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CORRESPONDENCE BETWEEN LIE ALGEBRA
INVARIANT SUBSPACES AND LIE GROUP INVARIANT

SUBSPACES OF REPRESENTATIONS OF LIE GROUPSC)

BY

JOEL ZEITLIN

Abstract. Let G be a Lie group with Lie algebra 9 and 8 = u(g), the universal

enveloping algebra of 9; also let U be a representation of G on H, a Hubert space,

with dU the corresponding infinitesimal representation of 9 and S. For G semisimple

Harish-Chandra has proved a theorem which gives a one-one correspondence

between dU(o) invariant subspaces and U(G) invariant subspaces for certain

representations U. This paper considers this theorem for more general Lie groups.

A lemma is proved giving such a correspondence without reference to some of the

concepts peculiar to semisimple groups used by Harish-Chandra. In particular, the

notion of compactly finitely transforming vectors is supplanted by the notion of Ar,

the A finitely transforming vectors, for A s ». The lemma coupled with results of R.

Goodman and others immediately yields a generalization to Lie groups with large

compact subgroup.

The applicability of the lemma, which rests on the condition sA/SA,, is then

studied for nilpotent groups. The condition is seen to hold for all quasisimple

representations, that is representations possessing a central character, of nilpotent

groups of class ^2. However, this condition fails, under fairly general conditions, for

9 = Ni, the 4-dimensional class 3 Lie algebra. Nt is shown to be a subalgebra of all

class 3 g and the condition is seen to fail for all 9 which project onto an algebra

where the condition fails. The result is then extended to cover all 9 of class 3 with

general dimension 1. Finally, it is conjectured that gA/çrA/ for all quasisimple

representations if and only if class s = 2.

0. Introduction. Let G be a Lie group, g its Lie algebra and u(g) the enveloping

algebra of g. A will be the sum of the squares of a basis for g in u(g), and n a

representation of G on a Banach space H. The space of (infinitely) differentiable

vectors for n, //™(w), is given by {v e H | the function g i-> n(g)v is C* on G}. dn is

defined for Xe g and v e H™ (n) by

dn(X)v = lim A^Hexp hX)v-v].
h->0

The analytic vectors, Ha(n), are given by Ha(n) = {ve H\ the map g>->n(g)v is

analytic on G}. The analytic vectors are of critical importance in integrating
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representations of g to representations of G. For an operator A in H, a(A), the set

of analytic vectors for A, is given by

( œ ¡Z,  II A'vW ~\
a(A) = 4 v e f| Dom (¿') | (3j > 0) 2 ^r1 s' < oo \.

V       1=1 i=l    J- )

For G semisimple K will denote the analytic subgroup arising from a maximal

compact subalgebra of g. A vector v is compactly finitely transforming, i.e. ve Kh

if v is contained in a finite-dimensional space which is invariant under tt(K).

Harish-Chandra [6] used K, to show the density of analytic vectors for an im-

portant class of representations of semisimple Lie groups. Subsequently, Nelson

[9] established that a(d-rr(A)) is dense and contained in H"^) for 7r any unitary

representation of a Lie group.

For i/ie Kf let t/=i/7r(u(g))i/i. Harish-Chandra [6] also showed that under certain

conditions t/£//w(7r) and there is a bijective correspondence between ^(g)

invariant subspaces of U and closed 77(G) invariant subspaces of Cl (U), the closure

of U. In order to find a subspace on which such a correspondence holds, for general

G it seems natural in the light of Nelson's work to consider subspaces defined in

terms of a single operator arising from u(g) under a representation 77. For the

group of strictly upper triangular 3x3 matrices drr(A)f, where A is computed with

respect to the usual basis of g, the sum of íAt(A)'s eigenspaces provides an

example of a space on which such a correspondence holds. This paper considers

the suitability of diT(b)f for b e u(g) as a space where we can develop a correspon-

dence for general Lie groups. This space, or more specifically dn(A)f, has also

been of interest as a convenient subspace of analytic vectors on which to study the

action of operators arising from u(g) for many Lie groups.

In §1 a criterion for an invariant subspace correspondence is proved. §2 investi-

gates conditions under which this criterion is applicable. The algebra invariance of

dir(b)f is seen to be critical to the criterion and this condition is considered in §3.

§4 gives an example of a low-dimensional nilpotent group A/4, for which dn(A){

is not algebra invariant for a large class of representations. §5 considers the

invariance of dn(A)t for arbitrary nilpotent groups.

Many details and much of the spirit of this paper and my thesis are due to my

thesis adviser Professor R. J. Blattner. It is a pleasure to acknowledge my gratitude.

In what follows we will set 93=u(gc) for g real and 33 = u(g) for g complex, dv

is understood to be the representation of g or S3 on H°°(tt). <a,..., z) will denote

the linear span of the elements {a,.. .,z} and 2 Aj will denote the linear span of

IM-

1. A criterion for correspondence. We begin by introducing some concepts we

will need.

