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LOCALLY ̂ -EQUIVALENT ALGEBRAS^)

BY

BRUCE A. BARNES

Abstract. Let A be a Banach "-algebra. A is locally ¿"-equivalent if, for every

selfadjoint element t e A, the closed *-subalgebra of A generated by / is *-isomorphic

to a ¿"-algebra. In this paper it is shown that when A is locally ¿"-equivalent, and

in addition every selfadjoint element in A has at most countable spectrum, then A is

*-isomorphic to a ¿"-algebra.

1. Introduction. Assume that A is a Banach *-algebra. We say that A is

¿♦-equivalent if there exists a *-isomorphism of A onto a ¿*-algebra. When te A

is selfadjoint, C(t) denotes the closed *-subalgebra of A generated by /. We say

that A is locally ¿*-equivalent if C(t) is ¿""-equivalent for every selfadjoint element

/ in A. It does not seem unlikely that every locally ¿""-equivalent Banach *-algebra

A is ¿""-equivalent. This is true when A is commutative; see Proposition 2.2. In

this paper we prove this for certain noncommutative algebras. Specifically we prove

(Theorem 4.1) that when A is a Banach *-algebra which is locally ¿""-equivalent,

and in addition has the property that every selfadjoint element has at most a

countable spectrum, then A is ¿""-equivalent.

This paper is motivated in part by some theorems of Y. Katznelson which hold

for commutative Banach algebras. Let A be a semisimple Banach *-algebra with

identity and hermitian involution. For the present assume that A is commutative.

When a e A, we denote the Gelfand transform of a by â. Given a complex function

(¡> defined on a subset 3¡ of the complex plane, we say <j> operates on A if cj> o â e Â

whenever the range of â is in 3). When A is noncommutative, we say </> operates on

A if <f> operates on C(t) for every selfadjoint element t in A. Let \/ denote the

positive square root function, with domain 3 the nonnegative reals. Katznelson

proves in [5] that if A is commutative and \/ operates on A, then A is ¿""-equivalent.

Therefore when A is noncommutative and y/ operates on A, then A is locally

¿♦-equivalent. If this implies that A is ¿""-equivalent, then Katznelson's Theorem

extends to the noncommutative algebra A. In fact the question of whether Katz-

nelson's Theorem holds for noncommutative algebras is equivalent to the question

of whether local ¿""-equivalence implies ¿""-equivalence.

2. Locally ¿""-equivalent algebras. In this section we establish those properties

of locally ¿""-equivalent algebras which we need in the subsequent sections.
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Throughout this section A is a Banach *-algebra. When A has no identity, let Ax

denote the usual Banach *-algebra formed by adjoining an identity to A. Then it is

easy to verify that A is F*-equivalent (locally F*-equivalent) if and only if Ax is

F*-equivalent (locally F*-equivalent). This means that to show that a particular

locally F*-equivalent algebra A is F*-equivalent, we may assume without loss of

generality that A has an identity.

Now we establish some basic properties of locally F*-equivalent algebras.

Proposition 2.1. Assume that A is a Banach *-algebra which is locally B*-equiva-

lent. Then

(1) A is semisimple.

(2) * is continuous on A.

(3) * is symmetric on A.

(4) There is a unique norm | • | on A which has the B*-property, \a*a\ = \a\2for all

a e A.

Proof. The radical R of A is a closed *-ideal of A. If / e R sind / = /*, then

C(/)<=F. Since C(t) is F*-equivalent and / has zero spectrum, then / = 0. Therefore

F = 0. This proves (1). (2) follows from (1) by Johnson's Theorem [3, Theorem 2,

p. 539].
Given / g A, / = /*, then the spectrum of/ in C(t) is real by [6, Lemma (4.8.1)(i),

p. 240]. Then the spectrum of / in A is real. Therefore * is a hermitian involution

on A. By Shirali's Theorem [2], * is symmetric on A. Therefore there exists a norm

| • | on A with the F*-property, \a*a\ = \a\2 for all a e A, by [6, Corollary (4.7.16),

p. 237]. Assume that | • |i is another norm on A with the F*-property. Given a e A,

C(a*a) is a F*-algebra in some norm. Then by [6, Corollary (4.8.6), p. 241], \a*a\

= \a*a\x. Therefore |c7| = \a\x. This completes the proof of the proposition.

