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OSCILLATION AND NONOSCILLATION OF SOLUTIONS
OF GENERALIZED EMDEN-FOWLER EQUATIONS

BY

C. V. COFFMANO AND J. S. W. WONG

Abstract. This paper treats the ordinary differential equation y"+yF(y2, x) = 0,

x>0, where yF(y2, x) is continuous in (y, x) for x>0, |j>|<cc, and F(t,x) is non-

negative; the equation is assumed to be either of sublinear or superlinear type.

Criteria are given for the equation to be oscillatory, to be nonoscillatory, to possess

oscillatory solutions or to possess nonoscillatory solutions. An attempt has been

made to unify the methods of treatment of the sublinear and superlinear cases. These

methods consist primarily of comparison with linear equations and the use of

"energy" functions. An Appendix treats the questions of continuability and unique-

ness of solutions of the equation considered in the main text.

1. Introduction.    We  are  here  concerned  with  the  oscillatory  behavior  of

solutions of second order nonlinear ordinary differential equations of the form

(1) y"+yF(y2,x) = 0,       x > 0,

where yF(y2, x) is continuous for x>0 and \y\ <co, and F(t, x) is nonnegative

for x>0 sind />0. The prototype of equation (1) is the following:

(2) y"+q(x)\y\vsgny = 0,       x > 0,

where q(x) S 0 and y > 0. Both equations ( 1 ) and (2) include the so called " Emden-

Fowler equation":

y" + x"\y\y sgny = 0,       x > 0,

where y>0 and a is real. In the discussion to follow, it is convenient to classify

equation (1) according to the nonlinearity of F, namely (1) is in the superlinear

case if F(t, x) is monotone increasing in / for every x and similarly it is in the

sublinear case if F(t, x) is monotone decreasing in / for every x. In §2, we also

introduce weaker notions of super and sublinearity, which play an important role

in the oscillation and nonoscillation of solutions of equation (1).

A nontrivial solution of (1) is said to be nonoscillatory if, for every a>0, the
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number of its zeros in [a, co) is finite, and it is said to be oscillatory otherwise.

Unlike the linear equation, where the function F(t, x) is independent of t, the non-

linear equation may possess solutions of either kind. In view of this, one is led to

consider the following types of oscillation and nonoscillation conditions, namely,

those which guarantee that all solutions of (1) oscillate and its converse, i.e. the

existence of one nonoscillatory solution, and those which guarantee that all

solutions of (1) do not oscillate and its converse, i.e. the existence of one oscil-

latory solution. The first type of oscillation and nonoscillation conditions have

been the centre of a considerable amount of research and there are a number of

results in this direction for equation (1) or similar equations. We refer the reader

to Wong [15] for an expository account of this subject and for other related refer-

ences. Results of the second type may also be found in Atkinson [1], Wong [14],

Macki and Wong [10], Heidel [6] and others. However, in contrast to results of

the first type, these results are not sharp when applied to the Emden-Fowler

equation. Sharp results have been found recently for equation (2) when y>l

by Jasny [7] and Kurzweil [9] for the existence of one oscillatory solution and by

Kiguradze [8] and Nehari [13] for nonoscillation. In the sublinear case when y<\,

Belohorec [2] has obtained results in both directions. For the more general equa-

tion (1), in the superlinear case, a study was initiated in Nehari [13] and continued

in Coffman and Wong [3], but as far as we know the corresponding sublinear case

has not been investigated.

In the present work, we attempt to present a unified treatment for the study of

this specific oscillation problem of second type both in the sublinear and the

superlinear case. At the same time, we initiate a systematic investigation in the use

of Lyapunov-like functions to study oscillation and nonoscillation problems con-

cerning second order nonlinear equations. In the Appendix, we further this approach

by showing how it may be used in the study of the continuability problem and the

uniqueness of the zero solution. This technique was first introduced by Coffman

and Wong [3] for a special case of equation (1) and was suggested by some in-

genious differential identities and inequalities used by Nehari in [13]. The main

results, too detailed to describe here, include oscillation and nonoscillation theorems

for both of the two classes of equation (1) and contain as special cases all of the

results cited above. In fact, in the process of this generalization, we not only

achieve a certain degree of simplification but also discover improved versions of

earlier results even in the simple case of equation (2). For example, Corollary 2

and Corollary 5 improve the results of Belohorec [2] for equation (2) when y< 1,

Corollary 10 refines the result by Jasny [7] and Kurzweil [9] for equation (2) when

y> 1, and Proposition (*) extends a well-known result of Nehari for equation (1)

in the superlinear case.

In most of the analysis concerning oscillation of solutions of nonlinear equations,

it is often assumed that every locally defined solution of (1) is continuously ex-

tendable throughout the entire nonnegative real axis. We have included in this
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paper an Appendix which we hope presents an up-to-date discussion of the con-

tinuability problem as well as the problem of local uniqueness of the zero solution.

The results presented in the Appendix are used throughout this paper and seem to

be of independent interest in themselves.

Finally, we remark that preliminary versions of some of the results given below

were announced earlier in [4].

2. Preliminaries. In this section we introduce some notation, formalize usage

of certain terminology, and discuss general properties of equation (1).

We assume here that F(t, x) is continuous and nonnegative for /, x > 0, and that

yF(y2, x) can be defined as a continuous function for x>0, \y\ <oo. These con-

ditions suffice for local existence of solutions of the initial value problem

(3) y(xx) = a,      y'(xx) = b,      xx > 0,

for (1).

A solution of (1) is understood to be a C2 function satisfying (1) and defined on

a right maximal interval of existence. The term "local solution" will be used to

refer to a solution not necessarily defined on a right maximal interval of existence.

The term "oscillatory" will be used in the sense of oscillatory on the right, i.e. a

solution of (1) is oscillatory if its zeros have a right cluster point, and non-

oscillatory otherwise. A cluster point of zeros of a solution of (1) can occur in the

interior of its interval of definition, thus a nonoscillatory solution may possess a

left continuation which is oscillatory. Finally we remark that any solution with a

bounded right maximal interval of existence is necessarily oscillatory. (Cf. Lemma

Al in the Appendix.)

Concerning the classification of equation (1) as superlinear or sublinear, (1)

should, strictly speaking, be called superlinear only if F satisfies

(4) F(/2, x) ä F(tx, x),       t2 > tx,       x e (0, oo),

and sublinear only if F satisfies

(5) F(/2, x) ^ F(tx, x),       t2 > tx,       xe (0, oo).

Here we use these terms somewhat more loosely and refer to (1) as superlinear or

sublinear respectively if the coefficient satisfies some weaker condition than (4)

or (5) under which the typical oscillation or nonoscillation properties of the

strictly sublinear or superlinear equation are preserved. Such a condition of

generalized superlinearity is

(6) G(t, x) ^ KtF(t, x),       K > 0,    0 ^ / < oo,   0 < x < oo;

the analogous condition of generalized sublinearity is

(7) G(t, x) ä KtF(t, x),       K > 0,   0 <, t < oo,   0 < x < oo.

Here

(8) G(t, x) = [ F(s, x)ds = l[   sF(s2, x) ds.
Jo Jo
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(The assumptions made above concerning F(t, x) clearly imply that G(t, x) is well

defined.) Another condition of superlinearity, intermediate between (4) and (6), is

(9) F(t2, x) ^ cF(tu x),       c > 0,    t2 > tu   0 < x < oo.

Reversing the inequality in (9), we obtain a condition of sublinearity intermediate

between (5) and (7), namely,

(10) F(t2, x) á cF(ti, x),       c > 0,    ra > h,   0 < x < oo.

We note that (4) and (5) both are satisfied by the linear equation (1), and the

overlap of (6) and (7) is even greater. In fact (6) and (7) are both satisfied by (2)

for all y>0. Proper sublinearity, for example, which rules out even the linear

equation, is obtained by simultaneously requiring (7), (23) and (30).

A further word may be appropriate here concerning the pathologies which

solutions of (1) can exhibit. The two major problems are those of global existence

and of uniqueness. The former problem arises primarily in the superlinear case,

the latter primarily in the sublinear case. In fact, as we shall prove in the Appendix,

in the sublinear case, under assumption (5) or under the weaker assumption (10),

all solutions of (1) will have an unbounded right maximal interval of existence.

This is probably not true if we assume only (7) and is certainly false in the super-

linear case, as is well known.

Nonuniqueness can arise due to the fact that we have not assumed a Lipschitz

condition on F. For the superlinear case this difficulty could easily be eliminated

by imposing a locally uniform Lipschitz condition in t, however, in the sublinear

case, in order to avoid ruling out the equation (2) (with 0<y< 1) the most that we

can assume is that F(t, x) satisfies a local Lipschitz condition in t for all x but only

for t > 0. In the presence of this latter assumption we will still be confronted with

the possibility of nonuniqueness of solutions of the initial value problem (3) for (1)

when a=0. A more detailed analysis of these problems will be given in the

Appendix.

An important technique in the analysis to follow is the rather simple one of

comparing equation (1), "along a solution", with a nonoscillatory linear equation

(11) z"+p(x)z = 0,

or with an oscillatory linear equation

(12) u" + r(x)u = 0,

where p(x) and r(x) are positive and continuous on (0, oo). The following results

are obtained as elementary consequences of the Sturm comparison theorem. We

assume below that equation (12) is oscillatory and that equation (11) is non-

oscillatory.
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Lemma 1. Let y(x) be a nonoscillatory solution of (I). Then

liminf(r(x))-1FG*(jc),x) ú 1,
x-*oo

and in fact, there exists an infinite sequence {£„} with Çn -> co as n -> co such that

for alln=l, 2,...

(rd^^FiAU ín) Ú 1.

Lemma 2. Let y(x) be a solution of (I), fffor some x0 = 0,

F(y2(x), x) ^ p(x),       x0 ^ x < D,

then y(x) is nonoscillatory.

Lemma 3. Let y(x) be a solution of (I). If for some xQ>0,

F(y\x), x) ^ r(x),       x0 S x < D,

then y(x) is oscillatory.

In Lemmas 2 and 3, Q. = Q.(y) denotes the right endpoint of the right maximal

interval of existence of the solution y(x) of (1).

Even more basic to this work than the comparison technique described above is

the use of certain Lyapunov type energy functions which are defined for solutions

of (1) in terms of certain sufficiently smooth auxiliary functions co and </>. Let y(x)

be a solution of (1); we define Y,Xg(x)=TiXo(x, y(x)) by

2ZXo(x) = cW - fy)2(x) - T (#' - f>0>2)' dx
(13) Jxc

+ a>2M"y2(x) + o>2</J2G(y2,x).