Let A be an operator in a Banach space H. HAK will denote the eigenspace of A

corresponding to the eigenvalue A. When speaking of a fixed be 33 and a fixed
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representation dn we write HK or Hb¡K for Hdn<b)¡Á. Af, the set of A finitely trans-

forming vectors, is defined by Af={ve H |3 a finite dimensional subspace

V^dorn A with ve V and A V^ V}. We will write b¡ for dn(b)f unless we wish to

specify the representation.

Now let A be a symmetric operator in a Hubert space H. Recall that A's eigen-

values are real and that different eigenvalues give rise to orthogonal eigenspaces.

It is easily shown that A, = 2 HAX, and that this sum is direct where A runs through

all eigenvalues of A. In particular any A invariant subspace V of A, is generated

by eigenvectors and F=2 V(~\ HAX.

Proposition 1.1. For A a positive self adjoint operator in a Hilbert space H we

define fractional powers of A using the spectral resolution EK of A, so that

Am = jZao Am dE^for m a positive rational number. Then we have

Af = ((a + bA)m + c)f

provided a + bA is positive (a, b, c are constants with b = 0). If A has no kernel, then

we can allow m<0, as well.

Combinatoric arguments lead to a proof that a(B) = a(aB+ß) for a, ß constants

with a^O. If A is symmetric then Af^a(A). Also, if A and B are essentially self-

adjoint and have commuting spectral resolutions, then A S: B > 0 implies A' 5: Bj ä 0

which in turn implies a(A)^ a(B). In the case of a unitary representation U we have

the following chain of spaces due to Nelson [9] and Goodman [4]: Af^a(A)

ça(All2) = H<°(U) where A = Cl (l-dU(A)), the closure of 1 -dU(A).

The following theorem gives a general criterion for the desired sort of equivalence.

Theorem 1.2. Let n be a representation of the Lie group G on a Hilbert space H

such that n(G)*^n(G) and let b e 33. Suppose

(1) dn(Q)bfç=bf,

(2) b^H°>(n),

(3) dim HbtK<cofor all eigenvalues X, and

(4) dn(b) is a symmetric operator in H.

Let M' be the set of dn(S&) invariant subspaces of(dn(b))f and let M be the set of

closed n(G) invariant subspaces of Cl (dn(b)f). Then there is a 1-1 correspondence <p

from M' onto M given by y(V') = Q\ (V) and <p~\V)= Vn (dn(b))¡ for V e M'

and Ve M.

Before giving a proof we establish a lemma.

Lemma 1.3. Let n be a representation of a Lie group G on a Hilbert space H such

that n(G)* £ 77-(G) and let beSQ. Suppose dn(b) is symmetric, dn(b)f is dense in H and

dn^f^H™. Let p(g) = n(g)\Kfor allge G where K is a closedn(G) invariant sub-

space of H. Then dp(B)f is dense in K and dp(b)¡ = dn(b)f n K.
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Proof. Since //is a Hubert space //=A"+A1 (direct sum) where A"1 is the closed

orthogonal complement to K in //. Let P and P1 be the projections onto A and K1

respectively.

A is G invariant and K1 is G invariant too, since tt(G)*Çtt(G). If ve H00, then

since P and PL are continuous and linear, Pv and PLv are in //a> also. Moreover,

K™(p) = Hx(tt) n A: and K1"(p1) = Hcc(tt) n A"1 where / is the representation of

AT1 induced by 7r.

We now show dTT(b)f = dp(b)f + dp1(b)f. Let us consider veHinib)tÁ. Then AP/j

+ AP-L7j = Az; = íf7r(¿))t; = íf77(6)P/j + í/77(A)P±t;. Since A and A1 are tt(G) invariant,

Kco(p) and Klx,(Pl) are <Ar(33) invariant. Hence 0 = (dTr(b)-X)Pv + (dTr(b)-X)P1v

so that Pv and P1»; are in H¿„m¡K. Thus HMb)^ = KdBmt„ + KdLßi{bhK (direct sum)

and we have shown ¿77(6)/ = dp(b)f + dpl(b)r (direct sum).

Suppose now that Cl (dp(b)r) # A. Then there is a nonzero k e A such that

k_Ldp(b)f. But then k±dP1(b)f and so A:J_C1 (dp^r + dp^b),) or AJ_//. Thus A: = 0

and so Cl (dp(b)f) = A.   Q.E.D.

Proof of Theorem 1.2. We define the maps <p and <p by <p(V') = Cl(V) for

J7' g M' and y(F)=Fnl)/ for Ve M. We show (a)<p is a map from M' into M,

(jS)<p is a map from M into Af', (y)<poç> = /', the identity operator on M', and

(8)<p ° <p = Z, the identity operator on M. This then shows <p is 1-1 and the theorem

holds.

(a) <p maps M' into M. For V e M', <p(V') = C\ (V). Harish-Chandra [6] shows

that a dTr(a) invariant subspace of Ha(Tr) has 77(G) invariant closure. V e M' and

so V is dn(a) invariant and V^bf which is contained in Ha(Tr) by hypothesis (2).

Thus <p(K') = Cl (K')sCl (b,) and <p(V) is 77(G) invariant so <p maps M' into Af.

