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A SUFFICIENT CONDITION FOR THE LOWER

SEMICONTINUITY OF PARAMETRIC INTEGRALS

BY

EDWARD SILVERMANC)

Abstract. We use simple convex functions and standard techniques in area theory

to treat Morrey's extension of McShane's lower semicontinuity theorem for para-

metric integrals. This enables us to eliminate some technical hypotheses, simplify the

proof and obtain a more general result.

We make use of "simple areas" to obtain a somewhat strengthened version of

a result of McShane concerning the lower semicontinuity of parametric integrals

([1], [2, p. 360], [4], [5]). The essential idea of a simple area is that the convex

functions in the appropriate exterior product space have supporting linear func-

tional which are simple. For the k-dim problem in Ek + 1, this condition is auto-

matically satisfied and hence does not appear in [1]. If the integrand is simple, or

a suitable convex function of simple areas, then the version of McShane's Theorem

obtained in this paper is exactly the same as the analogous theorem for Peano area,

and the method of proof differs but slightly from that used in the elementary theory

of that area.

All of the remaining references are to [3].

If If7 is a real normed finite-dimensional vector space let f\k W be its kth ex-

terior product. If pe Wk let p = (p,,.. .,pk) and f\ p=p, A • ■ • A pk where each

Pi e W. If a e f\k W and if a= f\p for somep e Wk then a is simple. Let W, be the

closed unit ball in W and let W be the dual of WAfqe W'k then q = (q1, ...,qk)

where each qi e W.

Let F be Euclidean space with Ar^dim F<oo. Let T= f\k E and T' = (/\kE)'

X /\k E'. Let 5 and S' be the simple elements in F and F', respectively. Let ex e Rk

where e{ = 8{ for i,j= 1,..., k.

Let i/i be a continuous nonnegative valued function on Ex T. Let w(a) = inf ^a|Fi

and M(a) = sup ^„iFi. Evidently m and M are continuous. Suppose from now on

that </>a is convex and positively homogeneous of degree one for each a e E. Let

A ={a e E \ m(a)>0} and let 6 be defined on T' xA by

ea, a) = max {[«, £] | 0(a, a) S 1}
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so that

á 6(1, a) = max
M (a) a*o >/i(a, a)     m(a)

Let t be defined on 7" x F by

t(£, a) = l/0(£, a)   if £ ^ 0 and a e.4,

= 0 otherwise.

Lemma 1. t{ « /ower semicontinuous, and t¿A is continuous.

Proof. We can suppose £^0. Let F be a compact subset of A. It is sufficient to

show that TÇ|F is continuous. Let w0 = min m|F and M0 = max M|F. Then 0<m0

= M0 < oo. Let a, b e K. There exist a, ß e Fj such that t(£, a) = </>(a, a)[a, £] "1 sind

T(r,,b) = ifj(b,ß)[ß,t.]~1. Let e>0. There exists S>0 such that |^(A, y)-^(a, y)\

èe\\y\\ for all ye F provided a, be K sind \\a-b\\ <8. Hence

r(l, b) Ú W>, «)[«, Ç]-1 = r(£, a)0(O, «^(a, a)

^ T({,a)[0(a,«) + e]0-1(a,a) ^ T(f,fl) + T(£,fl)«fi0-1

so that r({,b)-T(l,a)SM0\\l,\\-1emô1. We conclude that |tc(c)-t{(í/)| ^

il/0|S|| -^o"1« if c, ¿e F and ||c-i/|| < S.

Let A e F and ß e F. Since i/i„ is convex there exists £ e 7" such that [j8, £]

= i/>(o, j8) and lik^t,. If for each cc 6 S, ^„(a) = sup {[a, l] \ t,ú</>b and £ e S'} then c4¡,

is simple. Thus, ¡/> is simple if for each be E sind ß e S there exists £ e S' such that

U^ and [ft £] = -A(A,£).
We assume through Theorem 2 that i/r is simple.

