1. Let u^l be subharmonic in O. Let X be a fixed number in (0, 1) and

suppose that usatisfies (1.3)for each £ in bdfín{0< |z| < 1}. Then (i) is true whenever

0<r<l.

Here we remark that the connectivity of O is used in the proof of Theorem 1 only

to insure that O n {|z|=r}^0, 0<r< 1.

Hence Theorem 1 is valid for any open set Í2 which satisfies (1.2) and the above

condition. We shall use this remark in §6.

Now let G denote an unbounded region in the complex plane (C) and suppose

that condition (1.2) with Q = G is satisfied whenever 0^r<oo. In case

G = C—( —co, 0], we shall denote this region by K.

Let h be subharmonic in G and satisfy condition (1.3) with u~h whenever

£ e bd G and 0< |£| < +00. In addition we assume that A"* < +co at each finite

boundary point of G. Then as a consequence of Theorem 1 we have

Theorem 2. Iff) < X < 1, and if h satisfies the above hypotheses, then either h SO or

lim,..,«, M(r)/rx exists as a strictly positive or infinite limit.

We note that Heins [5] proved Theorem 2 for the special case X=\. He also

showed fora general G that if A ¿0, then limr-.00 M(r)/r112 may not exist. However,

if G = K and A^O, then Heins (see [4, pp. 111-114]) proved that limr^œ M(r)/r112

= 0.

We shall consider this question for 0< A< 1. More specifically, let A satisfy the

hypotheses of Theorem 2,G = K, and suppose that A ̂ 0. Then if^^ A< 1, it follows

from Hein's Theorem that lim^«, M(r)/rA = 0, since M(r)/rll2SM(r)/rAS0, for

r>l. However, if 0<A<^, then lim^«, M(r)/rA may not exist, as we show in §7.

Finally, let A satisfy the hypotheses of Theorem 2, except for (1.3), and suppose

that A(z0) > 0 for some z0 e Í2. In addition assume that

(1.4) A-(£) ¿ cos 77A M(|£|)

when £ ebd Q. and 0< |£| <oo. Then if 0< A<^, we see since cos ttA^O, that (1.4)

implies (1.3). Hence by Theorem 2, lim,...«, M(r)/rÄ>0. On the other hand, if

■|< A< 1, then (1.4) is weaker than (1.3), and limbec M(r)/rx may not exist (see §8).

However, if G is suitably restricted, then the conclusion of Theorem 2 is valid under

the weaker assumption (1.4) (see §9).
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2. Proof of Theorem 1. The following lemma will play a fundamental role in

our proof of Theorem 1.

Lemma 1. Let u and Q. satisfy the hypotheses of Theorem 1. Then M(r) +

= max {Af (r), 0} is a nondecreasing convex function of log r on (0, 1).

Proof. First suppose that \^X<1. Then since cos -ttA^O, we see from (1.3) that

u+ =max {u, 0} has a subharmonic extension to |z| < 1. Hence in this case Lemma 1

is true.

We now prove Lemma 1 for 0 < A < %. We proceed by showing

(a) Af(r)+ is nondecreasing,

(b) Af(r)+ is continuous on the right,

(c) Af(r)+ is convex in log r.

Let 0</<l and let Qt = {|z| <t} n D. Let C=supzen¡ u(z) and put C +

= max {C, 0}. We claim that

(2.1) u(z) ^ max {cos ttXC + , M(t)+},       z e Qt.

Indeed, if t, e bd üt n bd Q. and £^0, then

(u\n(0y í (u(0y ¿ costtAA/(|£|)+ ^ max{cos77AC + , Af(/)+},

thanks to (1.3) and the fact that costtAïîO. Moreover, since u is upper semi-

continuous on Q, we have u^\Qt(Q^u(Q^M(t)+ when £ e O n bd 0(. Using

these facts and the Phragmén-Lindelof Maximum Principle (see Heins [4, p. 76]),

we see that (2.1) is true. Hence, if 0<s<r< 1, then

Af(i) S C ^ max (cos 77A C+, Af(i)+},

and so M(s)+ ^M(t) + . This completes the proof of (a).