For y as above, and for a fixed choice of x0, cü and </<, we will refer to ZXo(x) as

"the energy function for y". We remark that the "natural" energy function for a

solution of (1) is obtained by taking oj(x)=ip(x)=l. The introduction of the

auxiliary functions cu and if> serves in place of a change of dependent and inde-

pendent variable in equation (1).

Lemma 4. Let w and </> be positive on (0, oo) with w e C2(0, co), and >/> e C3(0, oo)

and let y be a solution of (I), (i) Ifoj2(x)<j>2(x)G(a<p2(x), x) is a nondecreasing function

of x for every a>0, then

(i4)    s^w-^w ^ \ £ w(rr+(^)'n"]y2 dX,   x2 ̂  Xl.

(ii) If w2(x)tf>2(x)G(a</>2(x), x) is a noninct easing function of x for every a>0, then

(15) ZXo(x2)-XXo(xx) ¿ \ £ [ojWT + (oj2)W]y2 dx,       x2 ^ *,.
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Proof. We assume first that Fis of class C1. Let y be any C2 function (not neces-

sarily a solution of (1)), then if ZXo(x) is defined by (13), Z'Xo(x) can be computed as

follows :

K0(x) = «•W-W+WÄ'
Hfm'oPV 8GWo, x)/do\a = (ylh2+-Q(y2, x),

where

(16) Q(y2, x) = (d/do)(w\oW(°)G(n°)(y(x)lKx))\ o))U*.

Using (8) and rearranging terms, we obtain

(17) S;0(x) = 2o?^y'-yy)(y°+yF(y\ x))+MrJT+MW+ß(/) x).

Suppose now that condition (i) holds, then Q(y2, x)^0, and thus an integration

of (17) yields

I.Xo(x2)--LXo(Xl) ̂ 2 \X2^4>W-4>'y)(f+yF(y\x))dx

(18)

+\\X2(o>WTH«>2)'W)y2dx.

This relation obviously is still valid when Fis not C1 as can be seen by approximat-

ing F (with o?(.v), ifi(x) and y(x) fixed) by smooth functions. Upon taking y to be a

solution of (1) the first assertion of the lemma follows. The second assertion is

proved similarly; note that condition (ii) implies Q(y2(x), x)^0.

3. An oscillation criterion for the sublinear case. We assume here that F in (1)

satisfies (7). We assume moreover, as in the previous section, that p(x) is positive

and continuous on (0, co), and that (11) is nonoscillatory.

Theorem 1. Assume that: there exists a X>0 such that

(19) z"+-(l + X)p(x)z = 0

is oscillatory; there exist positive functions co e C2(0, co), </i e C3(0, co), with i/> a

solution <?/(ll), and such that for x>0

(20) w'gO,

(21) w\^)m+ (w2)'W^0,

(22) -œ2W =poJ2i/ji^c1>0;

there exist M0, x0>0 such that

(23) F(t, x) è (1 + X')p(x), x>x0,t¿ MU2(x),

where A'^max (À, K'1 — 1) (K is the constant in (7)); the function oj2ifi2G(a2>p2, x)

is noninct-easing in x for every a>0.

Then (1) has oscillatory solutions.

Proof. Notice first that Lemma 4 and the hypothesis above imply that ^Xq(x)

is a nonincreasing function of x, for any solution y of (1). Let x0>0 and choose
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a solution y of (I) with y(x0)=0, (y'(x0))2 > cxMl(K(l + A') - 1)/oj2(x0)>/>2(x0). Such

a solution of (1) must satisfy

(24) y(x) ^ M0</>(x)   for x ^ x0.

To see this, suppose there exists Xx^x0 withy(xx) = M0ifi(xx), then, because of (13)

and (21), 2ZXo(xx)^aj2Wy2 + oj2<(,2G(y2, x). Using (7) and the fact that >fi satisfies

(11).

lZXo(xx) ̂  w2^y2(-p + KF(y2,x)) ^ o>2>/>2y2(-p + KF(MU2(xx),x))

^ co2ib2y2p(K(l + A') -1) S pMloj2^\K(l + A') -1)

^ M/02(F(1+A')-1).

However this implies

2ZXo(Xx) ̂ co2(x0W(xo)(y'(x0))2 = s,o(x0),

which is a contradiction, thus y satisfies (24). Now (24), (23) and Lemma 3 together

imply that y is an oscillatory solution.

If one chooses co(#)= 1, <¡>(x) = x112 and p(x) = l/(4x2), then (20), (21) and (22) are

satisfied and (19) is oscillatory for any A>0. More generally, we can take

(25) œ(x) = (logxY,

(26) t(x)=xll2(logx)-\

(27) p(x) = (l/4x2)(l -48(1 + â)(log x)-2).

If p is given by (27), then (19) will be oscillatory for every A>0, and (20) will

hold provided /xáO. For the above choice of w, x/i and p,

pœ2^ = i(iog;c)2«-M(l-48(l + 8)(logx)-2),

so that (22) will hold, at least for large x, provided p^28.

Finally a computation yields

w2(t2)m + (w2)'W

(27)
= x-2(logx)2»-2«-i(i(48-p)-28(l + 8)(2(28+l)-p)(logx)-2),

so that (21) will hold provided 48 < p. Thus if

(28) 28^p^O,
sind cu and </< are given by (25) and (26) respectively, then (20), (21) and (22) will

be satisfied. We thus have the following corollary to Theorem 1.

Corollary 1. Let p, 8 be real numbers satisfying (28). Assume that there exist

M0, x0>0 such that

(29) F(t, x) ä (l + A)/4x2,       x > x0,   t ^ M%x(logx)-20,

where A>F_1-1, and that the function x(log x)2(u~ö)G(a2x(log x)~2a, x) is non-

increasing in x for every a>0. Then (1) has oscillatory solutions.

Under the hypothesis of Theorem 1, equation (1) may or may not also have

nonoscillatory solutions. If (1) is linear, for example, then there are no nontrivial
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nonoscillatory solutions. The following result gives a condition not necessarily

inconsistent with the hypothesis of Theorem 1 under which (1) will possess non-

trivial nonoscillatory solutions.

Theorem 2. Let </> be positive on (0, co) and satisfy (11) and suppose that there

exist M!, x, > 0 such that

(30) Fit, x) ¿ p(x),       x > x„   t ^ M2>/>2(x).

Then (1) has nontrivial nonoscillatory solutions.

Proof. Choose y(xj ä Af 10(x1), (>#)'(*:i) > 0. Observe that

myim = -W+V)y = Mp~f) è o,

and thus (y/</>)'(x)^(y¡<f>)'(xx)>0, x^x1. Such a solution then satisfies y(x)

¡iM^x), for x^Xi, and consequently, by (30) and Lemma 2, y(x) is non-

oscillatory.

Remark 1. The hypothesis of Theorem 2 is sufficient to guarantee that all

solutions of (1) have an unbounded right maximal interval of existence. (See

Appendix.)

Applying Corollary 1 and Theorem 2 to equation (2) we obtain the following

result.

Corollary 2. Let 0<y<l, and let q(x)xly+3)l2(logx)ß be a noninci-easing

function of x with

(31) lim q(x)x***»\\o%xY = k > 0,
X-*<o

for some ß ¡S 0. Then (2) has oscillatory solutions as well as nontrivial nonoscillatory

solutions.

Proof. Equation (2) is a special case of (1) with

(32) F(t,x)=q(x)t^-1)l2, and

(33) G(t,x) = (2l(l+y))q(x)t« + 1»2.

The inequality (7) thus holds, in this case, with K=l. Now let p = 28 = 2ß/(l—y).

Then p. and 8 satisfy (28) and, for G(t, x) given by (33),

jcnogAO^-^GtcccOog x)-2\ x) = ¿■f + »l2(2l(l-T-y))q(x)x(y + 3)l2(logxy.

Moreover, for F(t, x) defined by (32) if t-¿ Mlx(logx)~26, then

F(t,x) ^ Ml^x^-1)l2(logx)ß ^ kMy^-2.

Thus if we take M0<(4k)lia~y\ then (29) will hold for some A>0. The existence

of oscillatory solutions of (2) follows from Corollary 1.

To prove the existence of nonoscillatory solutions of (2), choose, by (31), an

Xi>0 such that

q(x)x(y + 3)l2(log x)ß < 2k   for x ^ x*
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If x^Xx Sind t^M2xx(logx)-20 then

F(t,x) = q(x)t«~1)l2 ^ Mr'x^-^logxY

S 2kMxxx~2.

Thus if we choose Af1>(8/c:)1'(1~'',, then F will satisfy (30), with </> given by (26),

and the existence of nonoscillatory solutions of (2) follows from Theorem 2.

For |3 = 0 this result was proved by Belohorec [2].

4. A nonoscillation criterion in the sublinear case. Like the theorems in

§3, this result is also motivated by a theorem of Belohorec [2]. The extension in this

case seems somewhat deeper than that of Theorems 1 and 2.

Theorem 3. Let F(t, x) satisfy (5); assume that

(34) yxF(yl, x) Ú y2F(y\, x)   for y2 ä yx.

In addition to the hypothesis of Theorem 2, assume that t/i e C3(0, oo) satisfies

Ç*  dx
(35) cu(x) =      ,„. . -> oo   as x -*■ oo,

J   >l>(x)
and

(36) co2(./.2r + (cu2)'#" ä 0.

Moreover, assume that for every a>0, cu2i/>2G(a2</i2, x) is a nondecreasing function of

x, and that

(37) lim w24,2G(a24>2, x) = k(a) < oo.
X-»0O

Then equation (1) is nonoscillatory on [xb oo).

Proof. We observe first that if v is a solution of (1) then %Xo(x), defined by (13),

is a nondecreasing function of x. This follows from the assumption concerning G,

(36) and inequality (14) of Lemma 4.

We point out that, in view of the above observation, any possibility of patho-

logical behavior of solutions of (1) is completely ruled out under the hypothesis of

Theorem 3. Regarding the question of global existence, see Remark 1 following the

proof of Theorem 2. In fact, because of (30), the zeros of a solution y of (1) can

have a cluster point at x = a<oo only if

lim sup \y'(x)\ = 0,
X-*a

but in view of the nondecreasing character of 2, and because a is a right cluster

point of zeros of y, it is clear from (13) that this is impossible.