In the next proposition we prove that commutative locally F*-equivalent algebras

are F*-equivalent. Clearly any closed *-subalgebra of a locally ß*-equivalent

algebra is locally F*-equivalent. Therefore the proposition implies that every

maximal commutative *-subalgebra of a locally F*-equivalent algebra is B*-

equivalent.

Proposition 2.2. Assume that A is a commutative Banach *-algebra which is

locally B*-equivalent. Then A is B*-equivalent.

Proof. We may assume that A has an identity. Y. Katznelson has shown that

when every continuous complex function operates on a commutative semisimple

Banach algebra B, then Fis 5*-equivalent [4, Theorem 2], When Fis a commutative

semisimple Banach *-algebra with hermitian involution, then Katznelson's proof

establishes that F is F*-equivalent if every continuous real function of a real

variable operates on B. Now assume that </> is a continuous real function with real

domain 3. If / e A and ? has range in 3, then / = / * by (1 ) and (3) of Proposition 2.1.

Then C(t)~ is a sup norm complete *-subalgebra of Â. It follows that 9 ° f e Â by

[6, Theorem (4.8.7), p. 241]. Therefore A is F*-equivalent by Katznelson's Theorem.
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The next result shows that the property of local ¿""-equivalence is preserved

under continuous ""-homomorphisms. If ¿ is any ""-algebra, we denote by ¿s the

set of selfadjoint elements of ¿.

Proposition 2.3. Assume that A is locally B*-equivalent and that I is a closed

*-ideal of A. Then A/I is locally B*-equivalent.

Proof. Assume that Re A/I and R = R*. R = s + I for some s e A. Set t =

(s + s*)/2. Since s — s*el, then s — t = (s — s*)/2e I. Therefore R = t + I where

t e As. Now set B=C(t) + I. Define a map <¿: C(t)/(In C(t)) -> B/I by

c/>(a+-lr\ C(t)) = a+-I

for a e C(t). </> is a ""-isomorphism of C(t)/I<~\ C(t) onto B/I. It follows that B/I

is ¿""-equivalent. Then R e B/I which is a closed ""-subalgebra of A/I. Therefore

C(¿)<=¿/7, and since B/I is ¿""-equivalent, then C(R) is ¿""-equivalent. It follows

that A/I is locally ¿""-equivalent.

Next we prove a sequence of three lemmas. These lemmas are the basic ingredi-

ents in the proof of our main result, Theorem 4.1.

Lemma 2.4. Assume that A is locally B*-equivalent. Assume that B is a *-sub-

algebra of A, and that I is a closed *-ideal of A such that 7<=¿. Then if I is ¿*-

equivalent and B/I is B*-equivalent, we have B is B*-equivalent.

Proof. Let | • | be the unique norm on A with the ¿""-property (Proposition

2.1(4)). We prove that | • | is a complete norm on ¿. Let ¿c be the completion of B

with respect to | ■ |. /is complete in the norm | • | by hypothesis, so that lis a closed

""-ideal of ¿c. Define the usual quotient norm \a + I\=infbel \a-b\ on Bc/I. By

[6, Theorem (4.9.2), p. 249], | • |' is a norm with the ¿""-property on Bc/I. Since B/I

is a ¿""-algebra in some norm, B/I is complete in the norm | • |' by [6, Corollary

(4.8.6), p. 241]. Assume now that {bn}^B and \bn-bm\ ^0. Then \(bn-bm) + I\'

-» 0. Therefore there exists be B such that \(bn-b) + I\' -> 0. Then we can choose

{ajc/such that \(bn-b)-an\ -» 0. Then |a„ —am| -»-0, and since |-| is complete

on /, there exists ae I such that \an — a\ -*■ 0. Finally \bn — (b+-a)\ -*■ 0, so that | • |

is complete on ¿.