To prove (b), let ä e (0, 1) and note that

(2.2) Af(í) ^  lim M(r) + = d.
r->s +

If C!=0, then (b) is trivially true. Hence we assume that Cx>0. In this case there

exists a sequence (zn)f, where |zn|>5 and zneQ, such that M(zn) = Af(|zn|),

limn-,0, zn = z, and |z| =s, as we see from the inequality:

M-(0^cos7rAA/(|£|)+ < A/(K|),

which is valid for £ e bd O and s < |£| < 1. Moreover, z is in Í2, since otherwise

(1.3) would be contradicted.

Using the above facts and the upper semicontinuity of u at z, we obtain u(z)

^lim,,^ w(zn) = C1; and hence, M(s)^C,. Since by (2.2) we have Af(j)gCi,

it follows that Af(5) = C, and thereupon that (b) is true.

To prove (c), let 0 < 5 < 1 and suppose that Af(j)>0. We assert that

(2.3) lim M(ry > cos 77A Af (s).
T-*S~
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Before we prove this assertion, let us use (2.3) to prove (c): Using (2.3), (a), and

(b), we see there exist ru r2 such that 0<r1<j<r2<l and

(2.4) M(rx) > cos nX M(r2).

Let v(z) = u(z) — cos nX M(r2), rx < |z| <r2. Then

ir(£) = M-*(£)-cos7rAM(A-2) ^ cos ttA (M(|£|)-M(/2)) g 0

when £ e bd £2 and rx < |£| <r2. Here we have used (1.3) and (a).

The above inequality implies that v+ = max {v, 0} has a subharmonic extension to

the annulus {rx < \z\ <r2}. Hence M(r, v + ) is a convex function of log r on (rx, r2).

Since by (a) and (2.4) we have

M(r, v) = M(r, u) — cos nX M(r2, u) ä M(rx, u) — cos nX M(r2, u) > 0,

it follows that M(r, u) is convex in log r on (r1( r2). Using this fact, (a), and (b),

we deduce that (c) is true.

The proof of Lemma 1 for 0< A<^ is now complete, save for (2.3) which we

treat as follows: Choose z,eO such that |z0| —s and u(z0) = M(s). This choice is

possible since M(s)>0 and u satisfies (1.3). Let e>0 be a small positive number

and let z0 + e exp (i9x), z0 + eexp(id2) denote the points of intersection of the

circle {|z-z0|=e} with the circle {|z|=s}. We assume, as we may, that 0<o1<f?2

<2nand{z0 + eeie : 9xú9^92}c{\z\^s}.

We observe that 92 — 9x -> rr as e ->- 0. Using this observation we obtain, if (2.3)

is false,

1   f2"
M(s) = u(z0) S ¿-        u(z0 + eew) d9

¿n J0

= i-       u(z0 + eeie) d9 + ^-\ u(z0 + ee<°) d9
¿rr Je¡ ¿7T Je2

S COS ttA M(S)(92- 9x)/2n + M(s + e)(2n+ 9x- 92)/2n

->((l+cosnX)/2)M(s),

as s->0. We have reached a contradiction since M(s)>0. Hence (2.3) is true.

3. An associated function. To continue the proof of Theorem 1, we assume, as

we may, that equality does not occur in (1.3), since otherwise we consider u — e

for small e > 0.

In view of (1.3) we see that if M(/o)>0, 0<r0< 1, then u assumes its maximum

at a point z0 = r0 exp (i90) in fí. Then for fixed r0 we may assume that r0 e ß and

(3.1) «Co) = M(r0),

since otherwise we put

Ü.X — {z : z exp (i90) e Q},       Ux(z) = u(z exp (/#0))>    z e Í21;

and consider ux.
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We proceed under these assumptions. Let v be defined in {|z| < 1} —{0} by

v(z) = max {(I +cos ttX)M(\z\) + , u(z) + u(-z)}

when z and —z are in Í2, and by ü(z) = (1+cos 7rA)M(|z|) + , otherwise. We assert

that v is subharmonic in {|z| < 1} —{0}. To verify this assertion note that, by Lemma

1, Af(|z|)+ is subharmonic in {|z| < 1} —{0}. Hence if z0 ^ £2 u bd Q or if z0 and

— z0 are in Q, then v is subharmonic at z0.

If z0ebd £¿-{0}, then from (1.3) and Lemma 1 we deduce for s>0 and small

that u(z)< cos 77A Af(|z|)+ whenz e Q n {|z —z0| <s}. It follows from this inequality

that v(z) = (l +cos 7rA)M(|z|) + , |z-z0| < s. Hence in this case v is subharmonic at z0.