We shall now assume that there exists an oscillatory solution y(x) of (1) and

show that this assumption leads to a contradiction. If x\, Mx are as in Theorem 2,

and y is an oscillatory solution of (1), then there must exist an x2^Xx such that

(38) \y(x)\ g Mxt(x),       x ^ x2.
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For otherwise, since y is oscillatory, there would exist x3 ̂  xx with

(39) \y(x)\= M^x),   \(y/4>)'\ > 0,   atx = x3.

As the proof of Theorem 2 shows, a solution of (1) satisfying (39) could not change

sign for x^x3, and this contradicts the assumption that y is oscillatory.

We put

(40) r, = «#/-fy) = u^(ym\

and observe that since w2i/»/i"y2 = —pa>2i/j2y2f^Q, then in view of (13) and the non-

decreasing character of 2, r¡2(x)t2ZXQ(x) — co2i/¡2G(y2, x), for any x0>0. Since F is

positive, G is nondecreasing in its first argument, so by (38),

r,2(x) ^ 2ZX0(x)-co2rG(M2^2, X),        X ^ x2,

and finally, using (37) and the nondecreasing character of co2i/i2G(M2>/j2', x),

(41) r,2(x) ^ XXB(x)-k,       x ä x2,

where here and below, k = k(M\). For the oscillatory solution y, it follows from

Rolle's theorem and (40) that there exist arbitrarily large values of x for which

T¡(x) = 0. Thus from (41) and the nondecreasing character of S there follows, for

*o>0,

(42) 2Xo(x0) úk,       x^ x2.

Since 2ZXo(x0) = r¡2(x0), 2ZXo(x) ä 0 for x ^ x0, thus, as w2t/n/i"y2 S 0, we have, from (13),

T W-P'y)2(co2)'dx ^ Tf(x) + a>24>2G(y\x),
Jxo

for x^x0. Using (37) and (38) as before we obtain

(43) i* (íy'-t'y)2(oj2)' dx ¿ v2(x) + k,       x ^ x2,
Jxo

and finally, since a/ > 0, and since t¡ vanishes for certain arbitrarily large values of x,

(44) P OAv'-fjOW dx è k.
Jxo

We wish to show next that -q is bounded. From (13) and (40), using (42) and (43),

we obtain

v2(x) S 2k-co2M"y2-Lo2i/j2G(y2, x),       x ^ x2.

Since (5) implies (7) with K= 1, we have

r¡2(x) ^ 2k-oj2W'y2-w2lp2y2F<y2, x),       x ^ x2,

^2k- oj2,p2y2(F(y2, x) -p(x)), x ^ x2.
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At a zero of r¡' we have

0 = v'(x) = -ojy>/,(F(y2, x)-p(x)) + (a>'iw)v,

so at such a value x^x2,

r¡2 ^ 2k — )/iyu)'r).

Now using (35) and (38), we find that, for x^x2, r¡'(x)=0 implies r¡2(x)^2k

+ Mx\t](x)\, and this implies that the extremal values of r¡ sire uniformly bounded,

hence r?(x) is bounded as x -> oo, say

(45) b(*)| ú B.

Now for y(x) > 0 we have

,'(*) - coMp(x)-F(y2,x)) + (oJ'/oJ)v,

ä -u)>/iyF(y2, x)+ (w'/oj)in.

If x^x2, then using (35), (38) and (34), we obtain

^yF(y\ x) = (co'/coK^F^2, x),

è M1(co'/oj)œ2ijiF(Mt4>2, X),

from which there follows, with the use of (7),

o»pyF(y2,x) á Mr1(^'hW'f'2G(M2x>f>2, x),

^ FMf^cu'/cu).

Thus for y(x)>0, x^x2, by use of the above and (45), we find

v'(x) ^ -(kKMx-' + B^'/oj),

(  } ^ -Bx(oj'h).

Now take xn to be a zero of y with y'(xn) > 0, and let xn be the first zero of r¡ to the

right of xn, so that y(x), r¡(x) ä 0 on [xn, xn]. Since (46) holds on [xn, x„],

fx"
0 = -r¡(xn) ^ r](xn)-Bx       (cu'/cu) dx,

Jxn

and thus we can choose |n, xn < fn < xn, such that

Çn (oj'/co)dx = \Bx^(xn).
J*„

But then for xn ̂  x ^fn,

f*»
7¡(x) ä r](xn)-Bx (cu'/cu) cTX = ^(xn).

Consequently,

['"^(co'Hc/x^fir^fe))3.
Jxn
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If x0 is the first zero of y then using (13), (40) and the nondecreasing character of

E*0, we obtain

■n2(xn) ^ r¡2(x0)+\X\2(co'lw) dX,

ä V2(Xo).

Thus

(47) f%!VM<&è*rW*o))3.
Jxn

Since xn was an arbitrary zero of y, (44) and (47) contradict the assumption that y

is an oscillatory solution of (1). This completes the proof of Theorem 3.

Remark 2. Condition (5), or what is its consequence, (7), with K=\ is used

only in the proof that -q is bounded. If we assume that |üj2¡/>3</i"| is bounded for

large x, then in the hypothesis of Theorem 3, (5) can be weakened to (7) with 0< K.

One choice for </> in Theorem 3 is

(48) 4>(x) = Xa -£»2,       0 < e < 1.

It is clear that w can be allowed to differ from an indefinite integral of <p~2 by a

positive constant factor, accordingly we take

(49) w(x) = Xs.

The inequality (36) is easily verified for this choice of </< and tu ; moreover, w2ifj3ifi"

= — \(l — e2), so that in view of the remark following the proof of Theorem 3, for

this choice of i/i, (5) in the hypothesis of that theorem can be replaced by (7) with

0<A". The coefficient/? in (11) corresponding to i/>(x) = xa~€)l2 is (1 —e2)/4x2.

A second choice for w, i/> and p is (25), (26), (27) with

(50) 8 2*.       p = 28 + 1.

From (27') and (50) one can readily verify (36), and, except for a positive constant

factor, co is an indefinite integral oft/j'2. We have thus the following two corollaries

to Theorem 3.

Corollary 3. Let F(t, x) satisfy (7) and (34). Let 1 > e > 0, and assume that, for

every a>0, x1+eG(ax1~s, x) is nondecreasing with a finite upper bound, and that

there exist xu Mx>0 such that F(t, x)S(l — e2)/4x2 for t^M2x1~e. Then equation

(1) is nonoscillatory on (x,, co).

Corollary 4. Let F(t, x) satisfy (5) and (34). Let 8 > \ and suppose that, for

every a > 0, x(log x)2i + 2G(ax(log x) ~2Ô, x) is nondecreasing with a finite upper bound.

Moreover, assume that there exist xu M,>0 such that

F(t, x) ^ (1 -48(1 + S)(log x)-2)/4x2,        t à M2x(log x)~20.

Then equation (1) is nonoscillatory on (x,, oo).
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Specializing Corollaries 3 and 4 to equation (2) we obtain the following results.

Corollary 5 (Belohorec [2]). Let 0<y<l, q(x)^0, and assume that, for

some ß, 0<ß<(l—y)/2, xi3 + y)l2+ßq(x) is nondecreasing and bounded above. Then

(2) is nonoscillatory.

Corollary 6. Let 0<y< 1, c7(x)S:0, and assume that, for some ß, ß^(5—y)/2,

q(x)x<3 + y,,2(log x)B is nondecreasing and bounded above. Then (2) is nonoscillatory.

5. A oscillation criterion for the superlinear equation. We assume in this

section that F satisfies (6) for some Fä 1, and we assume as before that (11), with/?

positive and continuous on (0, co), is nonoscillatory, and that there exists an e > 0

such that

(51) y" +(I+s)p(x)y = 0

is oscillatory. Moreover, we assume that ¡/> e C3(0, co), ¡/> > 0, is a solution of (11)

and that

(52) (ciT^O,

(53) Jw ¿x/-A2(x) = co,

(54) -fV3=/^4^C0<oo.

Finally we assume that for every a>0, <fs2G(a2t/)2(x), x) is a nondecreasing func-

tion of x, and that there exist M0, x0 > 0 and e > e such that

(55) F(/,x)ä(l+£')/>(x),xäx0, t^MU2(x).

The proof of the superlinear oscillation theorem will be based on the following

sequence of lemmas. It will be assumed throughout this section that the conditions

stated in the preceding paragraph are fulfilled. We first reformulate Lemma 2 for

r(x) = (l+e)p(x).

Lemma 2'. If y(x) is a nonoscillatory solution of (I), then

(56) lim inf (p(x))" 1F(>'2(x), x) g l+e.
X-*ao

Lemma 5. Ify(x) is a nonoscillatory solution of (I) and (y/>/>)' is eventually of one

sign, then

(57) lim (y'<l>-Vy)(x) = 0.

Proof. First we shall show that

(58)
/»CO

J   (yl4-Ydx < oo.

If y is eventually positive and (y/</i)' is eventually negative, this is clear. If y sind

(y/$)' are both eventually positive, then because of (55) and (56), we must have

y ^ MQ4>(x) for all large x and thus (58) follows in this case also.

Since we can assume then in either case that 0<y(x)SMoi/>(x), for all large x,

we have (y'¡/i-yi/i')'=y"iji—yi/i"^ - M0#", so from (54)

(59) (/<!>-y4>')' â CoMot
-2
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for all large x. Consider now the case where (y />/))' is eventually positive. We shall

suppose that

(60) 0 < Ö á lim sup (y'</j-yif>')(x),
*-.

and show that this leads to a contradiction. We first choose A so that

(61) j" |0#)'l dx < Q2
32C0M0

Because of (60) and (53) we can choose £0, f x so that A 5? f 0 = f i, (/>!> -J"A')(£i) = hQ>

and C0M0 j¡l >l>~2(x) dx=\Q. Then from (59)

(y't-y4<')(x) ä (j'-A-jfX^-CoMo f1 r\x)dx,

for f0 = * = ii- But this gives

\tl(y/4,)'dx^\Q[ilr2dx =
Jio ¿to 16C0M0

which, since f0>^, contradicts (61). The case where y and (y/</>)' eventually have

opposite sign is handled similarly.

We now take w=\ in (13), then from (52) and the nondecreasing character of

i/i2G(a2\fi2, x), it follows that S is a nondecreasing function of x.