We will always denote the given norm in A by || • ||, and v(a) is the spectral radius

of an element a in A, v(a) = infn || a" ||lln. When F is a subset of A, E is the closure of

Fin the norm || • ||.

Lemma 2.5. Assume that A is locally B*-equivalent. Assume that D is a *-sub-

algebra of A, and that there exists K> 0 such that Kv(t) ä || 11| for all t e Ds. Then D

is B*-equivalent.

Proof. * is symmetric on A by Proposition 2.1(3). It follows by [6, Lemma

4.7.10, p. 234] that v(h + k) á v(h) + v(k) whenever h,keAs. Given he(D)s and
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£>0, we can choose k e Ds such that \\h—k\\ <e. Then

IÀ|| ̂  ||A-A:|| + ||fc|| ̂  e + Kv(k)

^ e + K(v(h) + v(k-h)) Ú (l+K)e + Kv(h).

Since £ was an arbitrary positive number, then \h\ ^Kv(h). It follows that D is

F*-equivalent by Theorem 2.4 and Lemma 2.6 of [7].

Given a, be A, let a ° b = a + b — ab. When a sind b sire commuting selfadjoint

idempotents, then a ° b is a selfadjoint idempotent which in some sense is the least

upper bound of a and b.

Lemma 2.6. Assume that A is locally B*'-equivalent. Assume that B is a *-sub-

algebra of A with the properties:

(1) For any te Bs, C(t)cB and C(t) is the closed linear span of the selfadjoint

idempotents in C(t).

(2) When fis a selfadjoint idempotent of B, then (1 —f)B(l -/)^0.

Then there exists a selfadjoint idempotent eeB such that (1— e)B(l— e) is

B*-equivalent.

Proof. Assume that the lemma is false. Then B is not F*-equivalent. Therefore

by Lemma 2.5 with F=2, there exists hx e Bs such that »47»i)<il|rh||- Then by (1)

there exists an element Sx e C(hy) such that sx = Xxgx + ■ • • + Xngn, where the Xk sire

real scalars and the gk are selfadjoint idempotents in C(hx), sind such that v(sx)

<i\\sx\\. Set ex=gx °g2°---°gn- Note that jx(l -ex) = Sx(l -gx)(l -g2)- -j.l-gn)

=0 and (1-^)^=0. By (2) (1-^)5(1-^)^0. By assumption, (1-ex)F(l-ej

is not F*-equivalent, and then, by Lemma 2.5 with F=4, there exists h2 e (1 — ex)F

•(1— ex) such that h2 = h* and K^2)<il|rt2||. As before we can choose s2eC(h2)

such that s2 = pxfi + ■ • • + /v/m, where the pk sire real scalars and the/, are self-

adjoint idempotents in C(h2), and such that v(j2)<¿||j2||- Let e2 = ex °f °- • -°fm.

Note that SxS2 = (sxexS2) = 0 and s2s± = 0. Continuing in this fashion, we can choose

a sequence {sk} such that each sk is selfadjoint, sks,=s,sk = 0 for k=£j, and v(sk)

<(i)1kk|| for all k = L Let C be a maximal commutative *-subalgebra of A which

contains the sequence {sk}. By Proposition 2.2, C is F*-equivalent. This contradicts

the inequalities >'(Jk)<('i)'cllifcll> ^=1- Therefore the lemma holds. •

3. Algebras with dense socle which are locally F*-equivalent. The socle of a

semisimple algebra A is the sum of the minimal left ideals of A, or 0 if A has no

minimal left ideals. In this section we prove that a Banach *-algebra with dense

socle which is locally F*-equivalent is F*-equivalent. We need several facts about

minimal ideals and the socle. Assume that A is a semisimple (complex) Banach

algebra. An idempotent e of A is a minimal idempotent ofy4ife^le={Ae|A complex}.

