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ON THE EQUIVALENCE OF MULTIPLICITY

AND THE GENERALIZED TOPOLOGICAL DEGREE

BY

T. O'NEIL AND J. W. THOMAS

Abstract. In this paper we first extend the definition of the multiplicity (as defined

by J. Cronin-Scanlon) of operators of the form I+C+T to operators of the form

H+C+T. We then show that the generalized topological degree (as defined by F. E.

Browder and W. V. Petryshyn) of operators of the form H+C+T is also defined.

Finally, we show that when both the multiplicity and generalized topological degree

of H+ C+Tare defined, they are equal.

1. Introduction. In [3], [4], [5], [6] and [7] J. Cronin-Scanlon studied operators

on a Banach space of the form (I+-C+T)(x) =y, where C is a compact linear

operator and F satisfies a contraction condition near the origin. The Leray-Schauder

degree of I+C+T, in general, is not defined. Cronin-Scanlon's method for in-

vestigating the existence of solutions of the equation (/+ C+T)(x)=y was to define

the multiplicity of I+C + T, denoted by m(I+C+T), which had properties similar

to the topological degree of an operator. Using these properties she was then able

to examine such questions as existence of solutions and the number of solutions.

In [5] she actually defined the degree of a mapping in the form I+C+T (along with

some additional conditions) defined on a Hubert space in terms of m(I+C+T).

In [1] and [2] F. E. Browder and W. V. Petryshyn extended the definition of

topological degree to ^-proper mappings. This class of mappings is much larger

than the class of mappings for which the Leray-Schauder degree is defined. In this

paper we shall show that the mappings of the form I+C+T can be investigated

through the generalized degree of Browder and Petryshyn. We shall show that not

only is the generalized topological degree of I+C+ Tdefined with respect to some

neighborhood of 8, but it is, in fact, equal (up to a multiplicative ± l)tow(/-r-C + r).

Thus we see that the theory of generalized topological degree can then be applied

to the integral equations that were studied by Schmidt [14].

In §2 instead of stating the results which we need from [3], we shall extend the

definition of multiplicity of an operator to include mappings of the form H+C+T,

where H is a linear homeomorphism. In §3 we shall show that not only is the map

H+C+T (defined on a Banach space with a certain projectional structure) A-

proper with respect to some neighborhood of 8, but also that it satisfies a theorem
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of Browder and Petryshyn which will give the generalized degree of H+C+T

some especially nice properties. In §4 we shall then show that if the Banach space

on which H+C+T is defined has the projectional structure that allows the general-

ized topological degree of H+C+T to be defined, then this degree is, in fact, + 1

times the multiplicity of H+ C+ T. Finally in §5 we shall give an example to which

the above work can be applied.

We would like to thank the referee of this paper for his many helpful comments

and his very careful reading.

2. Multiplicity. Let Y be a Banach space, H a linear homeomorphism mapping

X into X and C a compact linear map from X into X. Let XX = N(H+C) = null

space of £? + C and Xx* = N(H* + C*). In[13]F. Riesz obtained results for N(I+ C)

where C is compact. Analogously, and hence presented without proof, we obtain

the following results: (1) Xx is finite dimensional, (2) X* is finite dimensional and

dimension A'1=dimension X*, and (3) there exists a projection from X onto Xlt

Ex, such that X=X1 + X1 where X1 = E1X=(I-E1)X.

Now let Xi.xn and/j, ...,/„ be bases for Xx and X* respectively. Then there

exist gx,.. .,gne X* and yu..., yn e X such that

(1) for xe X, Ex(x) = lhigi(x)xi (gi(x,) = S„), and

m/m-*»
Denote by C0 the transformation

n

Cx+2 gi(x)yt.
i=l

C0 is then compact and N(H+C0)={9}. Thus H+C0 has a linear inverse £ =

Hx + Cx where Hx is a linear homeomorphism (H1 = H~1) sind Cx is linear and

compact. Then, analogous to the result of Cronin-Scanlon [7], we can show that,

for all x e X, £(//+C)(x) = (/-£1)x = £1x.