Lemma 6. Let y be a nonoscillatory solution of (I), then there exists a sequence

f„ such that liin,,^ £„ = co,

(62) F(y2(in), U ú (l+e)p(Ín),        «=1,2,...,

and

(63) lim S(í„) S C0(K(l+e)-l) lim sup [(v/0)(Q]2.
n-»oo n-*<x>

Proof. Suppose that the hypothesis of Lemma 5 is satisfied, so that (57) holds.

Because of Lemma 2' it is possible to choose {£„} so that (62) is satisfied. It follows

then from (13) and (57) that

(64) lim S(f„) á lim sup {(H"y2)(L) + >l>2{L)G(y2(èn), £„)}.
n-*oo n-+co

Using (6) followed by (62) and (54), we obtain

<KinW\in)yXL)+nUG(y2(L), L)
^ (y(UI>P(U)W(LW(L) + Knèn)F(y2(in), Dl
íColK(l+e)~l](y(L)l>P(U)2.

In view of (64), this last inequality implies (63).
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If the hypothesis of Lemma 5 does not hold, i.e. if (y/\h)' changes sign infinitely

often, then we choose {£n} so that £n -*■ co, and, for n= 1, 2,...,

(65) (/0-0»(£Il) = O,and

(66) (y'4>-4>'y)'(L)^.
But (y't/j-i/j'y)' = -</jy(F(y2, x)-p), so that, for y>0, (66) implies (62) with

£ = 0. We assume, as we can without loss of generality, that_y(x)>0 for all large x;

then (65) implies (64), and we obtain (63) from (64) as before.

Theorem 4. Under the conditions imposed in the first paragraph of this section,

equation (1) has oscillatory solutions.

Proof. In view of (55) and (62),

lim sup [(y/</j)(L)? Ik Ml
n-» co

Thus, since 2 is nondecreasing, it follows from Lemma 6 that for any non-

oscillatory solution y of (1), 2, defined by (13), satisfies

(67) lim 2(x) ^ C0M02(F(l+£)-l).

Again because of the monotonicity of 2, if y is a solution of (1) withy(xo) = 0 and

y'(x0) satisfying (r¡(x0))2 = OA(x0)y'(x0))2 > C0A/f (F(l + e)— 1), where x0 is sufficiently

large, then (67) cannot hold, and y must therefore be oscillatory.

As a corollary of the proof of Theorem 4 we have the following result.

Corollary 7. If (6) holds with K=l, in particular if (4) holds, and if (51) is

oscillatory for every e > 0, then under the conditions of Theorem 4 every solution of

(1) with at least one zero in (0, oo) is oscillatory.

Proof. Under the above conditions e can be taken arbitrarily in (62) and hence

in (67). Thus if (6) holds with F=l, (67) shows that, since 2 is nondecreasing,

2(x)<;0 for a nonoscillatory solution of (1). On the other hand, if y is a nontrivial

solution of (1) and y(xo) = 0, then 2(x)^2(x0)>0 for x>x0; thus y must be

oscillatory.

Corollary 8. If </i2(x)t7(a2t/i2(x), x) -> oo, as x -> oo for every a>0, then under

the conditions of Theorem 4 every solution of (I) with at least one zero in (0, oo) is

oscillatory.

Proof. Because of (55), it is implied by (62) that

(68) y(L)^M0i(U,
but by (6), (54) and (62), when (68) holds,

V(L)G(y2(L), « ¿ KnL)F(y2(Ll L),
?¿K(l+e)p(en)y(tn),

S(l+e)KC0.
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We now claim that (y(£n)l>l>(£n))2 -*■ 0- Suppose not, then there exists a subse-

quence {in¡} such that y2(in)li/i2(in)^a2>0, for some a. Observe that

nïnM^XL,), fij è nL)G(y2(L), L)

which is bounded, contradicting the given hypothesis that >p2(x)G(a2t/i2(x), x) -> oo

as x-^co for every a>0. Thus for a nonoscillatory solution of (1), (63) implies

2(x)i=0 and the result then follows as before.

If we take </<(x) = x1/2, then ¡/i satisfies (11) with p(x) = I /(4x2). Moreover, one

readily sees that (52), (53) and (54) are satisfied. Thus Theorem 4 and Corollaries

7 and 8 imply the following result.

Corollary 9. Let F satisfy (6). Suppose that there exist constants x0, M, c>0

such that x2F(t, x) 2: J + c, x^x0, t^M2x, and suppose that, for every a>0,

xG(ax, x) is nondecreasing in x. Then (1) has oscillatory solutions. If (6) holds with

K=\, or if for every a>0, lim*.,,«, xG(ax, x) = co, then every solution of (I) with one

zero in (0, oo) is oscillatory.

The first assertion, that is, the existence of oscillatory solutions of (1) under the

hypothesis of Corollary 9, was given in [3, Theorem 1], An examination of the

derivation of inequality (63) of Lemma 6 shows that in Theorem 4 the hypothesis

(6) can be weakened to G(t, x)^KF(t, x), f¿M2<¡i(x). With a similar modification

of the hypothesis, Corollary 9 in fact contains Theorem 1 of [3].

If we specialize Corollary 9 to equation (2) we obtain the following result, which

is a refinement of a theorem of Jasny and Kurzweil [7] and [9]:

Corollary 10. Let y>\,q(x)^0, and assume that x<v + 3)l2p(x) is a nondecreasing

function of x, then every nontrivial solution of (2) which vanishes at least once in

(0, oo) is oscillatory.

6. Existence of nonoscillatory solutions in the superlinear case. Whereas in

§7 to follow we shall give criteria for (1) to be nonoscillatory, i.e. to have no oscil-

latory solutions, in this section we shall discuss conditions which imply the exis-

tence of nontrivial nonoscillatory solutions of (1). More specifically, the main

result of this section will give conditions consistent with those of Theorem 4 which

imply the existence of nonoscillatory solutions of (1) with certain prescribed growth

properties.

A necessary and sufficient condition for (2), with y> 1, to have nonoscillatory

solutions has been given by Atkinson [1], and related results for the equation (1)

have been given by Nehari [11] and Wong [15], as well as others; see the references

in [15]. Some further discussion of these results seems to be in order here prior

to the statement of our results in this direction. If F(t, x) is monotone in t for each

fixed x then the condition

/* co

(69) xF(c, x) dx < co,   for some c > 0,
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is necessary and sufficient for the existence of bounded nonoscillatory solutions,

see Nehari [11, Theorem I], and for a similar result with a requirement on F

somewhat weaker than monotonicity in /, see Wong [15, Theorem 3]. For (2) with

y>l, Atkinson's theorem states that (69), which reduces to J"°° xq(x) dx<co, is

necessary for the existence of any nonoscillatory solutions. Thus the class of equa-

tions of the form (2) with y> 1 has the property (P): the existence of any nonoscil-

latory solutions implies the existence of bounded ones. We make note here of some

other classes of equations which also have the property (P). Nehari, [II], [12], has

shown that equations of the form (1) with F subject to the nonlinearity condition

(N): there exists an e>0 such that, for each x>0, 0</1"£F(/1, x)^t2sF(t2, x)

whenever 0</1</2<co, share many of the distinctive properties of (2),y>l. We

shall show that this class of equations has also the property (P). Indeed in the

presence of the condition (N), (69) is necessary for the existence of nonoscillatory

solutions of (1). This is in fact contained in [15, Theorem 4], nevertheless we give

a proof of this special case here.

Proposition (*). Let F satisfy condition (N), then a necessary condition for (1)

to possess nontrivial nonoscillatory solutions is (69).

Proof. Let y be a nonoscillatory solution of (1) and suppose that y(x)>0 for

x>x0. Since y is nonoscillatory, lim^,, y'(x)=0, and thus

y'(x) = ^ y(t)F(y2(t), t) dt,

so that, as y is nondecreasing as well as positive for xäx0,

f CO

(y(x))-1-2sy'(x) ^       (y(t))-2°F(y2(t),t)dt
Jx

^ r(y(x0)r2eF(y2(x0),t)dt.
Jx

Denote y2(x0) = c and integrate the above inequality to give

(2£)-1{(v(x0))-2s-(y(x1))-2£} ^ P ¡'' c-°F(c, t) dt dx
Jxo  Jx

¡•xi rxi ,-xx n

^ c~eF(c, t) dtdx^ c~eF(c, t) dx dt
Jxq Jx Jxq Jxq

iri(t-x0)F(c,t)dt,
Jxo

= c
Jxo

which shows, upon letting xr -*■ co, that F must satisfy (69). Moreover, if y(x) is

unbounded, then the integral in (69) must be finite for every c>0.

Since in the presence of (N), condition (69) is sufficient for the existence of

bounded nonoscillatory solutions of (1), Proposition (*) implies that the class of

equations of the form (1) with F satisfying the condition (N) has the property (P).
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If e in (N) is allowed to equal zero, this is not true, as is shown by the example of

the Euler equation j" + (l/4x2)>' = 0.

A larger class with the property (P) is obtained by replacing the condition (N)

by the following condition (N'): F(t, x) is monotone in t for each fixed x>0 and

there exist p> 1, F>0 such that, for all x>0, (log t,)-pF(tu x)^(log t2)-pF(t2, x)

whenever T< t, g t2. An analogue of (*) for this case can be proved in exactly the

same way as (*). If p is allowed to equal 1 in (N'), then the resulting class again

fails to have the property (P). This is shown by the following example:

ylog(y2+\)

4x2log(x+l)

which has the nonoscillatory solution x1/2, while the coefficient

V'   '     4x2log(x+l)

fails to satisfy (69). We remark that Theorem 4 of [15] enables one to determine an

even larger class of equations which has the property (P).

We now wish to impose conditions which imply the existence of nonoscillatory

solutions of (1) which are bracketed between two preassigned functions. Accordingly

we assume the existence of functions i/<(x), <pi(x), and cp3(x) which are positive and

continuous on (0, oo) and such that

(70) G(t, x)^p(x)t, t^cp2(x), and

(71) p(x)cpl(x)< -fl(/i"2(x), 0<x<co, where a<0,

and look for nonoscillatory solutions of (1) for which the energy function 2(x), as

defined by (13), satisfies

(72) Z(x)£a<0,

with (u(x)=l, In fact, we establish in the following result the existence of non-

oscillatory solutions which are bracketed between the functions cpx and cp3.