(/J) <p maps Af /«to A/'. For Ve M, <p(K)= K n A,. We must show K n Ar is a

i/rr(g) invariant subspace of b,. Now, for re Vc\bs and A'e g,

7r(exprA>-i)
dir(X)v = hm ——        -

(-•oo «

which is a limit of objects in the 77(G) invariant closed subspace V so d-n(X)v e V.

On the other hand, vebf and hypothesis (1) tell us that d-n(X)v e b¡. Thus

drr(o)(V c\bf)<^V n bf and so <p maps Af into Af'.

(y) 9 ° 9 = I'> the identity operator on M'. For V e Af', <p o <p(V') = Cl(V) n b,.

We must show K' = C1(K') n A,. Now P'aô/ and K'^Cl(r) so we must now

show Cl (V) n A,ç V. In light of hypothesis (4) and the comment just before

Proposition 1.1, V'=J,Vr\HA and Cl (V) n 6/ = 2 Cl (V) n //A (where A

runs through the eigenvalues for each of these sums). Also V n HK^Cl(V)

n HX^HX for all A and each of these subspaces is of finite dimension by hypothesis

(3). Suppose V n HAo^Cl(V) n /fAo for some A0. Then we select v0e Cl (F')

n //*0 such that u0 _L K' n //Ä0. But then 0/d0e Cl (K') while c„ll"n //A for

Xjí A0 and so i;0 J_ 2 K' n #a or t>0 J_ K'. This is a contradiction and so V n //A

= C1 (K') n //A for all A. Hence F' = C1 (K') n A, and f°9=I'.
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(S) <p°<p = I, the identity on M. We show Cl (V r\bf)=V. V is closed and

V n A;£ V so Cl (V n èr)s F. The other inclusion follows from Lemma 1.3 with

V= K and U playing the role of H.   Q.E.D.

The proof of this theorem was inspired by Harish-Chandra's proof of his theorem

on correspondences.

The following example served as a model for this theorem. Let G3 be the real

Lie group

T    x   z~

0    1    y

0    0    1

The corresponding Lie algebra N3 = (X, Y, Z> where

X =

0 1 0'

0 0 0

0   0   0

Y =

0   0   0"

0   0    1

0   0   0

z =

o o r
ooo

ooo

Von Neumann has shown the following: The set of nontrivial unitary irreducible

representations of G3 are given (up to equivalence) by the representations Uh on

L2(R) where

T    x   z~

V* 0    1    y

0   0    1

/ (i) = eiMz+wf(t+x)

for any nonzero A e R. dU^(N3) then acts on /Y°°(i/^) which is equal to S(R), the

Schwartz space of rapidly decreasing functions on R, dUA(X) is d/dt, dUÁ(Y) gives

multiplication by ;7A and dUx(Z) is multiplication by iX. Thus for A=X2+ Y2+Z2

we have

[dUK(A)f](t) = f"(t)-X2(t2 + l)f(t)   forfe S(R),

a "generalized" Hermite operator. In fact, for A= 1, dUx(&) is exactly the Hermite

operator plus a constant and thus has the same eigenvectors as the Hermite

operator; viz.

fn(t) = (- 1)» exp (t2/2)(d»/dr) exp (-t2).

The/n's span P[t] exp ( — t2/2), where P[t] is the set of polynomials in /, and form

a complete orthonormal base, and each eigenvalue has multiplicity one.

P[t] exp ( — i2/2) is dt/^Ay-invariant and is irreducible. More generally, for

A/0, {/n exp (- |A|r2/2)}"=0 provides an orthogonal basis composed of finite sums

of eigenvectors. The span, P[t] exp (— |A|/2/2), is again irreducible and invariant.

In Theorem 1.2 the necessity for requiring that dim /76>A<co can be seen by

considering the representation n = (Ux)a, the direct sum of countably many copies

of Ul
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2. Conditions under which Theorem 1.2 may be applied. We now give results

which can be used in applying Theorem 1.2. We assume that U is a unitary repre-

sentation of a Lie group G on a Hilbert space H.

For any formally symmetric b e 33, dU(b) is symmetric, so hypothesis (4) is

satisfied for such an element. Recall that b is formally symmetric if b=b+ where +

is the conjugate linear anti-isomorphism which extends the map Xv-> -X from

g to 33.

Suppose b = A for some choice of basis of g. Then hypothesis (2) is satisfied.

In fact, //A-yça(A) and so A^cu^A) (A is formally self/adjoint and so dU(A) is sym-

metric). Also, Nelson has shown in his paper on analytic vectors [9] that ct(A)s>7m

and so hypothesis (2) holds.

Hypothesis (3) is satisfied for b = A and U a (unitary) irreducible representation

of a CCR group. In fact, Nelson and Stinespring [10] have shown that for all

A>0 there is a function kAe L\G) such that [A - Cl (dU(A))] "1 = Ukl. (Recall

that Uf = \Gf(g)U(g) dg as usual.) Thus if U is irreducible unitary and G is a

CCR group then Uk]i is a compact operator. [1-C1 (dU(A))]'1, [1 -Cl (dU(A))]

and dU(A) all have the same eigenvectors so that the eigenspaces have finite dimen-

sion and also Af is dense. Nelson and Stinespring's work [10, see the proof of

Theorem 3.1] along with Langlands' work leads to a consideration of the case

where A is replaced by a strongly elliptic element b e u(g) (which is the infinitesimal

generator of a bounded semigroup).

