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INTERPOLATION TO ANALYTIC DATA

ON UNBOUNDED CURVES

BY

MAYNARD THOMPSON^)

Abstract. This paper provides a method for constructing a family of sets of points

on the boundary (assumed suitably smooth) of an unbounded Jordan region in the

complex plane which is useful for certain interpolation problems. It is proved that if

these sets are used as nodes for Lagrange interpolation to analytic data, then the

resulting polynomials converge in the region, and the limit function is related in a

natural way to the boundary data. Subsidiary results include an approximate quad-

rature formula for slowly decreasing functions on an infinite interval.

1. Introduction. There is a well-known theorem due to L. Fejér [3] which asserts

that if O is a bounded region in the complex z-plane whose boundary T is a Jordan

curve, then one can find a family {Sn} of sets of points on T, each Sn containing n

distinct points, with the following property. Iff is any function analytic on Q u T,

then the sequence {Ln[f; ■ ]} of polynomials of respective degrees n — 1 which

interpolate to/on Sn satisfies

lim Ln[f; z] = f(z)
n-» oo

uniformly for z e Q.U V. Fejér's result has been extended and refined by J. L.

Walsh ([5], [6, Chapter V] and [7, Chapter VII]), but attention has been restricted

to bounded regions D. The purpose of this paper is to present an analogous theo-

rem (Theorem 1) which holds for certain unbounded regions Q.. Briefly, the condi-

tions on Q imposed here relate to the size of Q. at oo and the behavior of the

boundary T of Ü.

A detailed study of the admissible regions is given in §2, and the proof of the

main theorem is developed in several steps in §§3-5. The final section is devoted to

comments on the admissibility conditions and another interpretation of the main

theorem.

The author wishes to acknowledge helpful discussions with Professors J. Kore-

vaar, especially regarding Lemma 2, and J. L. Walsh.

2. Admissible regions.   Let Í2 be an unbounded Jordan region in the complex
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z-plane with boundary Y, or equivalently, a Jordan region on the sphere whose

boundary contains the north pole. For technical reasons it is convenient to assume

that the origin of the z-plane is contained in Q. We will consider here only those

regions whose boundary has half tangents at co. By this we mean that the curve Y'

in the Jf-plane whose trace is {& : &=l/z,zeY}\J {0} has half tangents at J^ = 0.

If the angle subtended in the iT-plane by the set Q'={& : 2£ = l/z, z e £2} at 2£ = fS

is ßn, then we say that D has opening ßn sit oo. Next, let ZjeT be such that

\zx\ =min {\z\ : z e Y} sind for each £> |zj| define an arc yR as follows. Beginning

at Zj traverse the curve Y in one direction from z1; intersecting the circle |z|=£

from time to time, until the last such point of intersection is reached and call this

point £. Proceeding on Y in the other direction from zu let the last point of inter-

section of T with \z\ = £ be denoted Q. The arc yR is the subarc of Y which contains

zx and whose endpoints are £ and Q. Define A(£) = sup {|z| : z e yB}. If

m i- A(R)(1) hm sup < oo,
Ä-.00 K

then we say that Y satisfies condition W at oo. The function A(£) is the "Unbewallt-

heitsfunktion" of S. Warschawski for the curve Y sind the point co ([8], [9]). We

remark that (1) is satisfied, for example, if \z\ is eventually a nondecreasing function

as z tends to oo in both directions on Y.

With Zx as above let $ be any (fixed) one-to-one conformai mapping of the upper

half of the w-plane, ImioO, onto the complement Í2* of £2 u Y which satisfies

4>(oo) = oo, <t>(0) = Zx. The function 0 can be extended to a homeomorphism of

Imw^O onto £2* u Y, and its restriction </> to Im w = 0 provides a parametric

representation of the boundary Y of £2* (or £2)

T : t-+<f>(t),       —oo < / < oo.

Note that the orientation of Y induced by this parametrization is positive with

respect to £2*.