If r) e £'fc let 7)*eL(E, Rk) be defined by »?*é = 2f [o, i/'kc

If T'eL(E',E') let T'r] = (T'r]1,. . .,T'rf)eE'k and let TeL(E,E) be defined

as usual by [Tb, Ç] = [b,T'£] for all AeF and £eE'. Of course detF=detF'.

Furthermore F(t?*A) = 2¡ [Tb, Vk = L [6, FVkt = (F'r))*o.
Let (2 be an open subset of oriented Rk and let C be the space of continuous

functions on Q into F with the topology of uniform convergence on compact

subsets of Q. If x e C and r¡ e E'k then, by the preceding paragraphs, r¡*x is a flat

map from Q into F". If q e Rk and F is a bounded domain whose closure V is

contained in Q then K + (q, r¡*x, V) is the essential positive multiplicity with which

r¡*x\V takes on the value q [3, p. 155], If f(q, x)-K + (q, r)*x, V) then/is lower

semicontinuous on RkxC with the product topology [3, pp. 155-163]. Further-

more, if Fis a sense-preserving homeomorphism of Rk onto itself, then

K + (Tq, T(r,*x), V) = K + (q, V*x, V).

Finally, if {Vn} is a sequence of pairwise disjoint domains in V, then

^K + (q,r,*x, Vn)^K + (q,v*x, V),
n

i.e. K+ is superadditive.
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Lemma 2. // f, t¡ e E'k and //"Af=Al tnen

f   # + (<?, f*X, V)dq=\   K + (r, v*x, V) dr.

Proof. There exists T eL(E', E') with det T' = l such that C = T'r¡. Let g=7>.

Since T(-n*x) = (T'rj)*x, K + (r, r¡*x, V) = K + (q, |*x, V), and the lemma follows.

If £ £ 5" and £ = /\ f for some £ e F'fc, we can, by the lemma, define Jf+(£, x, F)

=Jj» JC+fa, i*Jf, V)dq.
Let "^ be the collection of bounded domains V with K<= g. If x g C, £ e 7" and

Ve r let //(x, P, £) = min {r(£, xQO) | p e F}.

Lemma 3. Let g(x) = H(x, V, £). Then g is lower semicontinuous.

Proof. Fix x. We can suppose that g(x)>0. Thus x(V)<=A. Hence there exists

S>0such thaty(V)<=A if\\x-y\\<8. For such y,

\g(x)-g(y)\ S max |r(£, *(/>))-t(£, y(p))\.
pev

Since rc is continuous on A, the lemma follows.

Let Fix, V, Q = H(x, V, C)Jír+(í, x, V) with the understanding that 0-oo = 0.

Lemma 4. Let h(x) = F(x, V, £). Then h is lower semicontinuous on C.

Proof. For fixed Fand £ both H(x, V, £) and Jf+(£, x, V) are nonnegative and

lower semicontinuous. Hence so is their product.

Now let Z be the collection of finite subsets of f whose distinct elements are

disjoint. We define a Peano-type area F„, on C by

F„(x) = sup 2 sup F(x, V, £).
ceZ Veer CeS'

The following theorem is an immediate consequence of the definitions and

Lemma 4.

Theorem 1. P^ is superadditive and lower semicontinuous.

If £*x is essentially of bounded variation or essentially absolutely continuous

[3, pp. 249, 251] for all f e E'k then we say that x is eBV or x is eAC, respectively.