A similar argument applies if -z0 £ £2. Hence in all cases v is subharmonic at z0

in{|z|<l}-{0}.

Next, we observe, since v is bounded, that v has a subharmonic extension to

{|z|< 1}. Indeed, if A is the least harmonic majorant of v in {|z| <r}-{0}, 0<r<l

(see Heins [4, p. 90, ex. 4]), then

»-(0) ¿ A-(0) = ¿- f* v(rew)
2tt Jo

d6.

We shall also denote this extension by v.

4. A maximum principle.   Since vi2 and v is subharmonic in |z| < 1, v can be

written in the form (see Tsuji [8, IV. 10])

where

and

v(z) = vx(z) + v2(z),

z-l
Vi(z) = log

J|tl<l
dv*X)

v2(z) = 2-
277 J-,

ew + z
Re -r^- da(6).

Here p is the Riesz mass associated with v, and ce is a nondecreasing function on

[ — 77,77] which is continuous on the right and satisfies a(-77) = 0. — vl is a Green's

potential, and v2 is the least harmonic majorant of v in {|z| < 1}.

Since v(z) = v(—z), we have

v(z) =
v(z) + v( — z)

Let

-if       log
z JlCKl

v*(z) -If       log

z2-£2

l-£2z2

z2-|£|2

l-|£|V

1   [■"        e2ie-\-z2
dp.(i) + 2-T^_Key^2da(6).

dKO + 2-^-Re SJ"/«»
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We note that

(4.1) v*(±r) S m(r, v) á M(r, v) á v*(±ir),

for 0<r< 1, as is easily verified using the inequalities:

[May

ICI5

and

l-|£|2|z|2

1-lzl2

l + \z\
< Re

Let /={z :. Imz>0}n{|z|<l} and H={z : Rez>0} n {|z| < 1}. Let w be the

bounded harmonic function in / which has boundary values

w"(±r) = (l+cosnX)M(r, w) + ,       0 < r < 1,

w"(eie) = 2, 0 < \9\ < n.

Using (4.1) we find that

v*(±r) ^ m(r,v) = (I + cos nX)M(r,u)+ = w"(±r)

when 0<r< 1. Since v*^2, it follows that v*\¡Sw and so by (4.1) we have

(4.2) v(ir) ^ v*(ir) ^ w(ir),       0 < r < 1.

We now introduce the function v defined in {|z| < 1} —{0} by

v(z) = max {(1 -feos 7rA)M(|z|, u)+, u(z) + u(z)}

when z and z are in D, and by

V(z) = (l+COS7rA)M(|z|,M) +

otherwise. We verify in the same way as for v that v is subharmonic in {|z| < 1} —{0}.

Let Wx be the bounded harmonic function in H with boundary values Wx"(±ir)

= w(ir), 0<r<l, and w"(eie) = 2,  |0|<tt/2. Since v(±ir) = v(±ir), 0<r<l, it

follows from (4.2) that v\HSwx- Hence by (3.1) we have

(4.3) v(r0) = 2u(r0) = 2M(ra) S Wx(r0).

5. An integral inequality.    We now proceed as in Hellsten, Kjellberg, and

Norstad [6], and Essén (see [3, p. 333]).

Using the Poisson Integral Formula for / we find for 0 < t < 1 that

(5.1)

where

and

{it) = (1 -feos ttA) Í M (s, u) + K(t, s) ds + h(t),

K(t,s) = (2t/n){ll(t2 + s2)-l/(l+t2s2)}

h(t) = (S/^tan-1^)-
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Likewise,

(5.2) w,(r) = f w(it)K(r, t) dt + h(r),

when 0 < r < 1.

Inserting (5.1) into (5.2) and interchanging the order of integration, we get

WiOO = 0 +cos ^A)     M(s, u)+L(r, s) ds+p(r) + h(r).

Here L(r,s) = yoK(r,t)K(t,s)dt and p(r) = P0h(t)K(r, t) dt,  0<r<l.   Finally,

using (4.3) we obtain

(5.3) 2A/(/o)+ ^ (1 +cos 77A) Ç M(s)+L(r0, s) ds+p(r0) + h(r0).

The above inequality was obtained under the assumption that Af(r0)>0.

However, (5.3) is still valid if Af(r0)^0, since the right-hand side is always non-

negative. Hence (5.3) is true whenever 0<r0< 1.