The following lemma is a slightly restated version of Theorem 6 of [8]. The

original involves conformai mappings of bounded regions onto the disc. The

auxiliary mappings necessary to obtain the form given here are obvious.

Lemma 1. Let £2 have opening (2—a)n, 0<a<2, at oo, let its boundary Y satisfy

condition W, and let O be the conformai mapping introduced above. Then for every

e>0 there is a positive real number R = R(e) such that \w\a~e< \<$(w)\ < \w\a + e for

all w with Im w ̂  0, | w\ ̂  R.

We say that Y is rectifiable on the sphere if

(i) every bounded subarc is rectifiable, and consequently </> is differentiable

almost everywhere on (—oo, oo), and

r-\ T    \d<t>ldt\  ,t
(11) Lwwdt<co-
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We remark that these conditions are equivalent to the following assumption: the

bounded Jordan curve defined by 8 -> [<¿((sin 8)/(cos 8-1))]"1 is rectifiable.

With these preliminaries we can identify the regions to be considered in this

paper.

Definition. An unbounded Jordan region D is said to be admissible if the

following conditions are satisfied :

(a) Q. has opening A, 0 < A < tt, at oo,

(b) the boundary T of O satisfies condition W,

(c) the boundary F of Q. is rectifiable on the sphere.

It is important for what follows to note that condition (c) also implies that <f> is

absolutely continuous on every closed subinterval of (-co, oo). We adopt standard

terminology and say that <j> is locally absolutely continuous on (—oo, oo).

We observe that an appropriate translate of a sector with opening smaller than

tt is an admissible region. Thus for each A, 0 < A < n, the region QA={z : z = 1 — rew,

-A/2<8<A/2,0<r<oo} is admissible. A region with a smooth boundary which

has much the same geometry as Q.A at oo is the region containing z=0 whose

boundary is YA,

YA  = {Z : Z =   |l+i2|«/2eiarArg(l+it);  _œ   <   % <  ^

where a={2-A)/tt and that branch of the argument is selected which is zero for

t=0.

3. Quadrature lemmas. We adopt the convention that if r is a positive real

number, then [r] denotes the largest integer which is not larger than r, i.e.

[r] = sup {m : mir,man integer}.

Lemma 2. Let fbe a complex valued function defined on (-co, oo) satisfying

(i) fis locally absolutely continuous on (-co, oo),

(ii)/'eZ,^ -oo,co),

(iii)/(i) = 0(|/|-"),/i>l,as |f|-*oo.

Then there is a constant X > 1 such that

(2) 2   /(*/«)-» P  f(t)dt = o(\),       n^œ.
Iklátn"] ./-»o

Proof. It is sufficient to prove the lemma for real valued functions /. Let I(n)

denote the expression on the left-hand side of (2). Using condition (iii) and proper-

ties of the greatest integer function [ • ] we obtain

(3) |/(»)| â 2 Am-n\     mat +«0(n(A-1K1-«)).

Select X>p./(p.— 1). Then (1 -p)(X-1) +1 <0 and the last term on the right-hand

side of (3) is o(l) as n -► oo. It remains to show that the first term on the right-hand

side behaves similarly. To this end, we note that the term in question can be

written
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(4)

f(-[nÁ]/ti)+    2    «
IMS[nA]     Joc-m

MAYNARD THOMPSON

kin

[May

.('(M4-¥)
n    2    f"      (t-—)f'(t)dt + 0(1).

Now, for any e>0 pick an interval /=[—a, a] such that |/(/)|<e, t $ I, sind

/-i l/'l + J™ |/'| <«. Henceforth when an integer n is mentioned it is to be under-

stood that n satisfies [nÁ] > a, where A is the constant selected above. Finally, let Q

be the set of all integers and define

K = K(ri) = {k:keQ,\k\ ^ [nA], and [(k- l)/n, k/n] n I = 0},

K* = K*(n) = {k:keQ,\k\ Ú [nx], k $ K).