If x is eBV then we define //(|*x) to be the Lebesgue derivative (with respect to

cubes) of Jf + (£, x) where £=A £> arm Jë(i*x) is the Lebesgue derivative of

Jf + (-£, x). Thus Je+(è*x)-J-(Ç*x) = 0 almost everywhere [3, pp. 257-258]. Fur-

thermore, if Ve-T then ¿f+(£, x, K)2:jV./e+(£*x) whenever x is <?ßK and the

equality holds if x is eAC [3, pp. 250-251]. If x is differentiable then /\ x' = x, A

A xk and [A x', £] =7(£*x) where y is the ordinary Jacobian. If x is eBV we define

[A x', £]+ =yc+(^*x) whenever the right-hand side exists, which is almost every-

where. If x is differentiable then i/>(x, A x') = sup {t(£, x)[/\ x', £] | £ e 5'}. Since >/>

and rare nonnegative, ¡/<(x, f\ x') = sup{r(£, x)[A x', £]+ | £eS'}. If xiseBVweuse

this last equation to define >j>(x, A *') and let I^(x)= j0 </>(x, A •*')•
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Theorem 2. If x is eBV then P^(x) S /#(jc) and the equality holds if x is eAC.

Proof. If £e5" then P„(.v| F)SF(.v, V, £) for all V e"T. Thus 7>P^S

T(£> x)[/\ x', £]+ almost everywhere where DP^(x) is the Lebesgue derivative (with

respect to cubes) of F^(.v). Since P$ is superadditive and the above inequality holds

for all £, we get F^(.v| V) S F(.v| V) for all V e V. Hence P*(x) > /„(*). Now let x be

eAC. If Í G S'then i/>(x, Ax')£T(t,x)[Ax\ £] + . Hence F(.v| F)SF(x, £, V) for all

Ve-T. Thus /^(.v)SF^(.y) if x is eAC.

If .v and _y are in RM, we write x¿y if x'¿y( for i=l,..., M. Let

RX = {-v e RM | x S 0}.

Similarly, let Rt,={peRM = (RM)' \ p S 0}.

Lemma 5. Let fe C(F + ). Suppose that f is positively homogeneous of degree one

and convex withf(x)^f(y) if x^y. If xn e Rf, and //x = lim infn xn then

f(x) Ú lim inf/(*„).
n

Proof. Let P={p e F¿ | pi=f}- It is not hard to see that

f(u) = sup {[u,p] \peP}.

Thus

f(x) = sup [x,p] g sup lim inf xn, p

^ sup lim inf [xn, p] = lim inf sup [xnp] = lim inf/(xn)
n n n

where the suprema are taken over all p e P.

Now let 0 be nonnegative and positively homogeneous of degree one on R+ such

that 0(jc)a $>(y) if xSy and <I>(lim infn .vn) = lim infn <i>(xn) whenever xn is a se-

quence in R+. The functions described in the last lemma satisfy these conditions.

Let i/ix,..., 4>m be simple on FxFand let </>(a, a) = fi(i/i1(a, a),..., tf>M(a, a)). (The

idea of using some such </> is due to John Breckenridge.) If £ = (£\ ..., £M) e S'M,

where each £f g S', let

F{x, V, £) = (Fx(x, V, £*),..., FM(x, V, £"))

where F¡(.v, F, £') is defined relative to \f>¡ as F(x, V, £') was defined relative to ¡A.

We define

P¿x) = sup 2  sup c4(F(x, K, £)).
<jeZ   Ve<r CeS'M

The following theorem is immediate.

Theorem 3. F¿, is superadditive and lower semicontinuous.

If x is eBV let 7„(jc)=J'<} </>(x, Ax').



1972] LOWER SEMICONTINUITY OF PARAMETRIC INTEGRALS 469

Theorem 4. If x is eBV then P0(x) 2:10(x) and the equality holds if x is eAC.

Proof. One first observes that, for fixed x and £ e S'M, <b(F(x, -, £)) is super-

additive. The proof of Theorem 2 then goes through virtually without change.

Let xe C. Then x is eAC under a variety of conditions, in particular if x is

Lipschitzian and, if k = 2, x is eAC if xe H2 [3, pp. 374-377, 436].

It is easy to see that there also exists a Lebesgue-type area L0. Let

L^(x) = liminf/^z)
z-*x

where z is quasilinear. (If Q is not polyhedral, there is a slight additional complica-

tion which also arises for ordinary Lebesgue area.) It is easy to see that L^x)

2^Ftf>(x) and the equality holds for sufficiently nice x.
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