We can compare the condition dim HA>A < oo with an analogous condition used

by Harish-Chandra [6] for semisimple G. For ï a maximal compact subalgebra of

g let K be the corresponding analytic subgroup of G. For âeil, the equivalence

classes of finite-dimensional irreducible representations of K, we define Ha

={ve H\ 3 a finite dimensional V^H-3n(K)\v is a sum of elements in 3>).

Harish-Chandra defines K¡ = 2s>eQ fía and shows K¡ is dense for a large class of

representations. Harish-Chandra's correspondence theorem requires that dim Ha

< co for all 3¡ e £2. We now give some results which compare these two approaches.

For a compact subgroup K of an arbitrary Lie group G or AT as in the preceding

paragraph we say K is large if dim Ha < °o for all 2 e Q. and all unitary irreducible

representations of G. Harish-Chandra [6] showed that the A" arising in the previous

paragraph is large. Nelson and Stinespring [10] showed that Lie groups with large

compact subgroup are CCR.

The next result is from a preliminary version of a paper by Goodman [5].

Theorem 2.1. Let K be a large compact subgroup of the Lie group G and let n

be a unitary irreducible representation of G in a Hilbert space H. Since K is compact

there is an AdG (K) invariant inner product on g. Let {Xk}k=1 be an orthonormal

basis for g with respect to this inner product and set A = 2? = i X% and

A = Cl [1 -dn(A)]. Then A, = K, and dn(o)Af^A,.

It is also clear that dim >7AiA < oo for each eigenspace of A.
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Proof. Nelson and Stinespring [10] have shown that G is CCR and that A'1

is a compact operator. Hence A has discrete spectrum {An}™=1, An -> oo with finite

multiplicity for each eigenvalue, and ^/ = 2™=i Ha,^-

Now Ad (A)A = A by the way we selected A and so ad 7A = 0 for Te I, the

subalgebra of g corresponding to A. Thus if ke A, 77(fc)í/77(A) = í/7r(A)77(/c). Since

the eigenvectors for A lie in H™(tt) [9] it follows that the HAtK are Ainvariant and so

AfZKf. Conversely, if ve Hx(tt), let vn = Env where En is the projection onto HAAn.

En commutes with the action of A and so En: H$ -> H$. Suppose v e H¡¿ and let

V=tt(K)v. EnV^Hs for each n. Since dim //@<oo, only finitely many vn's are

nonzero. Thus ve A¡ and Kf^Af.

The g-invariance of A, and thus of A, is now due to a result of Godement [3,

Lemma 26].    Q.E.D.

Now consider G a connected semisimple Lie group and let g = f +p be a Cartan

decomposition. Assume that A, the subgroup corresponding to ï, is compact and

form an orthogonal basis X,,..., Xm of Í and an orthogonal basis Xm+1,..., Xn

of p (with respect to the Ainvariant inner product). If we set A=2?«i X? tnen we

have U(K)f = dU(A)f for representations which send z(93), the center of 93, into

scalars. In fact,

is the Casimir element and is known to be in z(S3). The problem then reduces to

showing (AK); = Kf where AK = (A — c)/2 (the Casimir element for A). One can now

prove Kf = 2 H® and 2 H9 = (^k)í using the theory of representations of compact

groups.

We can also see that in this case if U is unitary and [1 — Cl (dU(A))] ~1 is compact

then dim//A-A<co. Since A — 2A* is a constant we have dim //A/,-A<co. AK is

equal to a constant p on H® so Hs^HAk¡1¡. Thus dim //@<co.

3. The condition Qbfçbf. We have seen that application of Theorem 1.2 for

irreducible unitary representations of CCR Lie groups rests on condition (1)

Qbf^bf. The remainder of this paper is mainly concerned with this condition.

Harish-Chandra showed that K¡ is g-invariant for a large class of representations

of a semisimple Lie group G. Godement [3] enlarged this to cover groups with

large compact subgroup. In the case of the representation U, of the group G3 for

b = A we find Af = P[t] exp (-t2/2) and i/C/1(g) = <A/1, Aff, A> where M, is

multiplication by / and Dt is differentiation with respect to /—clearly gA7g Af.

Roe Goodman established [5] that condition (1) fails for unitary irreducible

representations of the solvable "ax+b" group. It was hoped that the condition

would, however, hold for unitary irreducible representations of nilpotent groups.

The following lemma indicates how the commutation relations of the group play

a critical role in A/s invariance.
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Lemma 3.1. Let <p be a representation of g, let a,beS& and suppose <p(b) is sym-

metric. Then cp(a)bfQbf if and only if<p([b, a])bf^br. Thus ç>(g)A/çA/ if and only if

<p([b,Q])bf^bf.