(5.3) implies (see Hellsten, Kjellberg, and Norstad [6]) that

(5.4) M(r0)^[/W^rS.

Here U is defined as in Theorem A. Since r0 is arbitrary subject to 0<r0< 1, the

proof of Theorem 1 is complete.

6. Proof of Theorem 2. We now turn to the proof of Theorem 2. Let A and G

be as in the statement of this theorem. We assume that A(zo)>0 for some z0 e G,

since otherwise there is nothing to prove. Let |z0| <R< +ooandputa = supU|SBA(z)

> 0. Let

O = {z : Rz e G} n {|z| < 1},       u(z) = h(Rz)/a,   z e £2.

We wish to apply Lemma 1 and Theorem 1 even though our present £2 need not

be a region. To justify this application, we observe that £2 satisfies (1.2) and the

condition Qn{|z|=r}/0,O<r<l. It now follows from the remark after Theorem

1 that we may apply Lemma 1 and Theorem 1.

In view of Lemma 1 we see that M(r,u)+=M(rR,h) + /a is a nondecreasing

convex function of log r on (0, 1). Since R is arbitrary subject to |z0| <R< +oo,

it follows that a = M(R, A). Using this fact and applying Theorem 1, we obtain

M(ru)     M(rR,h) ^tan^Xß)
K'   '      M(R,h) -     ttX/2        '

for 0 < r < 1. Hence,
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Letting R—> +co through a suitable sequence in (6.1), we obtain

M(r, A)      tan (nX/2) M(R, A)

rÀ      =      ttA/2     T.«        /?A

Let A = lim infB_„„ M(R, h)/RA. Since A(zo)>0, the above inequality implies 0<A.

If 6=+co, then Theorem 2 is trivially true. Hence, we assume that b< -foo.

Under this assumption, we obtain, by letting r -* +co through a suitable sequence

in (6.1), that

M(r,h) ^ t*n(nX\2)b
hm sup-1— á-V?^- < +00.

r-.co rA -n-A/2

To complete the proof of Theorem 2, we argue as in Essén (see [3, (3.4)]). Let

r0R = x and Rs=y. Changing variables in (5.3) we find that

2M(x, A)      1 +cos ttAM^MïPMMÛM(R, A) = RM(R,

Multiplying this expression by x~kM(R, A)/2, we get

M(x, h) ^ (1+costtA) f«M(y,hy My\*L(x/R,y/Ry\ ^

+ (x~ÁM(R, h)l2)[p(x/R) + h(x/R)].

The second term on the right-hand side of this inequality approaches zero as

R -> -foo, since lim sup,...«, M(r, h)/rx< +co. Using this fact and letting R -> +co

in the above inequality, we obtain

ftísr«fc,)ír,
x Joy

where

= (2(1+COS7rA)/7r2)(v7x)*X log (*/>>)

This integral inequality implies by Essén [2] or Kjellberg (see [7, (18)]) that

lim^œ M(r, h)/rx exists. Since 0<b< +oo, we conclude that this limit is positive.

7. Remark.    Let 0 < A < \, G = K= C- (- co, 0], and suppose that A ̂  0. In this

case limr-00 M(r, h)/rK may not exist, as we shall show by giving an example.

Let /be an entire function with negative real zeros for which

/-, ,x ,-    ■ clog M(r,f)      .. log M(r,f)
(7.1) hm inf   5   2AV  J ' < hm sup    s   2¿  ^ ' < +oo.

r-»co /* r-*oo r

Since/has order <1, it follows by the Hadamard Factorization Theorem that

f(z) = ïlî (1 +z/rn), z e C, where 0<rn^rn + 1.

From the above expression for/we see that 1 S |/0'|z|)| ^ |/(z)|, Re z^O. Using

this inequality and letting A(z)= -log |/(z1,2)|, z e K, we find that A^0 and M(r, A)

=AM( —r). Hence (1.3) with u = h is trivially true.
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It is easily shown by a Phragmén-Lindelof type argument that

M(r, A)      ..    h^(-r) t.      ..    h(r)
—^—^ = hm —4—- = a, then lim —

r-.cc r r-»oo r r-*oo
(*) If lim —+f—- = lim-t— = a, then lim -

rA       cos ttA

Since A(/)= -log M(r1,2,f), 0<r<oo, and/satisfies (7.1), we conclude from the

contrapositive of (*) that limr_ „ M(r, h)/rA does not exist.