Along with the above facts we shall need the Implicit Function Theorem which is

due to Hildebrandt and Graves [9].

Theorem 1 (Implicit Function Theorem). Let X, Y, Z be Banach spaces and

let U, V, W be open sets in X, Y, Z, respectively. Let L be a function with domain

UxVx W and range a subset of X. Assume that the following conditions are satisfied:

(1) there is a point (x0, y0, z0)e UxVxW such that x0=L(x0, y0, z0),

(2) there exists a positive number c<l such that \\L(xx, y, z)-L(x2, y, z)\\¿

cllxi-xall for every (x1; y, z), (x2, y,z)e UxVx W,

(3) L is uniformly continuous on UxVxW.

Then the following conditions hold:

(1) for each (y, z) e Vx W there is at most one point (x,y,z)eUxVxW which

satisfies the equation

(1) x = L(x,y, z),
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(2) there exist open sets V, and W„ spherical neighborhoods ofy0 and z0, respec-

tively, and a function F with domain V1 x W± and range a subset of X such that the

point (F(y, z), y, z) is an element ofUx Vx W andx = F(y, z) is a solution of equation

(1) for every (y, z) e V1 x Wx,

(3) the solution F(y, z) of equation (1) is uniformly continuous on Vx x W,.

We are now ready to consider the equation

(2) (H+C+T)(x) = y.

We suppose that F satisfies the following properties:

(1) Fis defined on some ball B in X centered at 8,

(2) T(8) = 8, and

(3) ifx, y e B, then \\Tx—Ty\\^M(x,y)\\x — y\\ where M(x,y) is a positive-valued

function such that

lim     M(x, y) = 0.
u,&>-.(e,e)

We note that when (H+C)'1 exists, equation (2) can be multiplied by (H+C)'1

and solved by the Implicit Function Theorem. If H+C does not have an inverse,

we multiply both sides of equation (2) by E,R and E1R, and hence reduce equation

(2) to the equations

(3) E^T^ + x1) = E.Ry,

(4) x1 + E1RT(x1 + x1) = E^y,

where x1 = E1x and x1 = E1x.

If we then apply the Implicit Function Theorem to equation (4), we have the

following theorem.

Theorem 2 (Cronin-Scanlon [3]). There exist open sets, V1 and Wu spherical

neighborhoods of \\ = 8 and y =8, respectively, and a uniformly continuous function

F with domain V1y. Wx and range in X, such that x1 = F(x1, y) is a solution to

equation (4).

We then substitute x1 = F(x1, y) into equation (3) to obtain

(5) E,RT(Xl + F(x„ y)) -E1Ry= 8.

Solving equation (5) is obviously equivalent to solving equation (2). Thus we make

the following definition.

Definition 1. The multiplicity of solutions of the equation

(H+C+T)(x) = y0,

denoted by m(H+ C+T), is defined as

m(H+ C+T) = +1,    when (H+ C) ~1 exists,

= d(E1RT(x1 + F(x„ y0)) -E^yo^, B n X„ 8),   otherwise,
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where B is a sufficiently small ball in X centered at 9 and the degree above is the

usual Brouwer degree.

Cronin-Scanlon, in [3], using the definition of multiplicity similar to Definition 1,

places an additional condition on T and then derives methods for calculating

m(I+C + T). These methods would also be applicable to calculating m(H+ C+T).

3. The generalized degree of H+C+T. In [1] and [2], F. E. Browder and

W. V. Petryshyn defined a generalized topological degree. We shall be interested in

a slight variation of some of their definitions and results. Definitions 2-4 below

are the same as those given in [2] except that we shall replace their mapping Pn,

which maps Xn into X, by the inclusion map. The inclusion map will surely satisfy

the properties of the mapping £n. We then obtain the following definitions.

Definition 2 [2, Definition 3.1]. Let X be a real Banach space. By a projectile

approximation scheme for mappings from X into X, denoted by V, we mean a sequence

of oriented finite-dimensional subspaces {Xn} and a sequence of linear projections

from X onto Xn, {Qn}, such that Qnx -> x for each x e X.