Proof. Note that <p(b)bfzbf. Thus if <p(a)bf^bf, then <p([b, a])bf = <p(b)cp(a)bf

— <p(a)(p(b)bf^bf. For the converse implication suppose <p(A)t>=Ai> and let V2 be a

finite-dimensional ¿»-invariant subspace containing <p([b, a])v. We set V0 = <<p(a)t>>

+ V2. Now <p(b)[<p(a)v] = cp(ab)v + <p([b, a])v = Xrp(a)v + qo([b, a])ve V0. V0 is thus a

finite-dimensional <p(b) invariant subspace which contains <p(a)v and so <p(á)v e b,.

The final statement is easily proved by applying the first statement to a basis

for g.    Q.E.D.

Corollary 3.2. Let <p be a representation of an abelian Lie algebra and let

be Se be such that <p(b) is symmetric. Then <p(Q)bfÇbf.

The proof is immediate from the lemma so condition (1) does hold for abelian

groups.

Recall that a Lie algebra g is nilpotent if ad Zis a nilpotent endomorphism of g

for each Xe g. The class of g is one less than the length of the composition chain

g2[g, g]3.--2[g, [g, ...[g, g]...]={0}.

Standard results on nilpotent groups including Jordan-Holder bases, determina-

tion of the representation spaces and the form of the irreducible unitary representa-

tions can be found in Pukánsky [11] and in Kirillov [7].

Given a representation ^ of g we will always consider it to be a representation of

33. We say 93 is quasisimple if q> maps z(33) into scalars. For n a representation of G

we say n is quasisimple if dn is. (This definition is a slight generalization of the one

given by Harish-Chandra. It also includes irreducible unitary representation.)

In the above case 95 is a linear functional on z(g) and thus we can often restrict

ourselves to the case where dim z(g)= 1. x, the central character of 9, is given by

9(b) = x(b)\ forbez(S8).

Proposition 3.3. Let g be a nilpotent Lie algebra of class 2 or 1 and let <p be a

quasisimple representation of g. Then <p(g)A;ç Ar/or any second order element A

such that <p(A) is symmetric.

Proof. If class g=l, then g is abelian and we are done. If class g = 2, then

[9, g]£z(g) so (p([X, T])A/çA/ for X, Y and g. If t^e A, and Kj is a finite-

dimensional A-invariant subspace containing vlt let F=<p(g)F1+ Vx. We claim V

is finite dimensional and A-invariant. If Xe g and ve V, <p(A)<p(X)v = <p(X)<p(A)v +

<p([A, X])V^(p(X)Vx + <p([A, X])Vx. The Poincaré-Birkhoff-Witt (PBW) theorem

and Leibniz's law along with 95's quasisimplicity imply that <p([A, X])G<p(q) and

we are done.

4. Nt : A counterexample. We now introduce Nt, a class 3 nilpotent Lie algebra.

We will show that ç^A^) A, ?£ A, for any second order elliptic element Ae u(Ar4)

and cp any quasisimple representation of Ni which is nontrivial on z(N¿).
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We define A4 to be the 4-dimensional class 3 Lie algebra given by <Z, Y, W, X)

with [X, W)=Y, [X, Y]=Z and [W, Y] = [Z, A4] = 0. z(234), the center of the

universal enveloping algebra of A4, is all polynomials in Z and Y2 — 2ZW.

We are concerned with the condition (p(Q)AfçAf where A; = 2//a,a- If this

condition holds, then for v e //A,A we must have <p(q)v contained in a <p( A) invariant

subspace V of Hm which is finite dimensional. The following theorem is crucial in

violating the condition of finite dimensionality.

Theorem 4.1. Let <p be a quasisimple representation of A4 on //°° such that <p(Z)

#0 and let b be a second order elliptic element o/234 = u(A4). If (I) <p(b)v = Xv, (2)

ve Ks//00, (3) {#4)c}s Vand(4) <p(b)V^ V, then {<p(S34M£ V.

Proof. We shall suppress the writing of <p. The proof is in the following three

parts.

(1) clarify the form of b,

(2) show{<F'', YiX}?=0v} = {%iv}, and

(3) show for all;, {Y'v, Y>Xv}^ V.

The last step is by induction on y after we have computed bYkv and bYkXv.

For convenience we shall use the notation X1=Z, X2= Y, X3= If and X^ = X.

Proposition 4.2. If b is a 2nd order elliptic element o/u(A4) then

b= ± 2 btiXtX,+ t ^Xj + bol
i.i=i i=i

where B = (bxj) is symmetric, positive definite and therefore has positive diagonal

entries and eigenvalues and any principal minor has positive determinant.

Note. This proposition holds for arbitrary Lie algebras g with 4 replaced by

dim g in the proof.

Proof. We have for some cx e Né + RI,

b   =     2     CyXJi+Ci
i.l = l

=   Í   MfAxxXi+ 2  ^[XuXJ + c,.

Thus bij = (clj + cjx)/2 yields a symmetric matrix, B. Thus, there exists an invertible

orthogonal matrix P = tP~1=(pi!) such that PBP~1 = D = (dij), a diagonal matrix.

Thus B=(lP)DP.