Theorem 5. Let i/i e C3(0, co), t/i>0, satisfy (52) and let i/i2G(a2>f¡2, x) be a non-

decreasing function of x for every a>0. Assume also that there exist positive con-

tinuous functions cp„ cp2 and cp3 on (0, co) satisfying (70), (71) and

(73) nx){G(cp22(x), x)-p(x)cp22(x)} < a.

Then (1) has a nontrivial nonoscillatory solution y such that S, defined by (13) with

oj(x)= 1, satisfies (72) for 0 < x < co, and that

(74) 9>3(x) < y(x) < cp,(x).

It will be convenient first to prove the following.

Lemma 7. Let t/> and G satisfy the conditions of Theorem 5. If y is a positive local

solution of (I) defined near x0, and if the energy function for y, with w= 1, satisfies

S(x0)<0, then y, or any left continuation of y, can be continued to 0, and will be

positive there.
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Proof. As shown in §5, the conditions on ip and G imply that 2 is nondecreasing,

thus it is negative to the left of x0, on the interval of definition of y. The same is

clearly true for the energy function for any left continuation of y. Since 2 must be

positive at a zero of y, it follows that y, or any left continuation of y, is positive to

the left of x0. Therefore y or any left continuation of y can be continued to 0.

Proof of Theorem 5. For n = l, 2, 3,..., let yn denote a solution of (1) deter-

mined by initial conditions yn(«)>0, y'n(n) which make 2„(x)=S(x,yn(x))^a at

x = n. There do exist such initial conditions because of (73). Because of Lemma 7,

yn can be assumed to be defined on (0, n] and will be positive there; because it is

nondecreasing 2 = 2„ will satisfy (72) for 0<x<«. By virtue of (70), (71) and (72),

y=yn must satisfy (74) for 0<x<«. On every compact subinterval of (0, oo),

(yn(/)} is a bounded sequence in view of (74). By (13) and (72) with w= 1, y=yn,

and 2=2n, we conclude that {y'n(t)} is also uniformly bounded on every compact

subinterval. It is thus possible to choose a subsequence {y„J which is convergent

on compact subintervals of (0, co) to a solution y of (1) and such that {y'nJ con-

verges uniformly on compact intervals to y'. It follows that <p3(x)¿y(x)fí(px(x),

0<x<oo, and from (13) that (71) holds for the energy function fory, for 0<x<oo.

In view of (70) and (71) the above estimate on y can be strengthened to (74) for

0<x<oo. This completes the proof of Theorem 5.

Remark 3. We note that condition (71) is somewhat trivial in that the existence

of the function <p3 is always guaranteed, e.g., we may take

ç>3(x) = ((-ay2/2)rl(x)p-v2(x).

Corollary 11. Let

(75) 101 < (y-l)/2,

and let q(x)x<y + 3)l2~e be a nondecreasing function of x. If

(76) lim q(x)xiy + 3)l2-e < co,
X-+CO

then (2) has a solution y(x) positive on (0, oo) and such that

0 < lim inf x_<1_£)/2y(x) ¿ lim sup x~a~e)l2y(x) < oo,
X-* CO X-*W

where e = 2ß(y—l)~1.

Compare the hypothesis here with the hypothesis of the oscillation criteria of

Jasny [7] and Kurzweil [9] (or see Corollary 10).

Proof. Take if,=xa + e)l2 so that t/< satisfies (11) with p(x) = (l-e2)/4x2. For

appropriate values of a<0, px, p2, p3>0, the conditions (70), (71) and (73) will be

satisfied for

Px\i(x) = M2_V2W = Ma'VaW = x(1_£)/2.
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Remark 4. The conditions (75) and (76) imply that xq(x)-¿kx°, where

a=ß — (y+ l)/2< -1. Thus q(x) satisfies (as it must) the integral condition of

Atkinson [1], for the existence of nonoscillatory solutions of (2) mentioned earlier.

Example. Consider the Emden-Fowler equation

(77) y" + xy\y\ysgny = 0,       x > 0,

with — 2>v> — (l+y), y>\. Thenç(x) = xv will satisfy the conditions of Corollary

11 with ß = v + (y + 3)/2. If one takes E = 2ßl(y-l) = 1 +2(v + 2)¡(y-l), one finds

that (77) has a solution y given by

(78) y(x) = [(l-e2)/4]1/(''-1,x(1-s)/2.

Atkinson's theorem yields the existence of bounded nonoscillatory solutions, the

so-called Emden solutions of (77), see [5], An Emden solution of (77) is uniquely

determined by its value at oo, in particular, there is a unique solution y0 of (77)

with y0(oo)=l. The Emden solution y of (77) with y(ao) = c>0 is given by

y(x) = a'a~£)l2y0(ax) where a~a'eV2 = c. Finally, if -2>v> — (y + 3)/2, then any

solution of (77) which is not at least to within a factor of — 1 an Emden solution

or the solution given by (78) is oscillatory; see [5]. It follows from Atkinson's

theorem that (77) has only oscillatory solutions, excepting the trivial one, when

^ -2, and it will follow from §7 that (77) is nonoscillatory when v£ -(y+3)/2.

These results are also to be found in [5].

Remark 5. Complementary results to Corollary 11 for the sublinear equation

(2), 0<y<l, can be found in Belohorec [2], We leave the formulation of the

corresponding generalization for the sublinear equation (1) to the reader.

7. Nonoscillation theorem for the superlinear equation. We prove in this section

the counterpart of Theorem 4, namely a nonoscillation theorem for the superlinear

equation. We assume in this section that F satisfies (9) and as before that (11), with

p positive and continuous on (0, co), is nonoscillatory.

Theorem 6. Let cp be a positive solution of (11), let i/i e C3(0, oo) and suppose that

(79) </->0, (</>y^0, 0<x<co,

(80) cp(x) = o(4>(x)), as x -> oo,

(81) lim inf^oo <p2(./<2)"(x)^c0>0,

(82) liminf^«, - 9>y(x) ^ Cj > 0.

Suppose in addition that tf>2G(a2i/>2, x) is a nonincreasing function of x for every

a>0. Then any solution y of (I) satisfying

(83) f" |y(<p2)"|i/x<oo

must be nonoscillatory.

Proof. The theorem will follow readily if we can show that for any oscillatory

solution y(x) for which (83) holds, there must exist a constant B0 such that

(84) y2(x)úB0cp2(x).
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Indeed suppose that y (x) is an oscillatory solution of (1) satisfying (84). Then since

F is positive and satisfies (9), we have for any a > 0

G(a24,2,x) ^ c(a2^2-B0<p2)F(Bo92,x).

Thus because of (80), there exists a positive constant K0 > 0 such that

(85) G(a2^2,x)^K^2F(Bo92,x),

for all sufficiently large x. Now for any solution y(x) of (1) satisfying (84), we have,

on account of (9) and (85),

F(y2(x),x) ^ c^FÍFo^íx), x) Ú (cK0)-ir2(x)G(a2^2(x),x).

By hypothesis, the function i/>2G(a2i/>2, x) is nonincreasing, thus we have, in view of

the above inequalities,

(86) F(y2(x),x)úKx(<P(x)r1

for some positive constant Kx and all sufficiently large x. From (80) and (82), we

also have, for sufficiently large x,

(87) (^W) " * - {4>{X)) '1(9(X)) '' - ~ (2/ciV'(*)(0(*)) -l

(   ' = (2/cx)(<p(x)l>P(x))p(x).

Using (87) in (86), we have, for some appropriate constant F2>0,

(88) F(y2(x), x) Í K2(9(x)/Kx))p(x).

Since <p(x)/i/>(x) = o(l) as x-^oo, we can pick x0 sufficiently large so that, for

x^x0, F(y2(x), x) fkp(x). The hypothesis that equation (11) is nonoscillatory

together with Sturm's comparison theorem now implies that y(x) must be non-

oscillatory, thus contradicting our assumption.

It remains to show that an oscillatory solution of (1) for which (83) holds also

satisfies (84) for some B0<oo. To this end, we first prove the following.

Lemma 8. Let y be an oscillatory solution of (I) satisfying (83). Then there exists

a constant BQ such that ify(a)=y'(b) = 0 andy(x)^0 for a<x<b, then

(89) f [/2(x)/(y)'(x)] dx Í B0.
Ja

Proof. It follows from Lemma 1 and (79) that for any solution y(x) of (1),

2(x)=2(x, y(x)) (with cu(x)=l) is a nonincreasing function of x, and in fact we

have from (17) that when F is of class C1,

(90) (d/dx)2Z(x) ̂  W2)my2-

Integrating (90) from a to b, we have

(91) tAV(è) + #"y2(è) + lA2G(y2, b)-^2y'2(a) ï \\\fTy\x) dx,

and by the usual argument, this inequality remains valid even if Fis not C1.



420 C. V. COFFMAN AND J. S. W. WONG [May

On the other hand, we observe that

I f mmy2(x) dx = yW)"(x)\l- f m"yy'(x) dx
(92) Ja Ia

= W)"y2{b)-\l\y)"yy'(x)dx.
Ja

Combining (91) and (92), we obtain

(t2)"yy'(x) dx g yy'2(a)-yG(y2(b),b) fi 4>2/2(a),

and since the monotonicity of 2 implies that ¡/>2/2 decreases from one zero to

another zero of y to the right, the integral on the right is bounded independently of

the interval [a, b], i.e.

(93) f (</>2)"yy'(x) dx ̂  B,
Ja

where B is a constant independent of [a, b]. Next we note that if we assume y(x) > 0

for a < x < b, then on that interval

(cp2y'-y(cp2)')' = cp2y"-y(cp2)" = -cp2yF(y2, x)-y(cp2)"

í -y{?2)".

Integrating the above estimate and using (83) we obtain

(94) <p2/èy(<p2)' + C0,

where C0 is an appropriate constant again independent of the interval [a, b\. This

independence follows since the function (<p2/ — y(<p2)')(x) must vanish at some

point of (a, b). Next we use (94) to obtain the following estimate:

¡■a     y'2 rb y'

)bW)'dx=l7m'92y'dx
fb

< [^)'{y^Y + C0)dX

íyidx+Coí-dñ'dx-
•b „,,'

<

Using (81) and Schwarz's inequality, we obtain, provided a is sufficiently large,

(95)   im "'s èJ.>ww *+c€m *)"(J! ̂w)"!;
from (82), we have, for large x,

9{x) = 2)x-m

so that

{* CO

3(t)
(96) (cp2)'(x) ̂  cMx)¡"^'
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Now we use (96) to estimate the last integral in (95) as follows:

f*   dx    ^ 1 Ç"(,  I ,r   dt\ ^   2   ("  dx
(97)       17m- - 7x1 rrL m - ̂ i ?w'
where

i = lnup Wto)"1= ttup ^w - 9'{a)-

Denote by p the integral J"* y'2¡(92)' dx. Substituting (97) into (95), and using (93)

we obtain

(98) p Ú Bx + B2p112,

where Bu B2 are constants. It then follows from (98) that p^B0 for some appro-

priate constant B0. This completes the proof.