It can be shown [2] under the conditions of Definition 2 that we also get (1)

{ßn} is uniformly bounded and (2) if £ is a given finite-dimensional subspace of X,

then there exists an integer nF^ 1 such that Qn is injective on £for each n^nF.

Definition 3 [2, Definition 1.2]. Let G be an open subset of X and W a mapping

of G (the closure of G) into X. W is said to be A-proper on G with respect to a given

approximation scheme Y = ({Xn}, {Q„}) if and only if, for any sequence {n¡\ of positive

integers with n¡ -» oo and a corresponding sequence {xn¡ \ xn¡ e Xnj} with xn¡ e G such

that \\Qn¡Wxn—Qnjy\\-+0 for some y e X, there exists an infinite subsequence

{xn¡m} and an element xeX such that xn¡m -> x and Wx=y.

Let us next introduce the notation Wn = Qn W and proceed to define the general-

ized topological degree as follows.

Definition 4 [2, Definition 1.3]. Let W be an A-proper continuous mapping

from G into X with respect to Y. Let Gn= Xn n G be bounded for all n and suppose

that a t W(BG).

We define D(W, G, a), the degree of W on G over a with respect to Y, as follows:

Let Z' be the set of all integers together with ±co. Then D(W, G, a) is the subset of

Z' given by D(W, G, a) = {y | y e Z', there exists an infinite sequence {n,) of positive

integers with n, -> oo such that d(Wn¡, Gn¡, Qn¡a) -> y}.

To keep the concepts of generalized degree separate from those of the more

classical degree, we shall use a capital D to denote the generalized degree and a

lower case d to denote the Brouwer degree (when in £") and the Leray-Schauder

degree.

The results we obtain in this paper do not use the most general form of the

generalized degree as defined above. Whenever we are confronted with the general-

ized degree of a function we shall be able to apply the following theorem. This

theorem is Theorem 2 in [2] and for that reason we do not include the proof.
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Theorem 3. Let h and K be two continuous mappings of G into X such that if we

assume Gn = Xnn G are bounded and set hn= Qnh\Sn, the following hypotheses are

satisfied:

(1) h is an A-proper homeomorphism of G onto an open subset h(G) of X with h

mapping G homeomorphically onto h(G).

(2) For each n, hn is a homeomorphism of Gn onto the open subset hn(Gn) of Xn

and hn maps Gn homeomorphically onto h(G).

(3) There exists a continuous function a : [0, co) -> [0, co) such that rx->0 when-

ever a(rt) -> 0, for which \\hnu — hnv\\ ̂ a(\\u — v\\)for all u and v in Gn and all «ä 1.

(4) K is compact.

Consider now the mapping W=h + K: G —*■ X and suppose that a £ W(dG). Then

the following are true:

(1) W is A-proper.

(2) There exists an integer n0 S 1 such that d( Wn, Gn, Qna) is defined for each

n^n0.

(3) There exists an integer n^l such that, for all «ä«i, \d(Wn, Gn, Qna)\

= [dtf+Kh'1, h(G), a)\ and is independent of the choice ofn.

(4) D(W, G, a) = {± d(I+ Kh~\ h(G), a)}.

In [2], condition (2) required that hn be an orientation preserving homeo-

morphism. If this condition is assumed, then result (3) becomes

d(Wn, Gn, Qna) = d(I+Kh-\ h(G), a)

and condition (4) becomes

D(W, G, a) = {d(I+Kh'\ h(G), a)}.

Since our result will be unchanged by a multiplicative ± 1, it is not necessary to

assume that hn be orientation preserving. For convenience, however, we shall assume

that hn is orientation preserving in our lemmas and theorems. This will eliminate

many cumbersome ± l's.

In this paper we wish to apply the generalized topological degree to the mapping

H+ C+T. This mapping is not, in general, /1-proper with respect to any open set G.

For this reason we say that a map / is locally A-proper at 8 if there exists an open

neighborhood of 8, say N, such that / is ^-proper with respect to N. We are then

able to prove the following lemma.

Lemma 1. I+T is locally A-proper at 8.