We can now estimate the sum in (4). First, since  \n(t—(k— l)/ri)\ ¿ 1 for

/ e [(k- l)/n, k/n], we have

[■kin i       k—\\ r~a C°

«2        (r-V)/,(/)* =     l/,|+   l/#l
keK J{k-lVn \ n    I J-» Ja

< e.

The remaining terms in (4) can be estimated by comparing them with the integral

off (see [1], [4])

2 n f '       (/-—V'« *
k:eJf"    J(k-l)ln \ n    I

\ÍP)dt + 0(1)
f(a)-f(-a)

+ o(l), •oo.

The right-hand side of this last expression can be made less than 2e by taking n

sufficiently large, and our proof is complete.

It is important for our work that this lemma holds with a certain uniformity if

the function/depends analytically on a complex parameter. If we let G be a region

in the complex z-plane the precise statement is the following.

Lemma 3. Let f(z,t) be a complex valued function defined on G x (—00,00)

satisfying

(i) /(-,/) is analytic on G, — 00 < / < 00,

(ii) f(z, ■) is locally absolutely continuous for each fixed z e G, and

[
(z,0 dt

is uniformly bounded on compact subsets of G,

(iii) \f(z, /)| = 0(|/|_/i), p> 1, |/| -» 00, with the right-hand side uniform on com-

pact subsets of G. Then there is a constant A > 1 such that

(5)
ifci

2   f(z,k/n)-nr  f(z,t)dt = o(Y),       n
S [n*l J - 00

■00,

with the right-hand side uniform on compact subsets of G.
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Proof. For each fixed zeG the conclusion follows at once from Lemma 2.

Moreover, the constant A may be selected independent of z. In fact any fixed

number larger than p,/(p—l) will serve as a satisfactory A. To establish the uni-

formity we prove that the left-hand side of (5), denoted I(n, z), is uniformly bounded

on compact subsets of G, and then we apply Vitali's Theorem. The proof of bounded-

ness is direct. Indeed, an argument analogous to that of the proof of Lemma 2 can

be given under the hypotheses of the present lemma. This produces an inequality

similar to (4) which holds uniformly on compact subsets of G. The resulting in-

equality is

Mm)I fro dt + 0(na'MÁ~1)Jrl),

where the O term is uniform on compact subsets of G. Since X>p./(p,— 1) the second

term is actually 0(1) uniformly on compact subsets of G, and the uniform bounded-

ness on compact subsets of the first term follows from hypothesis (ii).

4. Estimates on the fundamental polynomials.    The fundamental polynomials of

Lagrange interpolation are usually written in the form

n

(6) wn(z) = Yl (z-z„fc),       n = nun2,..., n¡ -> oo,

where Sn={znk}k=1 is the nth interpolating set. However, in the situation under

investigation here there is no finite bound on the moduli of the points in the set Sn

as n becomes large, and consequently it is convenient to consider instead the

normalized polynomials

(V) pn(z) = IÏ (i -r-V      *»* / 0,   k = 1,2.«,
fc=l \        znk/

n=n,,n2,..., n¡ -> oo. In the derivation of estimates on these polynomials it is

frequently useful to introduce their logarithms

(8) logpn(z)=flog(l-p],
fc = 1 \        znkl

where the meaning assigned to this equation must be made precise. Recall that our

goal is to obtain theorems on the convergence of polynomials which interpolate

to a given function on T. With this in mind, we introduce the (extended) mapping

function 3> of §1 and write znk = 0(infc), — co<tnk<ao, k= 1,2,.. .,n,n = nun2,.. -,

n¡: -> oo. Thus (8) leads to a consideration of the function

(9) g(z,w) = log (\-z/<b(w)),

where z e Ü, and Im w ä 0. In (9) we take that branch of the logarithm which

assumes the value 0 for z=0. This convention naturally makes (8) well defined.