When e is a minimal idempotent of A, then Ae is a minimal left ideal of A. Con-

versely every minimal left ideal of A is of the form Ae for some minimal idempotent

e of A; see [6, pp. 45-46]. If in addition A has an involution * with the property

that a*a = 0 implies a=0, then the idempotent e above may be chosen selfadjoint
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by [6, Lemma (4.10.1), p. 261]. We denote the socle of A as SA. Although defined

as the sum of the minimal left ideals of A, SA is also the sum of the minimal right

ideals of A. Therefore given s, t e SA, there exist minimal idempotents of A, ek,f¡,

l-¿k-¿n, l-íjíkm, such thatsee^H-YenA and t e Af-\-V Afm. By [7,

Lemma 5.1, p. 358], ekAf is either one dimensional or 0 for all k and/ Therefore,

sAt^^j ekAf which is finite dimensional. Now assume that SA = A. In this case

A has no primitive ideal which contains SA. Therefore, A/SA is a radical algebra.

Then given an idempotent g in A, the residue class g+SA is an idempotent in the

radical algebra A/SA. Since radical algebras contain no nonzero idempotents,

g e SA. Thus when SA = A, every idempotent of A is in SA.

When A' is a normed linear space, -^(X) denotes the algebra of bounded opera-

tors on X which have finite dimensional range, and ^(X) denotes the algebra of

compact operators on X.

Theorem 3.1. Assume that A is a primitive Banach *'-algebra with dense socle and

that A is locally B*-equivalent. Then A is *-isomorphic to ^(Jtf) for some Hubert

space tf.

Proof. Assume that Mis a minimal left ideal of A. Then there exists a selfadjoint

minimal idempotent/of A such that M=Af. We introduce an inner product (-, •)

on Af by the rule (x/ yf)f=fy*xf That (-, •) is an inner product on Af is verified

in [6, Theorem (4.10.3), p. 261]. When a e A, define Ta on Af by Ta(xf) = axf

xfe Af. a-+Ta is a ""-representation of A into the bounded operators on the

inner-product space Af, again by [6, Theorem (4.10.3)]. Set K={aeA | aAf=0}.

K is the kernel of the representation a^ Ta. Since KAf=0 and 0 is a primitive

ideal of A by hypothesis, then K=0 by [6, Theorem (2.2.9)(iv), p. 54]. Therefore

the representation a -> Ta is faithful.

If A is finite dimensional, then Af is a finite-dimensional Hubert space, and

a ->■ Ta is a faithful ""-representation of A onto ^(Af). In what follows we assume

thatv4 is not finite dimensional. Now we verify that^4 satisfies (l)and (2) of Lemma

2.6. Suppose that g is a selfadjoint idempotent of A such that (1 — g)A(l —g) = 0.

Let | ■ | be the unique norm on A with the ¿""-property (Proposition 2.1(4)). Then

141 -g)\2 = 1(1 -S)x|2= |(1 -£)x*x(l -g)| =0 for all xeA.lt follows that A=gAg

which is finite dimensional since g e SA. This contradiction proves that, for any

selfadjoint idempotent g of A, (1 —g)A(l -g)#0. This is (2) of Lemma 2.6. Now

assume that t e As. C(t) is ¿""-equivalent, and therefore, from [1, Corollary,

p. 517] and [8, Theorem 4.1, p. 42], C(t) has dense socle. It follows that C(t) is the

closed linear span of its selfadjoint idempotents. This verifies (1) of Lemma 2.6.

Therefore Lemma 2.6 implies that there exists a selfadjoint idempotent e e A such

that (l-e)A(l-e) is ¿""-equivalent. (l-e)A(l-e) is complete in the norm |-|.

(1— e)A(\— e) is a nonzero semisimple Banach ""-algebra with dense socle. Choose

/a selfadjoint minimal idempotent of (1 -e)A(l —e). Then ef=fe = 0 so that, for

any xe A, fxf=f(I—e)x(l-e)f=Xf for some scalar A. Therefore/is a minimal
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idempotent of A. Let (-, •) be the inner-product introduced on Af as in the first

paragraph of the proof. Let | • |2 be the corresponding norm on Af. Then for any

x e A, |x/|2 = |/x*x/| = (x/x/)|/| = |x/|2. Therefore, |-| and |-|2 are identical on

Af. Also (l-e)A(l-e)f=(l-e)Af is a minimal left ideal of (l-e)A(l-e) by

the choice of/ Then (1— e)Af is a closed, and hence complete, subspace of

(1— e)A(l— e) in the norm |-|. Therefore |-|2 is a complete norm on (l—e)Af.