If we set Yx = 2*= i PuX}, we find that

2 m;*,- 2 duYjf.
i.i=i /.¡»I

The ellipticity of the left-hand side leads to the conclusion that the dfi all have the

same sign and are not zero. The proposition now follows.
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Lemma 4.3. Let {Xlt..., Xn} be a Jordan-Holder base for a nilpotent Lie algebra

g. Then, for Xs^=Xn,

t
XnXse 2_ Qn-iXn

i = 0

where gn_i = <Ar1,..., Xn_x>.

Proof. The proof proceeds by induction on t. In fact,

s-l

xn  (Xnxs) = xn   xsxn+xn    2_ crXT
r=l

where [Xn, Xs] = '£rZx c,X7. Application of the induction hypothesis now finishes

the proof.

Proposition 4.4. Assume the hypotheses of Theorem 4.1. Then {334i>} = {333i;}

+ {&3Xv} where 333 = u«Z, Y, W}).

Proof. By the PBW theorem a34 = 2f=o SÖ^X1. We prove by induction on y that

for sàl j, {S03Xsv}^{Sèav} + {iô3Xv}. Obviously this holds for y = 0 or 1 and we

assume it holds for fxs^j. We consider aX' + 1v where ae 333 and let b' = a/bii.

aXi + 1v = b'X'^buX'v + b'X'-^X-fyv

= b'Xi~1(x-     2     bi,XtX,-2b,X,-b0)v.
\ (i.s)#(4,4) s=l /

Lemma 4.3 and the induction hypothesis lead to the desired conclusion.

Proposition 4.5. Assume the hypotheses of Theorem 4.1 and also suppose

ax, a2e 33 and x(Z)/0 where x is the central character of <p. Then

(a) axZa2v = x(Z)axa2v,

(b) axWa2v = (ax/2x(Z)) Y2a2v-(x(Y2-2ZW)/2x(Z))aia2v.

Proof, (a) axZa2v = axa2Zv = axa2x(Z)v = x(Z)axa2v.

\ZW)\
a2vaxWa2v = ax

(b)

W_J^W+-Y2     X(Y2-2ZW)
2x(Z)        2X(Z) 2X(Z)

ax     „»        x(Y2-2ZW)
Y a2v-.  .    -axa2v.       y.L.u.

2v(Z)      """ 2y(Z)

We now conclude that

{333t>} = {u«Z, Y, W})v} = {u«r»i>}

and

{%3Xv} = {u«Y})Xv}.

Proposition 4.4 now tells us that

(4.6) {»4»} = {<r>, r'*>,-o»}.
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We have now completed the first two parts of the proof of Theorem 4.1. The

proof will be complete if we show the following.

Claim 4.7. For all iä 1, Ysv, Y'-^ve V.

Proof. We induce on s. We know from condition (3) of Theorem 4.1 that Yv, Xv

and Wv are in V. By Proposition 4.5(b), Y2v e V. Assume the claim holds for all s

such that Ifís^j and we will show the claim holds fory'+l. We now compute

bYlv and bYlXv where b is as in Proposition 4.2. In fact, bYlv= Y'bv+ib, Yl)v

= XYtv + [b, Yf]v and so we shall calculate [b, Y']v (and [b, YlX]v in turn). Using

Proposition 4.2 we have

[b, r]v = 2 b^XtXs, n»+i b,ix» y]»+o
i.i=i i=i

=   2  MW> Y*\ + [Xu YWv+bdXt, Y']v

= J2 b«x([x, r]+2 b„[x, Y^Xf+hix, rfU.
U-l 1=1 )

We have used the fact that ad F is 0 on (X„ X2, X3}. We notice that [X, Y']v

= tx(Z)Yt~1v. Thus

[b, y*]v = ^ib^xitx(z)Yt-l+tx(z)r-1xJ)+bMZ)r-1jv

so that

[b, F']t;e|2 CYi + 2b3itx(Z)Yt-1W+biitx(Z)(Yt-1X+XYt-1)\v.

But, XYt~1v= Yt-1Xv+(t- l)x(Z)Yt~2v. This fact and Proposition 4.5 yield

(4.8) *r»eJ2 CYi\v + b3itYt + 1v + 2biitx(Z)Yt-1Xv.

We list some identities which will be of use.

(4.9) [X, Ym] = mZYm-\

(4.10) [X2, Ym] = mZXYm-1+mZYm-1X=2mZYm-1X+m(m-l)Z2Ym-2.

(4.11) AB=BA + [A, B] for any A, Be fdt.

We now calculate the effect of left multiplication by b acting on YlXv in terms

of the basis suggested by (4.6). It is sufficient to calculate [b, YlX]v. By using

Leibniz's rule and the specific form for b we have

[b, rX]v =   2  ô«W, Y*]Xv
i.i=i

+ 2 btj[xx, r]XjXv+ 2 hfTXA.x,, x\v
Ui=l t,1 = l

+ J bijYt[Xi,X]Xiv+2 bflXf, rx]v.
i.l=l J'=l
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We note again that ad F kills <Z, Y, W}. Also we combine the second pair of sums

and use (4.11),

[b, rx]v = J bMX, Y^Xv+f bv[X, r)X,Xv
1=1 i=i

+ 2  btiY'mXf, X]XX + [XX, [Xh X]]}v+f b,[Xlt TX]v
i.i=l 1=1

= ZbsMZKXsr-'+r-'xjxv
s = l

+ 2  buTW* X\X*+[Xu If* *]]}»+ Í MX,, TX)v.
i.l = l 1=1

We have used (4.2) and (4.9). We now use (4.11) and separate the second sum.