According to Lemma 1 and the definitions, if £2 is admissible, then the function g
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defined on Q x (—oo, co) satisfies the hypotheses of Lemma 3. Thus we obtain the

following, actually a result involving asymptotically neutral families [2].

Lemma 4. If £2 is admissible, then there is a constant A such that

(10) FT    (i-*7tW|-*1.       n-*•<»,«toil    *(*/«)/
uniformly on compact subsets of £2.

Proof. The conclusion is an immediate consequence of Lemma 3 and the fact

(11) g(z, t) dt
J — CO

0, ■e a

Equation (11) is a consequence of the Cauchy integral theorem. To see this, let GR

denote the positively oriented contour in the n-plane consisting of the segment of

the real axis from — £ to £ and the semicircle in the upper half plane with this as

diameter. For each fixed z e £2 the function g(z, w) is an analytic function of w, and

therefore J*Gjj g(z, w) dw=0, or

f    g(z, t) dt+ f 'g(z, Reie)iRew d9 = 0.
J-R JO

For R sufficiently large the integrand g(z, Reie) can be expanded in a power series

in z/Q>(Rew), sind if we use the estimate of Lemma 1, then let £ increase to oo, we

have (11). Incidentally, this expansion also shows that the integral in (11) exists as

an ordinary improper integral and not only in the Cauchy principal value sense.

Lemma 5. Let £2 be admissible and E a compact set contained in £2*,

3 = min {Im 3>_1(z), z e £}.

Then there is a constant A such that

z
(12)

IfclStn»]
1-

<t>(k/n)
éí exp (2nn8 + 0(1)),       zeE,   n -> oo,

where the O term is uniform on E. Moreover, A can be selected independent of E and

such that (10) and (12) are both true.

(13)

Proof. The crux of the proof is the estimate

z
2 log

IMS!»*] *(*/#!)
-2nn\n\ (p-^z) = 0(1),

z e E, n -> oo, where the O term is uniform on £. In (13) we take that branch of the

logarithm defined for z e £2* which satisfies

limlog(l-z/O(0) = 0.

We proceed with the proof of (13). Let GR be the contour introduced in the proof
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of Lemma 4, and henceforth suppose i?>max {|<P_1(z)|, z e E}. Consider a fixed

z0 and set w0 = <i>~ 1(z0). Construct a contour G(R, r, e) as follows : Let yr denote the

circle with center iv0 and radius r, 0<r<distance (m'0, Gr), and ar the vertical

segment of length Im w0 — r from p = w0 — ir to q=Rew0. For e<r we define

G(R, r, e) to be the positively oriented contour in the w-plane consisting of that

segment of the real axis from — R to q — e, the vertical segment from q—eto yr, that

portion of yT given by w0 + re~w, Tr—ßS8^2Tr+ß, ß=cos'1(e/r), the vertical seg-

ment from w0 + re~i(2n+ß) toq+e, that segment of the real axis from q + eto R, and

finally the semicircle in Im w^O with the segment (-R, R) as diameter. Geo-

metrically, the domain bounded by G(R, r, e) looks like that bounded by GR with

a keyhole centered at w0 removed. Return for a moment to the function g defined

by (9). This definition was given for zeii, but for any zeQ* the same formula

can be used to define an analytic function of w on any simply connected subregion

of Im w>0 not containing <t>'1(z). Now, with z0 and w0 as above, let g(z0, w), or

equivalently g(^>(w0), w), denote the function defined by (9) in the region consisting

of the upper half of the w-plane with the vertical segment connecting w0 and the

real axis removed. By selecting the appropriate branch of the logarithm, we can

guarantee that g(z0, w) tends to zero as w tends to oo in the upper half plane. The

function g(z0, w) is analytic inside G(R, r, e) and continuous on the closure of this

region, and therefore the integral of g(z0, • ) around this contour is zero. Letting

e -> 0, r -> 0 and applying standard estimates we obtain

Re g(z0, t) dt-2-TT Im w0 = - Re { f g(z0, Reie)iRew d8
-R Uo

(14)

This equation is independent of the branch of the logarithm selected above. Next,

take R such that

minimum |C)(f?eie)| > maximum \z\
0S9Í3 ZEE

and expand g(z0, Reie) in a power series in z0/<I>(Reie). Again it follows from Lemma

1 that the right-hand side of (14) is 0(R1~U), p,> 1, and the O is uniform for z0 e E.