But eAf is finite d;r. ^nsional, hence complete. Therefore Af=eAf® (1 -e)Af is si

Hubert space. We denote the Hubert space Af by Jif.

As in the first paragraph of the proof, a -*■ Ta is a faithful ^representation of A

into the bounded operators on 3tf. When / e SA, then tAf is finite dimensional, so

that Tt e &(3t). Let B = {Ta \ a e A}. When F is a bounded operator on ¿f, denote

the operator norm of F by ||F||0P. By Proposition 2.1(4), |a| = ||Fa||0P for all ae A.

The norm || ■ || on A dominates the norm | ■ | by [6, Corollary (4.1.16), p. 187]. A

has dense socle in the norm || • ||, and therefore A has dense socle in the norm | • |.

It follows that {Ts | s e SA} is dense in B in the norm || • ||op. Then every operator

Ta in B is the operator norm limit of operators with finite-dimensional range, so

that FciSpf).

It remains to be shown that B = ^(J^). Given Fan operator with 1-dimensional

range on Jf, then there exist c¿, i/reJf such that F(y) = (y,9)-ip for all ye/.

c4 = w/and 1/1 = 1/for some u,ve A. Then Tvfu.(xf) = vfu*xf=(xf, uf)vf=F(xf) for

all xfe Af. Therefore F=Tvfu, e B, and it follows that ^(J^)^B. Given T=T* e

^(Jif), then by the Spectral Theorem for compact operators, there exists a sequence

of real scalars {Xk}, and a corresponding orthogonal sequence of selfadjoint

projections with finite-dimensional range {Ek}, such that F=2fcf=co1 XkEk, conver-

gence being in operator norm. We have shown that {Ek}^B. Let C be a maximal

commutative *-subalgebra of F containing {Ek}. By Proposition 2.2, C is complete

in the operator norm. Therefore Te C^B, and the proof is complete.

Now we consider the general case when A is a locally F*-equivalent algebra with

dense socle.

Theorem 3.2. Assume that A is a Banach *-algebra with dense socle, and that A is

locally B*-equivalent. Then A is B*-equivalent.

Proof. Just as in the proof of Theorem 3.1, there exists a selfadjoint idempotent

e in A such that (1— e)A(l-e) is F*-equivalent. Also since A has dense socle,

e e SA. If/is a minimal idempotent of A, then (AfA)~ is a minimal closed two-sided

ideal of A. It follows that every element of the socle of A is contained in a finite

sum of minimal closed two-sided ideals of A. Furthermore, if M and Af are distinct

minimal closed two-sided ideals of A, then M-N^M n ^=0. Therefore there exist

minimal closed two-sided ideals of A, Mk, l^k^n, such that e e Mx + M2+ ■ ■ ■

+ Mn and MkM, = 0 when k^j. Also setting 0={x e A \ xMk = 0, ISk^n} then

SA<=Mx © M2@- • •© Mn© D. Denote this sum a> B. Each Mk is a closed

*-ideal of A with dense socle and a primitive ? ^bra. Therefore by Theorem 3.1,
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Mk is ¿""-equivalent for 1 <£<;«. Since es Mx@- ■ ■© Mn, then Z)<=(1 -e)A(l -e).

Therefore the closed ""-algebra D is ¿""-equivalent. Then B is ß*-equivalent, hence

complete in the norm | ■ |. But since SA<^B, B is dense in A in the norm | • |. Then

A = B which completes the proof.

4. The main result. In this section we assume that A is locally ¿""-equivalent,

and that whenever t e As, the spectrum of / is at most countable. Then the spectrum

of t is totally disconnected, and it follows that C(t) is the closed linear span of its

selfadjoint idempotents; see [6, p. 293]. We prove now that A is ¿""-equivalent.

Theorem 4.1. Assume that A is a Banach *-algebra which is locally B*-equivalent

and which has the property that whenever t e As, then the spectrum of t is at most

countable. Then A is B*-equivalent.