8. Remark. Let -| < A < 1 and suppose that A satisfies the hypotheses of Theorem

2, save for (1.3). In addition assume that A satisfies (1.4) when £ e bd D and 0< |£|

<co. Then in this case lim^» M(r)/rÄ may not exist, as we show in the following

example :

Let n be a nonnegative integer and put

an = {2neie : 10| ¡S tt/2} if n is even,

= {2 V : 77/2 Ú \B\ é 77}   if« is odd.

Let#n = {|z|=2n}-aB. We define con C-IJ?{±i2n}by

(a) v is continuous in C— Uñ°=o {±i2n},

(b) v(z) =-2n cos 77A, z e an - {± i2n},

(c) v(z)=-2n,zeâ§n,

(d) v is harmonic and bounded in {2n< \z\ <2n + 1} and in {|z| < 1}.

From the definition of v we see that

n + l(l+cos77A)2
y(z) + /j(-z) = -i-j—2-log .(i+^2Mog

log 2

2nH

z

2n < \z\ < 2n + 1.

Since v(z) = v(z), it follows that

(8.1) 4±'I*D = ^N)+2«<"/|z|) è -(l+cos77A)2" > -2»

when 2n<|z|<2" + 1.

We shall use (8.1) to show that if z0 e 3Sn, then v is subharmonic at z0. To show

this, let En be the component of {2n< \z\ <2n + 1}-{Re z=0} for which ^n<=bd En.

Then by (8.1) we see that v^ -2n on bd En-{± i'2n, ±/'2n + 1}, and so v^ -2n'mEn.

Since t'a -2", |z| ^2n, it follows that v is subharmonic at z0 eá?„.

Let /) = C- {(Jo° «n u [—1)0]} and put t/ = v\D. We wish to construct a subregion

G of D such that bd G n {|z| = r}^0, 0^r< +00, and for which A = h|g satisfies

(1.4).
To construct this region we first observe that

(8.2) u(z) < costtXu(-z),       2" < |z| < 2n+1.

This observation is verified by comparing the boundary values of both functions
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in {2n< \z\ <2n + 1}. Using (8.2) and the continuity of M(r, u) on (2n, 2n+1) we see,

if2n<|z|<2" + 1 and u(-z0) = M(\z0\,u), that

(8.3) u(z) < cos7tAM(|z|,m)

when |z — z0| <s and s>0 is small.

The projection on the positive real axis of disks of this type covers any compact

subset of (2n, 2n + 1). Hence, if e>0 is small, there exists a positive integer k and

complex numbers z¡, z[ (l^i^k) such that

(a) |z1|=2n + £; and |zi|=2n + 1-e,

(b) |z,|<|z¡|'=|zí+1|,

(c) the line segment connecting z¡ to z[ is contained in {2"< |z| <2n + 1} and u

satisfies (8.3) on it.

Moreover, if e is small enough, there exists z0 e ¿%n and z¿ + 1 e J"n + 1 such that u

satisfies (8.3) when

ze({|z-z0| < 2£}u{|z-z¿ + 1| < 2£})n{2n < \z\ < 2n + 1}.

We choose points z0 and zk + 1 in the above sets such that \z'0\ =2" + e and |zfc + 1|

= 2n + 1 — e. Then u satisfies (8.3) on the line segments connecting z¡ to z[ (0 g i ̂  k +1).

We remove these segments from D.

If this process is carried out in each annulus, then the resulting region G satisfies

bd G n {|z| =r}/0, 0^r<+oo. Moreover, it follows that h = u\G satisfies (1.4)

whenever 0< |£| < +co.

Now M(2n, A)= -2n, and limr^2" M(r, h)= -2n cos ttA. Hence,

..    . eM(r,h)     .. M(r,h)       .
— oo = hm inf —^—- < hm sup —^—- = + co.

r-»co f r-+ao f

9. Remark. The preceding example shows for 4 < A < 1 that we may not replace

(1.3) in Theorem 2 by (1.4). However, if in addition to (1.2), G satisfies

(*)      bd G n {|z| = r) has Lebesgue angular measure zero for 0 < r < co,

then the conclusion of Theorem 2 is still valid under the weaker assumption (1.4).

The proof is essentially the same. Here (*) enables us to prove Lemma 1. The rest

of the proof is then unaltered. We omit the details.

Finally, we express our thanks to Professor Bo Kjellberg for several helpful

criticisms of this paper.
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