Using the same techniques as in §3 we obtain

fin*]
2    g(z,k/n)-n\        g(z,t)dt

I i tn"] J - [nMIkl

dg

/: a, <* " ift+0(n»(1-A>) = 0(1),        n^oo,

where the O terms are uniform on E. This last inequality together with (14), with

R = [nA], gives (13). The estimate (12) follows from (13) by exponentiation and the

definition of 8.

5. Convergence theorems. The lemmas of the preceding sections provide the

technical results necessary for our proof of the following theorem, the principal

theorem of this paper.
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Theorem 1. Let £2 be an admissible region with boundary Y. Then there is a family

{SN} of sets of points on Y, SN = {zNk}%= u N = nlt n2,..., n, -> oo, such that iff is

any nonconstant function analytic on £2 u Y (including oo), then the sequence LN[f; ■ ]

of polynomials of respective degrees N— 1 which interpolate to fon SN satisfies

(15) lim LN[f; z] = f(z),       zeil,
iV->oo

and the convergence is uniform on compact subsets of £2.

We prove the theorem by exhibiting a family {SN} with the property that iff is

any such function and £is a compact subset of £2, then (15) holds uniformly on £.

Since the Lagrange interpolation operators LN : /-> LN[f; • ] are linear, it is no

restriction to assume/(oo) = 0. We proceed with this additional assumption.

Let <t> be the (extended) mapping function of §2, and let h > 0 be selected so that

£2 u {z : z = í>(vv), Oálm w^h} is contained in the region of analyticity off. Yet

Yh be the unbounded analytic Jordan arc given by <&(t + ih), -oo</<oo, and set

Po— \®(ih)\. Since/is analytic at oo, there is a real number px such that/is analytic

outside the disc with center 0 and radius px. Set £0 = max {/>0, pa, svpgeF \z\}, and

for each R> R0 define two contours GRh and GRh as follows. Let

t£ = sup {/ : / > 0 and |4>(î+i'â)| < £ for 0 ^ s á t},

tR  = inf {/ : / < 0 and |0(j + /A)| < £ for / <, 5 < 0},

and let YhR be the oriented Jordan arc whose parametrization is <b(j+ih), tR1kt

ts>tR. The endpoints of YhR divide the circle |z| = £ into two arcs. The contour

G\R is the Jordan curve which consists of rhB and an arc of the circle |z|=£

(oriented counterclockwise) and whose winding number at the point z=0 is +1.

The contour G°R is the Jordan curve which consists of r„B and an arc of the circle

\z\ =R (oriented clockwise) and whose winding number at the point z=0 is 0.

Lemma 6. Iff, h, R, and F are as above, then for zeF

M)
2nl JGo   L-l

dl

The lemma follows from the Cauchy integral formula. Indeed, the function/is

analytic on and inside G\R, on and outside \z\ =£, and/(oo) = 0. Therefore

m   i r mdi and if   mdi = 0
2nlJaiRi-Z 2nt)m=Rt-Z

for z e F.lf the second integral is interpreted as a contour integral around the circle

oriented clockwise, then we can add these two expressions to obtain (16).

Returning to the proof of the theorem, we make use of the Hermite formula

[7, p. 50] to obtain

(17) f(z)-LN[f; z] - ¿ f    ZsQ f® dl,       N = n„
2ntJGopN(Q l-Z
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for z e F.lf we apply Lemma 4, then we can select A > 1 and «0 such that |/>w(z)| g 2

for N= [nÁ], n > n0, and zeF. Also, if we apply Lemma 5 with G°R as the compact

set E^Q.*, then with the same constant A as above we have |^jv(z)| ä Me2nnh for

z e G%R, A = [nA], n > n0- Combining these two estimates we conclude

sup \f(z)-LN[f;z]\ uM,e~2™\
zeF

N= [nÁ], n>n0, where Mi depends on V, F and/but not on n. The proof of the

theorem is complete.