Now let a and b be as in the above lemma. For af¿xf¿b, by Schwarz's inequality

rx i i-b  v'2      \i/2/ rx \ 1/2

WtfiJjjW **([.&*) (J><*) ■
So, by (89), y2(x)gF0<p2(x), for a^x^b. Then for any oscillatory solution y(x),

it follows from the concavity of y between zeros and the fact that co is a solution of

(11) that (84) holds for all large x. This completes the proof of the theorem.

Remark 6. Clearly condition (4) implies (9) for the function F. Also, by taking

9(x) = x112 and >p(x) = (x log x)1'2 in Theorem 6, we obtain Theorem 2 of [3] which

is a generalization of earlier results of Kiguradze [8] and Nehari [13]. Note that in

this case, since (<p2)" = 0, condition (83) is trivially satisfied.

As an example of a function F(t, x) satisfying (9) but not (4), we may take

F(t, x)=q(x) exp (£(/) — ■>?(/)), where «7(x)^0, £(/) is nondecreasing and r¡(t) is

uniformly bounded for all /.
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Appendix: continuation and local uniqueness of solutions of generalized Emden-

Fowler equations. We are concerned with establishing continuability and local

uniqueness of solutions of the following second order ordinary differential

equation:

(1) y"+yF(y2,x) = 0,       x > 0,

where yF(y2, x) is continuous for x>0 and \y\ <oo, and F(t, x) is nonnegative

for x>0 and />0. The prototype of equation (1), namely

(2) y"+-q(x)\y\y sgn y = 0,       x > 0,

where q(x) is continuous and nonnegative, has received considerable attention in

recent years. We classify equation (1) as superlinear or sublinear according to

whether F(t, x) is monotone increasing or decreasing in t. More precisely, we say

that equation (1) is superlinear if

(3) F(t2, x) ä F(tx, x),       t2 ä h,

and sublinear if

(4) F(t2, x) Ï F(t„ x),       t2 ^ t,.

When these conditions are specialized to equation (2), we obtain yä 1 for super-

linearity and yg 1 for sublinearity.

In case of equation (2) when y 2:1, the local uniqueness of the zero solution, i.e.

that a solution y(x) satisfying the initial conditions

(5) y(x0) = y'(x0) = 0

for some x0 must be the identically zero solution, is well known. It is also not

difficult to see that the same remains valid for the more general equation (1)
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subject to condition (3). This was observed by Nehari [12]; for completeness we

include a slightly simplified version of his argument here. Suppose that y(x) is a

solution of (1) satisfying (5). Choose £>0 such that

rxo + e

(6) (x0 + e-s)F(l,s)ds < 1,
Jx0

which is always possible since F(t, x) is continuous in its variables. Integrating

(1) from x0 to x, x e [x0, x04-e], we obtain

(7) y(x) = p (x-s)y(x)F(y2(x), s) ds.
J x0

We may also assume that e > 0 is sufficiently small so that

sup      \y(x)\ Ú c < 1.
xqûx^xo + e

Since y(x) is continuous, there exists xx e [x0, x0 + e] sit which |y(xj)| =c. Note that

equation (1) is symmetric with respect to y, that is if y(x) is a solution of (1), so is

—y(x). Therefore we may assume y(xx) = c. Evaluating (7) at x1; we have by (6)

fXl
(xx-s)y(x)F(y2(s),s)ds

J X0

Ú c\    (xx —s)F(c2, x) ds
Jxo

x0 + e

¿ c (x0 + e-s)F(c2,s) ds < c,
Jxo

which is a contradiction. Thus y(x) = 0. A further analysis of the above proof

shows that in the superlinear case the uniqueness of the zero solution in fact

follows from the corresponding property for the linear equation. Indeed every

solution y(x) of (1) satisfies the linear equation y"+p(x)y=0, where p(x)

= F(y2(x), x) is continuous, which clearly has the required uniqueness property.

The solution of an arbitrary initial value problem for equation (1) is of course

unique when F(t, x) satisfies a locally uniform Lipschitz condition in /. This is the

case in particular for equation (2) when y g 1.

We make note next of the fact that, for the sublinear case of (1), any solutions

defined locally can be extended to (0, oo). Proofs for the sublinear case of (2) have

been given by Heidel, [A-5], and Belohorec [2]. As in [A-5], we may derive a general

result for equation (1) from a theorem of Wintner, see Hartman [A-4, p. 29].

Indeed, the equation (1) is equivalent to the vector equation r¡'=f(x, r¡), where

v(x) = (y'(x),y(x)), f(x,r¡) = (-yF(y2, x), y'). If we use the vector norm \r¡\

= max (\t)x\, \t)2\) then (4) implies that |/(x, i?)| ̂ (1 + F(x))|i?|, where F(x)

= max0<?gx (maxosysj yF(y2, £)). The scalar equation r' = (l+K(x))r has all of

its solutions defined on (0, oo); thus by the result of Wintner just referred, any

locally defined solution of the sublinear equation (l) can be extended to (0, co).
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Of course a weaker condition than (4) will suffice in order that all solutions of (1)

be continuable. One such useful condition is the domination of F(t, x), for large

t, by a function independent of t. We formulate this more precisely as follows.

If there exists a continuous nonnegative function p(x), and if for every compact

interval [a, b] in (0, oo), there exists an M>0 such that F(t, x)^p(x) for t^M and

a^x^b, then any locally defined solution of (1) can be extended to (0, oo). The

proof is similar to that given in the preceding paragraph.

In view of the above remarks it is apparent that the more subtle questions are

those of continuability of solutions of the superlinear equation and of the unique-

ness of the zero solution of the sublinear equation. For the first order scalar

equation, although the problem there is not so deep, an analogous situation occurs

as is illustrated by the simple equation /= |>>|y sgn y considered for 0<y< 1 and

1 <y<oo. There is, for this first order equation, a sort of "duality" between the

nonuniqueness of the zero solution, for 0<y < 1, and the failure of global existence

of solutions when 1 <y <co. As we shall see, a more striking and more interesting

duality exists in the second order case between the two problems mentioned at the

beginning of this paragraph. (Cf. Heidel [A-5] concerning equation (2).)

We consider first the problem of continuability of solutions of the superlinear

equation. For the special case of equation (2), this problem has been considered by

Hastings [A-3], Coffman and Ullrich [A-l], Heidel [A-5] and in related papers,

Jasny [7], Kiguradze [8], Moore and Nehari [A-8], Willett and Wong [A-10]. A

systematic study does not seem to have been made concerning the continuability

problem for equation (1). Some general results concerning equations more general

than (1) may be found in Hastings [A-3], but they seem to be not particularly

useful in analyzing equation (1). Results generalizing that of Coffman and Ullrich

[A-l] for the Emden-Fowler equation (2) are also given in Ullrich [A-9]. Similar

remarks concerning the continuability of solutions may be found in Nehari [11],

[13], Coffman and Wong [3].

Let 0fia<b^co. By a local solution of (1) in (a, b), we shall mean a solution of

(1) defined on a nonempty open subinterval of (a, b). By the phrase, "all solutions

of (I) are continuable on (a, ¿?)," we shall mean that every local solution in (a, b)

of (1) has a C2 extension on (a, b). If b is finite we shall say that all solutions of

(1) are continuable through b if for some a<b every local solution of (1) in (a, b)

has a C2 extension on an open interval containing b.

The main result of [A-l] states that if q(x) is positive and locally of bounded

variation on (a, b) then all solutions of (2) are continuable on (a, b). The same

argument as the one used in the proof of the result just quoted gives the following:

ifb < oo and ifq(x) is positive on (a, b) and log q(x) has finite upper variation on (a, b),

then all solutions of (I) are continuable through b. This last result is of interest

primarily as a criterion of continuability of solutions of (2) through an isolated

zero of q(x). Another result along this line is due to Heidel [A-5], and states that if

l(b — x)a + 3q(x)]' exists and is nonpositive on some left neighborhood of b, then all
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solutions of (2) are continuable through b. Actually Heidel [A-5] stated this result in

a somewhat different form, and he has explicitly assumed that 9(6) = 0 there, which

is an unnecessary assumption.

Concerning equation (1), when (3) holds, Ullrich [A-9] has given the following

generalization of the continuability result of [A-l] for (2): if there exists a non-

decreasing function h(x) on (a, b) such that, for all />0,

(8) I log F(r, x2)-logF(/, xx)| ^ h(x2)-h(xx),       a S xx < x2 á b,

then all solutions of (I) are continuable on (a, b). Let

(9) G(t, x) = f F(s, x) ds.

Inspection of Ullrich's proof shows that (8) can be replaced by

(10) |Iog G(t, x2)-log G(t, Xx)\ ú h(x2)-h(xx),       a Ú xy < x2 < b,

which is implied by (8). We remark also that Ullrich's proof can be made to yield a

one-sided (i.e. right) continuation criteria, namely

(11) log G(t, x2)-log G(t, Xx) Ú h(x2)-h(xx),       a -¿ xx < x2 < b.

For equation (2), where G(t, x) = (y+ 1)~1í7(x)/''+1, (11) is weaker than (10) only if

q(b)=0, however, in general, (11) is weaker than (10) even if ¿><co and G(t, x) is

positive for a^x^b, />0.

In Theorem A.l below we state continuability criteria for solutions of (1) which

contain all of the results quoted above. We first give a necessary condition that a

solution of (1) cannot be continued through b in the following lemma.

Lemma A.l. Let y(x) be a solution of (I) with F satisfying (3) on [a, b). Suppose

that y(x) cannot be continued through b; then y(x) has infinitely many zeros in every

left neighborhood ofb and

lim sup |y(x)| = lim sup |y'(x)| = 00.
X-*b— X-*b-

Proof. We first show that if y(x) cannot be continued through b then y(x) must

have infinitely many zeros in every left neighborhood of b. Otherwise, there exists

e>0 such that y(x) is concave toward the axis for b — e<x<b, sind consequently

limx_i,_ y'(x) and limx_„_ y(x) exist and are finite, proving continuability.