Proof. We assume that^^O. When Fis a subset of A, letF[F]={a eA | aF=0}.

By [1, Theorem 2.3, p. 513], L[SA] = 0. Also SA is ¿""-equivalent by Theorem 3.2.

Let./ be the set of all closed ""-ideals I of A which are ¿""-equivalent and have the

property that L[/] = 0. J is partially ordered by inclusion and nonempty since

SA e J. Let <€ be any chain in J. Set K= (J7ey J. Suppose for some selfadjoint

idempotent/in K, (1 -f)K(l -/) = 0. Then (1 -/)xx*(l -/) = 0 for all x e K, and

therefore (l-/)x = 0 for all xeK. Then A(\ -f)<=L[K] = 0, so that / is a right

identity for A. But/e/for some J in e€. In this caseJ=A, and we are done. There-

fore we may assume that (1 —f)K(l —f)=£0 for every selfadjoint idempotent/e K.

Assume now that / e Ks. Then t eJ for someJetf, and then C(t)<=Jc:K, since/is

closed. Also C(t) is the closed linear span of its selfadjoint idempotents by the

remarks preceding the statement of the theorem. This verifies (1) and (2) of Lemma

2.6. Therefore there exists a selfadjoint idempotent e e K such that (1 —e)K(l —e)

is ¿""-equivalent, e e J for some J in <€ and J is ¿""-equivalent. Let | • | be the unique

norm on A with the ^""-property. J and (1 —e)K(l —e) are complete with respect to

|-|. Assume {x„}c:K and |x„ —xm| -> 0. Set yn = (l-e)xne + exn. Note that {y„}<=J.

Then for all «g 1, .vn = (l -e)xn(l —e)+yn. Then {yn} is Cauchy in J and (1 — e)xn

(1 — e) is Cauchy in (1 — e)K(l —e) in the norm | • |. It follows that {xn} converges in

A'in the norm | • |. Therefore Ais a closed ¿""-equivalent ""-ideal of A in J, and Kis

an upper bound for (€. By Zorn's Lemma J has a maximal element /. Suppose that

Ij^A. A/I is locally ¿""-equivalent by Proposition 2.3. A/I is semisimple, and every

selfadjoint element in A/I has at most countable spectrum. Let F be the closure

of the socle of A/I in A/I. Note that F^O by [1, Theorem 2.3, p. 513]. Let M =

{xeA | x + Ie T}. M is a closed ""-ideal of A which properly contains /. Also

M/I=T. I is ¿""-equivalent, and by Theorem 3.2, M/I is ¿""-equivalent. Therefore

by Lemma 2.4, M is ¿""-equivalent. This contradicts the maximality of F Therefore

A=I, so that A is ¿""-equivalent.

Corollary 4.2. Assume that A is a Banach *-algebra which is locally B*-equiva-

lent and such that A has a separable dual space. Then A is B*-equivalent.
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Proof. Let | ■ | be the unique norm on A with the F*-property. Given / e As, there

exists a number m>0 such that m\a\ > ||a|| for all a e C(t). Since the dual space of

A is separable, then the dual space of C(t) is separable. If </> and i/r are any two

distinct nonzero multiplicative linear functional on C(t), then

¡¿--AH = sup {\(<b->/>)(a)\\ a eC(t),\a\\ Ú 1}

ê (I/m)sup{|C^-0X«)| | aeC(t), \a\ < 1} - (2/w).

It follows that the carrier space of C(t) is at most countable. Therefore the spectrum

of / is at most countable. Then the corollary follows from Theorem 4.1.

Corollary 4.3. Assume that A is a Banach *-algebra with the property that,

whenever t e As, then the spectrum oft is at most countable. Then if\/ operates on A,

we have A is B*-equivalent.

The corollary follows from Theorem 4.1 and [5, Corollaire, p. 169].

Corollary 4.4. Assume that A is a Banach *-algebra with the property that,

whenever t e As, then the spectrum oft is at most countable. Then if every orthogonal

sequence of selfadjoint idempotents of A is bounded, we have A is B*-equivalent.

The corollary follows from Theorem 4.1 and the results of Katznelson [5, pp.

167-169].
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