[b, rx\v = 2 Mx(Z){2F'-1Xs+[A's, r-^xv
s = l

+ 2  2biiYt[Xj,X]Xiv
i.i=i

+ 2 bifY'lXu [Xf, X]]v+2 b,[Xh rx]v.
i,l = l 1 = 1

Again we need only consider the higher order coefficients. Thus,

bY'Xve  2 CY'v+ ¿ CY'Xv
1 = 0 1 = 0

+ b3itx(Z)2 V -x WXv + biitx(Z)2 V 'xX2v

+ 2b33Yl[W, X]Wv + 2bi3Yt[W, X]Xv.

Finally, rearranging and using (4.5(b)) and (4.2) we have

bY'Xve y CYlv+ 2 CYlXv
(4.12) i = o fro

+ b3i(t-2)Yt + 1Xv-(b33/x(Z))Yt + av + bii2tx(Z)Yt-1X2v.

We define

vr = r2 crtj+2 cy'xv.
1 = 0 1 = 0

We now consider the term b^YsX2v= Y^X-^-b^X^v. By (4.2),

¿>44 Ys X2v = {A Ys -        2 ba YsXtXj -J bjY'Xf- b0 Y5\v.
I i,; = l;(i,i)#(4,4) 1 = 1 I

Close inspection of this yields the following

è44 Y°X2v eVs+1- (2b3J2x(Z)) Y° + 2Xv- (b33/4x(Z)2) Y°+iv.
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Incorporating this into (4.12) gives the desired calculation.

(4.13) bTXve Vt-(b33/2x(Z))(t + 2)Yt + av-b3i(t + 2)Yt + 1Xv.

Now we are prepared to finish the proof of Claim 4.7. First we show Y' + 1ve V.

By inductive hypothesis Yi~2Xv e fand so bY'~2Xve V. (4.13) coupled with the

fact that (bu) is positive definite immediately implies Y1+1ve V.

Showing that Y1JrlXve Fis more complicated. First note that since Yj+1ve V

we must have bYi + 1ve V. According to (4.8) (and using the fact that F is a

vector space)

(4.14) A34 Y1 + 2v + 2y(Z)A44 YsXv e V.

In similar fashion we observe that Yj~1ve V, bYi~1Xve Fand (4.13) leads to

(4.15) A33 Yi + 2v + 2x(Z)b3i Y'Xv e V.

An obvious linear combination of (4.14) and (4.15) yields the fact that

(A34A43-A33A44)TiA't'e V. But (A34A43 - A33A44) is minus the determinant of a

principal minor of the positive definite matrix (bu) and so is nonzero.

We have completed the proof of Claim 4.7 and Theorem 4.1.

If we have x(Z) = 0, then <p(Y2-2ZW) = <p(Y2)=<p(Y)2, a constant. <p(Y) may

change the sign of some things and leave others constant, but cp( Y) is then the sum

of two constant operators. In this case the representation acts on < Y, W, X) like

the sum of two quasisimple representations. We thus have the following theorem.

Theorem 4.16. Let <p be a quasisimple representation of Ar4 and set x = 9\zC^i)-

Then

(a) 'f x(Z) = ®> then for all second order elliptic be 33 4 with <p(b) symmetric we

have o,bf^bf.

(b) If x(Z)J=0 and <p is infinite dimensional, then for all second order elliptic

b e 334 with cp(b) symmetric, Qbf£bf.

5. Reductions in the nilpotent case. We now consider the question of which

nilpotent Lie algebras, g, have second order elliptic ¿be 33 such that Qbf^bf for

some representation.

Consider P, a homomorphism from a Lie algebra g onto Nit and b e u(g) such

that P(b) is a second order elliptic element of Nt. Then there exist irreducible

unitary representations U of G (the simply connected group corresponding to g)

with dU(§)bf£bf. In fact, exponentiate P to a homomorphism n of G onto G4,

the analytic group corresponding to N4. Composition of n with an appropriate

representation of G4 will do. Any of the representations UKll with A^O given by

Dixmier [2] are unitary, irreducible and have nontrivial action on Z.

It is obvious that Nt can in fact be replaced by any Lie algebra for which gi>/£ bf

for all second order elliptic b.

We have seen that it is sufficient to consider nilpotent Lie algebras for which

dim z(g)= 1 as long as we are interested in quasisimple representations. By dividing
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a nilpotent group by its center or other subgroups which arise from the composition

series we can "lower the class (length of composition chain)" of the group, i.e.

we can study representations of a lower class homomorphic image of the group.

It is thus critical to examine the class 3 nilpotent Lie algebras.