If instead of a function / analytic on O u F we have a function g analytic in a

neighborhood of F (including oo), g(co) = 0, then the Lagrange interpolating poly-

nomials can again be formed. Using essentially the proof of Theorem 1, we can

establish a convergence theorem in this case as well. Here the polynomials do not

converge to g in Q., indeed g need not even be defined there, but to the Cauchy

integral of g over F. The necessary observation to supplement the proof of Theorem

1 is that for sufficiently large R and sufficiently small h > 0

f   iSLjtiffflU. zeü.

Theorem 2. Let Q. be an admissible region with boundary F. Then there is a

family {SN} of sets of points on F, SN = {zNk}k=„ N=n„ n2,..., n} -*• oo, such that

if g is any function analytic on F (including oo), then the sequence LN[g; ■] of poly-

nomials of respective degrees N— 1 which interpolate to g on SN satisfies

lim LN[g;z] = ^-. f pQ-dt,       zeQ,
i-toa Z.TTI  Jp  L, — Z

and the convergence is uniform on compact subsets of Í2.

6. Remarks. A. It is reasonable to ask whether the admissibility conditions

imposed on Í2 in Theorem 1 are in any sense necessary for the conclusion. In this

direction the following example indicates that some condition on the size of fí at oo

is necessary. Suppose that O is an unbounded region containing a half plane, which

for convenience we assume to be the half plane Re z > 0, and that the conclusion of

Theorem 1 holds for Q. That is, there is a family {SN} of sets of points on F for

which (15) is valid for any function / analytic on Q u F. Let x0 be real and con-

tained in Q.*, set f(z) = (z — x0)~1, and let F be any compact set in (Re z^ \x0\,

Im z = 0}. If we define G°R as in §5, which is possible independently of any smooth-

ness assumptions on F, then we again have the expression (17). However, with the

specific function / considered here the right-hand side can be evaluated explicitly

and we have

f(z)-LN[f; z] = pN(z)/pN(x0)(z-x0),       zeF.

Thus, if (15) is to hold, then

(18) lim <{sup ̂ \ \ = lim (sup f\
W->»   KzeF    Pn(xo) J N-.00   lzeFk = i

Pn(z) Z — Zfiic

xo ~ zNk
= 0.
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But the last product is a product of N factors each of which is no smaller than 1.

Thus (18) is impossible and Theorem 1 is false for such a region.

In [2] J. M. Elkins proved the existence of families {Sn} for which the associated

polynomials pn satisfy limn_ m pn(z) = 1, z e £2, for quite general unbounded regions

£2. The condition of [2] analogous to the admissibility condition of this paper is that

£2 be contained in a half plane and not contain a half plane. The methods of that

paper involve conformai mappings of a sequence of bounded regions and are

nonconstructive.

B. Let £2 be a bounded Jordan region with boundary Y. If a e Y we say that

(£2, a) is an admissible pair if the region £2' = {Jf : 2£ =l/(z-a),ze££\ is an

admissible region in the J^-plane in the sense of the Definition of §2. In this situation

Theorem 1 can be restated in the following form.

Theorem 3. Let £2 be a bounded Jordan region and(Q., a) an admissible pair. Then

there is a family {SN} of sets of points on T\a, each SN containing N distinct points,

with the following property. If fis any function analytic in £2 u Y, then the sequence

RN[f; • ] of rational functions of respective degrees N— 1 with their only pole at z = a

which interpolate to fon SN satisfies

lim RN[f; z] = /(z),       z e D,
JV-.00

and the convergence is uniform on compact subsets of £2.
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