Now suppose that lim sup*_(,_ |y(x)| <co, then an integration of the differential

equation yields the existence and finiteness of lim^^. y(x) and of limx_ö_ y'(x),

from which follows continuability. If lim supx_(,_ |y'(x)| <oo, then an integration

yields lim sup*-.(,_ |y(x)| <oo, and the result follows as above.
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Theorem A.l. Let there exist a bounded nondect-easing function h(x) on (a, b)

such that for every a > 0

(12) log [(b-X2)2G(a(b-X2)2, X2)]-l0g [(b-X,)2G(a(b-X,)2, X,)]

^ h(x2) — h(xx),       a < x, < x2 < b;

then every local solution in (a, b) of (I) possesses a continuation through b.

Proof of Theorem A.l. It suffices to assume that there exists a solution y of (1)

defined on some open interval [a, ß), a^a<ß^b, and which possesses no proper

right extension and to show that this assumption leads to a contradiction. In view

of Lemma A.l it suffices to show that the given solution y is bounded on [a, ß).

The existence of a proper right continuation, and thus the contradiction, follows.

Put

(13) 0(x) = (y(x)+-(b-x)y'(x))2 + (b-x)2G(y2(x), x);

then if G is of class C1 we have

d)'(x) = 2(y(x) + (b-x)y'(x))(b-x)y"

+ (¿x + (¿íc?) i W-x)2G(«2(b-x)2, *)W»-*>,

+ 8x \\b-xyG(o?(b-xf, x)L = <„,<„_*„

= 2(¿-x)(;Kx) + (¿?-x)/)(/'+>'F(>>2, x))

+YX [(b-x)2G(a2(b-x)2, x)]a=<„,(„_*„.

For G of class C\ (12) implies

l[(b-x)2G(a2(b-x)2,x)] Ú h'(x)[(b-x)2G(a2(b-x)2,x)],

and thus

<P'(x) è 2(b-x)(y(x) + (b-x)y')(y"+yF(y2,x)) + h'(x)$(x).

We have therefore the differential inequality 0'(x);?«'(x)<I>(x), a^x<ß, integration

of which yields

(14) 4>(x) Û <!>(«) exp [h(x)-h(a)],       a ^ x < ß.

If G is not of class C1, choose a sequence of Cx functions Gn(t, x) such that, as

«->oo, Gn(t, x) -> G(t, x) and Fn(t, x) = (d¡8t)Gn(t, x)^-F(t, x) uniformly on

compact subsets of a < x < ¿, r ï: 0, and so that, in addition, for all a > 0, « = 1, 2,...,

(8/ax)[(¿?-x)2Gn(a2(¿?-x)2,x)] ^ «'(x)(¿?-x)2Gn(a2(¿?-x)2,x).

Taking

$„(*) = (y(x) + (b-x)y'(x))2 + (b-x)2Gn(y2(x),x),
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we obtain

(D;(x) ^ 2(è-x)(y(x) + (è-x)y')(y"+yFn(y2,x)) + /!'(x)cDn(x),

for aáx<|3. Thus for arbitrary ß', a<ß'<ß,

(p;(x) ^ Cn + h'(x)<î>n(x),       auxuß',

where Cn = supaSxSr \2(b - x)(y(x) + (b- x)y'(x))(y" + yFn(y2, x))\, so that

lim,,^ Cn = 0. Integrating the above differential inequality and letting «-»oo,

then since lim,,.,,,, <tn(x) = <D(x), a^x<ß, we obtain <D(x)á <D(a) exp [h(x)-h(a)],

and since ß' <ß was arbitrary, it follows that (14) holds regardless of whether G

is of class C1. Since G(t, x) is positive, (11) and (12) imply that there exists a

constant F<oo such that (y(x)/(b-x))'^K(b-x)'2, a^x<ß, sind integration of

this differential inequality shows that y(x) is bounded on (a, ß).

Corollary A.l. Let log [(6-x)7 + 3<7(x)] have finite upper variation on (a, b),

then every local solution in (a, b) of (2) possesses a continuation through b.

The proof of the main theorem of [A-l], concerning continuability of solutions

of (2), consists in proving boundedness of $(y'(x))2 + (y+l)~lq(x)\y(x)\y + 1, for

solutions of (2). From boundedness of this expression follows boundedness of

y'(x), hence, in view of Lemma A.l, continuability of y(x). An alternative approach

is to consider the function

((y+l)/2)(y'(x))2/c7(x)+|y(x)r\

boundedness of which directly implies boundedness ofy(x), hence, again in view of

Lemma A.l, continuability. Actually the first approach is preferable, since for

right continuation this approach requires only boundedness of the upper variation

of log q(x). The second approach, on the other hand, requires for right continua-

tion the boundedness of the lower variation of log q(x), and thus this approach can

never be applied to prove continuation through an isolated zero of the coefficient

c7(x). However, the attempt to generalize the second approach leads to the following

theorem, which, while it gives nothing new for equation (2), neither is it contained

in Theorem A.l.

Theorem A.2. Let there exist a bounded nondecreasing function h(x) on (a, b) such

that for every a>0

(15)     log F(a, x2)-log F(a, Xx) è -(h(x2)-h(xx)),       a < xx < x2 < b,

then every local solution in (a, b) of (I) possesses a continuation through b.

Proof. We sketch a proof for the C1 case. Let G(t, x) be given by (9) and let

T(cu, x) be defined implicitly by

Y(G(t, x), x) = t,
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then rw(co, x) = (F(r(o>, x), x)) " \ and rx(œ, x) = - Gx(T(œ, x), x)/F(r(w, x), x).

If y is a local solution of (1) on (a, b) and if we put <J>(x) = (y')2 + G(y2(x), x), then

<b'(x) = Gx(y2(x), x), and thus, if T(x) = r(<5(x), x), then

(16) W'(x) = (Gx(y2(x), x)-Gx(T(x), x))/F(T(x), x).

Since 0>(x) ̂  G(y2(x), x), it follows that

(17) T(x) > y2(x),

and using (3) and (9) we obtain from (16)

T'(x) = - ^ log F(s, x) ds,
JvHx)  OX

which in view of (15) and (17) yields

(18) Y'(x) á «'(x)Y(x).

Suppose now that y(x) is a local solution of (1) defined, say, on (x0, x1)'^(a, b).

Then integration of (18) and the use of (17) and the boundedness of h(x) on (a, b)

lead to the conclusion that lim*.,.^- |>>(x)| <oo. By Lemma A.l, this implies the

desired result.

Yet other continuation criteria can be obtained if one is willing to impose a

stronger condition than that of local bounded variation and yet weaker than the

notion of differentiability of the coefficient q(x) in case of equation (2). For ex-

ample we can obtain continuability results by requiring the existence of upper right

derivatives. The upper right derivative of a function i>(x) is defined as

Z)+(p(x) = lim sup t (<D(x + «)-<t(x)).
/i-o+    n

A result in this direction is the following.

Theorem A.3. Suppose that the function G(t, x) defined in (8) is upper right

different ¡able with respect to x for each t and satisfies

(19) D¿G(t,x) ^œ(x, G(t,x)),

on [0, X], where oj(x, r) is a continuous function of both variables x and r and non-

decreasing in r for each x. If in addition every solution of the first order equation

(20) r'(x) = w(x, r(x))

can be continued up to X, then every solution of (I) can be continued up to X.

Proof. We introduce the Lyapunov function for equation (1):

(21) <D(x) = /2(x) + G(/(x),x).

Since G(t, x) is right differentiable, we differentiate (21) and obtain

Di$(x) = D¿G(y2(x),x) Ú w(x, G(y2(x), x)).
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By hypothesis, cu(x, r) is nondecreasing in r; so we have

(22) £>¿0(x) á cu(x, 4>(x)),

for all x e [0, X]. An application of a differential inequality (see Hartman [A-4,

p. 26]) will now give <P(x)^r(x), xe [0, X], from which it follows that O(x) is

bounded on [0, X] and thus y'(x). The result then follows from Lemma A.l.

When restricted to equation (2) the above theorem yields the following extension

of a result in Willett and Wong [A-10].

Corollary A.2. Let q(x)>0 be continuous and upper right differentiable on

[0, oo), then every solution of (2) can be continued from the right on [0, oo).

Proof. Note that equation (20) in this case becomes r'(x) = (D£q(x))r(x) which

has the solution r(x) = r(x0) exp (J*o D£q(s) ds) sind clearly can be continued

from the right on [0, co).

Remark A.l. We can of course use the differential inequality technique as

just given in Theorem A.3 to formulate a more general condition than (12) in order

to improve Theorem A.l. The details are essentially the same and will be left to the

interested reader.

We turn our attention now to the sublinear case, namely equation (1), where F

satisfies condition (4). Before discussing the problem of the uniqueness of the zero

solution we prove several other results for this equation which are also of interest.

The first two of these concern the initial value problem

(23) y(xo) = 0,       y'(x0) = a,

where û#0, and thus without loss of generality we can take a>0. A similar study

of this problem for the superlinear equation (1), with F satisfying (3) and other

additional hypothesis, may be found in Moroney [A-7], and Coffman [A-2].

Theorem A.4. Let 0<a</3<co, and let A>0. Then there is an e>0, depending

only on F, a, ß and A such thatifa^x0fiß, a> A, and y(x) is a solution of (I) satisfy-

ing (23), then y(x)>0 for x0<x<x0 + e.

Theorem A.5. If there exist positive constants 8X and 82<a, and a nonnegative

function h(x) defined and locally integrable on0< |x —x0| < 8l5 satisfying

rx0 ± «!

(24) (x-x0)h(x)dx < oo,
J x0

and if

(25) |cu2F(cu|(x-X0)2, x)-cu1F(cuf(x-X2), x)|   ^ h(x)\w2-cox\,

for 0<|x —x0|<8 and |cu, —a|<82, z'=l,2, then the initial value problem (23) for

(1) has a locally unique solution when a^0.
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Proof of Theorems A.4 and A.5. Let y(x) be a solution of the initial value problem

(23) for (1). (By remarks above y can be assumed to be defined on (0, oo).) Then

cü(x)=y(x)l(x — x0) satisfies the integral equation

(26) œ(x) = a-j* (l -^^|)(í-x0)tü(0F((í-x0)2cü2(0, t) dt.