Proof. Let Kx be the uniform bound on || Qn \\. Using condition (3) in the definition

of T we choose r so that M(x,y)¿k<minimum {%, \/Ku K,} in BrxBr and

r2 = r/4K,. We shall prove that I+T is ,4-proper on 2L2.

Let G = BT2 and denote I+T by W. Let {n,} be a subsequence of the integers,

xn¡ e Gn¡ and suppose there exists ayeX such that || Wn¡xn— Qn¡y\ -> 0.
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We note that since

\\Wn)xní-y\\ £ \\Wn.xn-Qnjy\\ + \\Qn¡y-y\\,

the above assumption and Definition 2 imply that || Wnjxn.—y\ -*0. We also

note that since

IIWVSJ = \\Qnt(f+T)xn¡\\ ^ ^(1+^)11x^11 < 2Kxr2 = ru

then y e Bri where rx = 2£1r2.

Claim. There exists a z e Br such that Wz = v.

Define/, by fy(x)=y — Tx, let /0 e £r2 and define /n + i=/,(/n)- In an approach

similar to that used in the proof of the Banach Fixed Point Theorem we can show

that /„ 6 £r for all n and {/„} is a Cauchy sequence. Let /„ ~> z. Then Wz=y. We

then have that

¡Wnixni-y\\ = \\Qn)Wxn-Wz\\ = \\(Xn-z)-(Tz-QniTxn)\\

ä \\xn¡-z\\ - \\(Tz-Qn¡Tz) + (Qn¡Tz- Qn¡Txn)\\

^ \\xn-z\\ - || Qn¡Tz- Qn¡Txn¡\\ - \\Tz- Qn¡Tz\\

^ \\xn-z\\(l-Kxk)-\\Tz-QniTz\\.

Since I Wn¡xnj-y\\ -> 0, \\Tz- Qn¡Tz\\ -> 0 and (1 -£^)>0, we have that xn¡ -* z.

We now use Lemma 1 to prove that H+ T is also locally ^-proper at 6.

Theorem 4. H+T is locally A-proper at 6.

Proof. We shall show that H+T is ^-proper on some ball, Br = G, such that

Br<^H~1(Br2), where r2 is as in Lemma 1.

Let {n,} be a subsequence of integers. Suppose that xnj e Gn¡ and that there exists

siy e X such that ||Qn¡(H+T)xn¡— Qnjy\ -*■ 0. But this is the same as

\\Qn,(I+TH -i)(Hxn¡)~ Qn¡y\\ ->0.

Furthermore, it is easy to show that TH ~x will also satisfy the conditions of Lemma

1 (with \\H~1\\M(x,y) replacing M(x,y) in condition (3) on T). Therefore by

Lemma 1, £?xn/ -> z and (I+TH~1)z=y. But then xn¡ -> H'1(z) sind

(H+T^H-h) = y.

Thus H+T is locally ,4-proper at 8.

Thus we have that H+T is v4-proper on some £r. It is not hard, then, to show

that (H+T) + C is /i-proper on Br. However, we are able to get more than

(H+T) + C being /1-proper. We shall, in the following lemmas, show that

(H+ T) + C is such that it will satisfy Theorem 3.

Lemma 2. h = H+T is a homeomorphism from some ball Br onto h(Br). h(Br) is

open and h(U) = h(U) for any open set U such that U<^BT.
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Proof. The fact that h is a homeomorphism follows from

\\x-y\\[m-k] S \\Hx-Hy\\-\\Ty-Tx\\ S ¡hx-hy\\

^ \\Hx-Hy\\ + \\Tx-Ty\\ ^ (\\H\\+k)\\x-y\\

where m=\\H~1\\~1 and BT is chosen so that M(x,y)<k for x,yeBr and k<m.

The proof that h(Br) is open and h(U) = h(U) is similar to that for the case when

H=Iand Fis a strict contraction.

Lemma 3. hn is a homeomorphism from some ball Xn n BT onto hn(Xn n Br).

hn(Xn n Br) is open and hn(Ü) = h(U) for any open set U such that Ü<^ Br (hn = Qnh).