Theorem 5.1. Let g be a nilpotent Lie algebra with class g = 3 and with z(g) = < Z >

(dimz(g)=l). Then

(a) there exist X and Y in g such that <Z, Y, X} = N3 and Y is a pure commutator,

that is, there exist M and N in g such that Y= [M, N],

(b) there exists le g such that [I, [I, g]] = <Z>,

(c) g contains a subalgebra isomorphic to Ni = (^A, B, C, D) which is characterized

by [D, C] = B, [D, B] = A, [C, B] = 0=[A, NJ.

Proof, (a) Since class g = 3 and dimz(g) = l we have [g, [g, g]] = <Z>. Thus

there exist L,M,Nea, with [L, [M, N]]=Z. Set X=L and Y= [M, N].

(b) Now [M, [M, N]] e z(g) so [M, Y] = 0 or else we are done. Similarly [N, Y]

=0 and [X, [X, N]] = 0. We also must have ad2 (X+M)(N) = 0+Z+[M, [X, N]]

+ 0 = 0. So [M, [N, X]] = Z and by the Jacobi identity [N, [X, M]]= -2Z. A

direct computation now reveals that ad2 (M+N)(X) = 3Z so that we may take

l=M+N.

(c) Consider now le g given by part (b). There exists We g such that [/, [/, W]]

=Z. Let a be the constant such that [W, [I, W]] = aZ. Then Nt = (A, B, C, £>> is

given by <Z, [/, W], -al+ W, />.   Q.E.D.

Unfortunately, Theorem 5.1 does not settle the question just yet, since N4 is not

a homomorphic image of every class 3 nilpotent Lie algebra.

It is our conjecture that for a nilpotent Lie algebra g, class g á 2 if and only if for

all second order elliptic elements Aeu(g), gA;ç=Ar for all unitary irreducible

representations of the Lie group corresponding to g. While we are unable to prove

this we offer the following theorem.

Theorem 5.2. Let G be a real nilpotent Lie group with Lie algebra g such that

class g = 3, dimz(g)=l and general dimension (g)=/>. Then there is an element

A e u(g) equal to the sum of squares of a basis with the following properties.

(a) For all unitary irreducible representations U of G with dU(Z)=¿0, U is realiz-

able on L2(R") and

dU(A) = D%-2 M^aj
j = 0

(acting on S(RP), the Schwartz space of Rp) with a4 e R, a4 > 0 and a¡ e P(S(RP ~1)),

the polynomial differential operators on S(RP~1).

(b) Ifp=l, then (letting Xx = t)

dU(Q)Af 2 (Mx, MXt, A>A, £ A,.

Dj=DXl is the operation of differentiation with respect to x,. (The careful reader will

note the domain of these operators.)
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Proof. The proof is conducted by applying an explicit formula for dU due to

Dixmier [1, Lemmas 30 and 31] to a carefully chosen basis. It is a matter of general

theory [11] that we can form a direct decomposition g = <Z> + <y> + g + <Ar>

withg1 = (ad F)-1(0) = <Z> + <F> + g and <Z, Y, X}£7V3. Also Uis induced from

a unitary irreducible representation, T, of G1; the subgroup corresponding to 8l

and U is realizeable on L2C(R") with Hœ = S(Rp) and dU('¡d)=P(S(R'')). In fact,

we have from Dixmier that

dU(X) = Dp,

(5.3)
dU(l) = 2 (Mxy/j\ dT(ad> X(l))   for le 8l.

1 = 0

(We interpret dTas a representation on S(R"'1) which is "contained" in S(R").)

(a) g contains A4 as a subalgebra. In fact, there is a base of g such that

<[XU X2,...,XW,..., Xn} = Q with (Xu ..., Xn.1} = ad~1 X2(0) and

iV4 = \Xlt X2, Xw, Xn).

Applying 5.3 and noting that class g = 3 we have

dU(i) = J MkpdT[adk(Xn)(l)]/kl
k = 0

We can even choose T so that dT(X2) = 0 and so the action of dU is given by

X1^MX, X2^iXMXp, Xw^dT(Xw) + 0 + M2p(iX/2), and Xn\-> Dp for some

A e R. If we take A to be the sum of squares of the basis {X,, X2,..., Xw,..., Xn}

we see that A is sent into the desired form. We now show a4 >0. dU(Xw)2 gives a

positive real contribution to a4. The only other contributions will be of the form

dT([Xn, [Xn, A^J/2)2. But class g = 3 and so [Xn, [Xn, Xj]]ez(o) which is sent to

some multiple of /A. Thus a4 e R and a4 >0.

(b) Clearly dU(Q)Ars<[Dp, MXp, Af1>A/ for all p. If we take p = \, we have

A = D2 — 2*=o Qjt' where D = DP and we write t for MXp.

The proof is now entirely analogous to the proof of Theorems 4.1 and 4.16.

We consider that Av = Xv e <D, t2,t, l>K^Fand AKç V for a subspace Kg//00

= S(R)—and we show dim V<oo since {t'v}i°=1çdU(SO)Vç V. In fact, P(S(R))v

=P[t]v+P[t]Dv where P[t] is the polynomials in /. t'v, t'~1Dve Kare proven in

just the same way as before.   Q.E.D.
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