Let s be chosen so that

xa + e

(t-x0)F(±A2(t-x0)2,t)dt<i
to

then using (4) and a standard argument one can easily show that if a> A, then any

solution a» of (26) must satisfy w(x)>3a/4, for x0<x<x0-r-e. The assertion of

Theorem A.4 clearly follows.

To prove Theorem A.5 we use the fact that local uniqueness for solutions of the

initial value problem is equivalent to local uniqueness for solutions of (26). Accor-

dingly, let cd, and a>2 be two solutions of (26), then from (26) and (25) we have

K(x)-"2(x)| ú (r-x0)«(i)K(0-<"2(0l*
Jx0

Using (24) and a standard argument we conclude that oj,(x)=io2(x) in some neigh-

borhood of x0. This completes the proof of Theorem A.5.

Corollary A.3. Let y be a solution of (I) and let x0 be a cluster point of zeros

of y. Then

lim y'(x) = lim y(x) = 0.
x-*xa x-*xa

Proof. Immediate from Theorem A.4. We remark that the above corollary also

gives a simple generalization of a result of Heidel [6] for equation (2).

Corollary A.4. Let 0<y< 1, then the initial value problem (23) for (2) has a

locally unique solution when a^O.

Proof. Let 0 < 32 < a, then for w,, m2 S: a — 82,

(x-xoy-^x^col-^ Í y(x-x0)y-1q(x)(a-82)y-1\oj2-w1\,

and thus the equivalent of (25) is satisfied with h(x) = k(x — x0)y~1q(x), where k

is a positive constant depending only on 82.

We come now to the problem of uniqueness of the zero solution for the sublinear

equation (1). We make the following simple but important observation.

Lemma A.2. If a solution y (x) of (I) has

(27) y(x0) = y'(x0) = 0,

for some x0 e (0, oo), then y has infinitely many zeros in every neighborhood ofxQ.

Proof. If y=0 in a neighborhood of x0 there is nothing to prove. We assume

therefore that, for any e>0, y(x)^Q on the interval x0 — e<x<x0. If for some
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e, 0 < e < e, y were of one sign, say positive, for x0 — e < x < x0, then since yy" á 0,

we would have y'(x)^y'(x0) = 0 for all x e (x0 — e, x0). Consequently, y(x)áy(x0)

= 0, which contradicts what we just assumed. This completes the proof.

We have quoted a result to the effect that when y> 1 and the upper variation of

log <7(x) is finite in some interval (a, b] then every local solution of (2) defined in

(a, b) possesses a continuation through b. The "dual" of this result for (2) with

0<y<l is the following: if q(x) is positive and the lower variation of logq(x) is

bounded in (a, b], then for x0 e (a, b] any solution of (I) satisfying (27) vanishes

identically on (a, x0). The latter result, like the former, is obtained from a differ-

ential inequality for the "energy function", i(y')2 + (y+l)~1q(x)\y\y + 1. On the

other hand, if <7(x)>0 on (a, b), q(b) = 0, sind q is decreasing for b-e<x<b, where

e>0 (so that the lower variation of logq is necessarily infinite on (a, b)), then if y

were a solution of (2) with 0<y< 1, satisfying (27), with x0 = b, Sind if y did not

vanish identically in (b-e, b) for some e'>0, then, by Lemma A.2, y would have

infinitely many zeros in (b-e, b). However the monotone character of q(x) would

imply that the amplitude of these oscillations is increasing in (b — e, b), which in

view of (27) is impossible, thus y must vanish identically in (b — e, b]. A stronger

result due to Heidel [A-5] states that if (b — x)y + 3q(x) is decreasing in (b-e, b) for

some e>0, then any solution of (2) satisfying (27), with x0 = b, vanishes identically

in (b-e, b). The result in [A-5] is stated for the C1 case and it is assumed there that

q(b) = 0. We present extensions of these results, and in fact, our results when reduced

to equation (2) improve the known results mentioned above.

Theorem A.6. Let F satisfy (4) and assume that there exists a nonincreasing

function h(x), defined on [a, b], such that, for every a>0,

(28) log G(a, x2) — log G(a, Xx) ä h(x2) — h(xx)

for x2 jg Xx- Then for x0 e (a, b], any solution of (I) satisfying (27) vanishes identically

in (a, x0].

The proof of this result will be omitted, since the arguments are similar to those

used previously and those to be used below. More specifically, one shows that the

function <I>(x) = (y')2 + C7(y2, x), when y is a solution of (2) is either positive on

[a, b] or vanishes identically there.

The proof of Heidel's result just mentioned involves the device of throwing the

singular point b for (2) to infinity by means of the change of variable y(x)

= (b — x)u(t), t=l/(b—x). This result can be proved also by considering the

"Lyapunov function"

(y(x) + (b-x)'y(x))2      1      y(x) "+1

(¿>-x)" + 3c7(x) y+l   b-x

for (2). The proof of Theorem A.7 below depends upon finding the appropriate

generalization of the above Lyapunov function for (1).
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Theorem A.7. Assume (1) there exist positive constants 8„ S2 and there exists a

positive C1 function cp(t) defined for /àO, with cp(0) = 0, and cp'(t)>0for t>0, such

that for 0<b — x<8,, and (b - x)2cp(t ) S S2, the function

G(t, x) = (b-x)2G((b-x)2cp(t), x)

(29)
= (b-xy f F((b-X)2cp(t), X)cp'(t) dt

JO

is a convex function oft,

(2) there exists a nondecreasing function h(x), defined for 0Sb — x<81 and such

that for 0<(b-x)2t^82

(30) log [(b - x2yF((b - x2ft, x2)] - log [(b - XiyF((b - x,)2t, x,)]

^ h(x2)-h(xx),   forx2^x,.

Then if y is a solution of (I) satisfying

(31) y(b) = y'(b) = 0,

then y(x)=0for 0<b-x<8,.

Remark. When yF(y2, x) is nondecreasing in y for y>0, which is the case for

equation (2), then the function ç> in the hypothesis of Theorem A.7 can be taken to

be t2. On the other hand, when yF(y2, x)=q(x)f(y) and yf(y)>0 whenever y^0,

which is the case for many of the more important examples, then the function <p

may be taken as cp(t) = H~1(t) where 1Z(t) = 2ft0f(u) du.

Proof of Theorem A.7. We consider the case where F is of class C1, and define

a function T(c», x) by

(32) T(G(t, x), x) = t,

so that

(33) Va(w,x) = [Gt(Y(a>,x),x)}-1,

(34) r*(<o, x) = - [GÄ(r(o?, x), x)IGt(Y(co, x), x)].

Let y be a solution of (1) satisfying (31) and let <5(x) be defined by formula (13).

Then, as shown in the proof of Theorem A.l,

*'(*) =  Í [(b-x)2G(a2(b-x)\ X)]«-,«»-*)
(35) ox

= (d/dx)G(t, x)|,.,-!«„.(»-»»»)•

If we put ^(x) = r(<D(x), x), then by (33), (34) and (35)

(36) i'(x) = - [Gx(t, x)\^\((yl(b.x^]Gt(ri^ x), x).

We observe that 4>(x)ê G(<p~\(yl(b-x))2), x) so that

^(x) = r(<D(x),x) ^ cp-^yKb-x))2).
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By (36) and (29)

f (x) = - [(b - xYF((b - x)29(</>(x)), x)<p'(0(x))] - *

■/.

tliix) a

¿- [(b-xYF((b-x)2<p(s), x)]9'(s) ds,
v-HiyKb-x))2) ox

so by the convexity of G,

f {(d/dx)[(b-xYF((b-xY9(s), x)]}+9'(s) ds

fW=    l-mvub-x^ (b-xYF((b-x)29(s),x)9'(s)

The inequality (30) implies that the integrand in the above integral is bounded

above by h'(x). Thus we obtain çV(x)^ -h'(x)i/j(x), and integration of this inequality

yields

(37) </>(b) ̂ t(x0)exp(h(x0)-h(b)),

for 0¿¿ —x0<81. Suppose now thaty=0 for 0^¿b —x^8l5 then by Lemma A.2,

y, and hence y', has infinitely many zeros, clustering at b (they cannot cluster on the

left of b). But at a zero of y'

¿(x) = r(d)(x),x) = nGti-^yKb-xWlxlx) = 9-\(yl(b-x)Y),

and thus (37) implies that lim sup^„ (y/(6-x))2>0, which contradicts (31),

therefore y s 0 in 0 < b — x < 8X. In the case where Fis not of class C, we may approxi-

mate F by a sequence of C1 functions in the same manner as in the proof of Theorem

A.l.

Restricting Theorems A.6 and A.7 to the special equation (2) with 0<y< 1, we

obtain

Corollary A.5. Let q(x) be positive on [a, b]. If log q(x) has finite lower variation

on [a, b], then for x0 e [a, b], every solution of (2), with 0<y^ 1, satisfying (27)

vanishes identically in [a, x0].

Corollary A.6. Let q(x) be positive on [a, b]. If log (b—x)y+3q(x) has finite

upper variation as x —s- b, and y(x) is a solution of (2), with 0 < y ^ 1, satisfying y(b)

=y'(b) = 0, then there exists e>0 such that y(x) = 0for xe[b-e, b].

Finally, we wish to make a few comments concerning the method of proof

discussed here in connection with the continuability problem for superlinear

equations and the uniqueness of the zero solution for the sublinear equations.

In the former case, we devise certain techniques involving Lyapunov-like functions

to obtain a contradiction to Lemma A. 1 by either showing that (i) lim sup*_(, | y'(x)|

is finite or (ii) lim sup^,, |y(x)| is finite. In Ullrich's result [A-9], quoted above,

condition (8) is used to show that (i) is true. Theorem A.2 follows the alternate

route, namely by showing that the assumed conditions imply (ii). Similarly, in

case of uniqueness of zero solution, one devises "dual" techniques involving
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Lyapunov-like fonctions to obtain a contradiction to Lemma A.2 by either showing

that (i) lim sup*-,¡, |.y'(x)| >0 or that (ii) lim supx_b \y(x)\ >0. Thus, in Theorem

A.6 we show under the given assumptions that the contrary of the desired conclusion

leads to (i). Alternately, we employ the route (ii) in Theorem A.7.
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