Proof. We let kn = In + QnTH ~1 where In is the identity map on Xn. Then since

(l-kK^H-'lDWx-yW S ¡knx-kn?\\ ̂(l+kK^H-'DWx-yW,

we see that if we choose r such that m(x, y)<k< l/K,\\H~1\\ for x, y e Br, then kn

is a homeomorphism on Br. Then hn = knH will also be a homeomorphism. The

last part of the lemma is similar to the corresponding part of Lemma 2.

Lemma 4. hn satisfies condition (3) of Theorem 3.

Proof. We note that

\\hnu-hnv\\ = \\knHu-knHv\\ ^ IIZ/m-^IKI-^IIT/-1!!)

= J^h-vl^-kK.WH-^)

where kn is as in Lemma 3. Thus we let

«(/)= WH-^d-kK^H-'Dr

and condition (3) of Theorem 3 is satisfied.

Since C is compact, the mapping H+ C+ Fsatisfies the hypotheses of Theorem 3.

We then have the following theorem.

Theorem 5. There exists an r such that D(H+C+T, Br, 8) is defined and such

that D(H+C+T, Br, 8) = {d(I+Ch-\ h(Br), 8)} where h = H+T.

We can now use the properties of generalized degree to investigate the existence

of solutions of (H+C+T)(x) = 8. In [5], Cronin-Scanlon proved the invariance

under homotopy of the special degree defined in that paper. We see that since

D(H+C+T, Br, 8) is defined for some r, the invariance under homotopy follows

from that corresponding property in the paper by Browder and Petryshyn [2].

We should note that the definition of multiplicity was for the equation

(H+C + T)(x)=y

for y in a sufficiently small neighborhood of 8. We can, however, use the property
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that if D(H+ C+T, Br, 8) is defined then there exists a neighborhood of 8, N, such

that for any y e N, D(H+ C+ T, Br, y) is defined and is equal to

D(H+C + T, Br, 8).

4. The equality of the generalized degree and multiplicity. In this section we

shall show that the multiplicity is, in fact, a special case of the generalized degree.

We shall show that

(6) \m(H+C + T)\ = \d(I+Ch~\ h(Br), 8)\.

When H+C is nonsingular, then m(H+C+T) = l. It is not hard to show that

when H+C is injective so also is H+C+T. It is then clear that d(I+ Ch'1, h(G), 8)

= + 1 and that (6) is satisfied.

When H+C is singular, we proceed much as Cronin-Scanlon did in [3]. We

define $ and Y as follows :

<D(x) = x + £1££(x),

T(x) = £1x+£1££[£1(x) + £(£1x,£1x)],

where £ = (/7+C0)"1 = /Yi + C1 and £ is as in (5). We note that

(7) R(H+C+T) = R(h + C) = TO.

This can be rewritten in the form

(8) (/+C1£/r1)//1(/+C/¡-1) = TOA"1.

Before stating Theorem 7 we state the product theorem which can be found

in [11].

Theorem 6. Letf=I+ Cx and g = I+ C2 be two mappings of subsets of the Banach

space X into X such that

(1) Cx and C2 are compact,

(2) G is a bounded open set such that Cx is defined on G and C2 is defined on the

closure of A, a bounded open set containing (7+C1)(G),

(3)pigf(8G)vJg[df(G)].
Then

d(gf G,p) = 2 d(f g, ddd(g, Dup)
m

where 2<» means that the sum over the bounded components of X—f(dG), D¡, and c/¡

is an arbitrary element of D¡. Only a finite number of the terms on the right will be

nonzero.

Using the above product theorem we prove a slightly more general product

theorem that will help us investigate equation (8).

Theorem 7. Letf=H+Cx andg=I+C2be two mappings of subsets of the Banach

space X into X such that
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(1) H is a homeomorphism which satisfies the hypotheses of Theorem 3 and C1

and C2 are compact.

(2) G is a bounded open set such that H and C, are defined on G and C2 is defined

on D where D is a bounded open set containing f(G).

(3)ptgf(dG)vg[8f(G)].
Then

D(gf, G,p) = 2 die, Di,p)D(f G, dd
(0

where the sum is taken over all of the components of X—f(8G), Dx, and dt is an

arbitrary element of Dx. Only a finite number of the terms on the right will be nonzero.

It should be remarked that since fis such that each of the sets D(f G, dx) is the

singleton set, by 2(i) d(g, Dx,p)D(f G, dx) we merely mean the sum and product of

the integers involved.

Proof. Since H is such that it satisfies the hypotheses of Theorem 3, then

gf=(I+C2)(H+C1) = H+Cl + C2(H+C1) also satisfies Theorem 3 and

D(gf G,p) = {dV+CH-' + C^H+OH-1, H(G),p)}.

Since I+C1H-1 + C2(H+C1)H-1 = (I+C2)(I+C1H-1) = gf„ (f^I+Cfí-1) we

see that

d(I+ CXH -1 + C2(H+ C,)H - \ H(G), p)

= d^I-rC.W+C.H-1, H(G),p) = d(gf„ H(G),p).

We now use Theorem 6 to get

d(gfx, H(G), p) = 2 d(I+ C,H - \ H(G), ex)d(I+ C2,EU p),
Ci)

where Ex is a component of X—f,(dH(G)) and ex e E{.

It is not hard to show that p i g[f(8G)] u g[df(G)] implies that

ptgUÁmGmugidfimG))]

(so that Theorem 6 can be applied).

Since fi(H(G)) clearly equals f(G), we see that E¡ = D¡ and e¡ = (/¡.

Therefore, since

D(f G, di) = D(H+C„ G, dd = {d(I+C,H-\ H(G), dx)},

we see that

D(gf, G,p) = 2 d(g, Dx,p)D(f G, dd.
(¡>

Corollary 1. Iff(8) = 8 is an isolated 8-point of g, then there exists an r such

that, when G=B„

d(g,Di,p)D(f,G,di)¿{0}

for only one i.
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Corollary 1 follows from Theorem 7 in much the same way as Lemma 5.2

follows from Lemma 5.1 in [3].

We can now apply Corollary 1 to equation (8) and obtain

(9) d(I+ CxHx-\ A, 8)D(Hx(I+ Ch'1), G, d¡) = dÇV, Du 8)D(<t>h-1, G, q\).

We can then make use of the following lemmas.

Lemma 5. d(I+C1Hïi, Du8)=±l.

Proof. Once we note that /+ CxHx1 is injective, the lemma follows from Leray-

Schauder [10, pp. 56-59].

Lemma 6. <P/i_ * is injective on some neighborhood of 8 and satisfies the hypotheses

of Theorem 3.

Proof. Suppose that <D(A ~ Jx) = <D(A _ ̂ y), i.e.

h-'x + E'RT-'x = /r1v+£1£J7r1.y.

But then we also have x + hE1RTh~1x = y + hE1RTh~1y. We note that

||(x + A£^R£/r1x)-(v + //£1££/?-1.F)|| ^ ||x->>||- |/;£1££/r1j'-/2£1£J7r1x||

^ \\x-y\\[i-\\hEiR\\M(h-iy,h-ix)\\h-i\\].

Choose r small enough so that x, y e Br implies that

l-\\hElR\\ ¡I/r*||Mi/r^/r^) > 0.

Then if x^y, we have a contradiction.

O/2_1 satisfies the hypotheses of Theorem 3 since it is very similar to the mapping

H+T+C (with C=0).

Lemma 7. £(<t>/r\ G, d¡) = {± 1} (+1 or -1 but not both).

Proof. Using the fact that in G, <M_1 is injective, this lemma follows in the

same manner as Lemma 5.

Lemma 8. There exists a Br such that dÇV, D¡, 8) = dÇY, £>, 8).

Proof. Note that Y(8) = 8 and 8 e D¡. Choose Br such that £><= D¡. Then since 8

is an isolated 0-point of T, we get the above result.

The following lemma is due to Cronin-Scanlon [3, Lemma 5.4].

Lemma 9. dÇY, Br, 8) = d(Y\Xi, Xx n Br, 8).

The above lemmas and equation (9) then yield

(10) DtfxV+Ch-1), G, dt) = {±m(H+C+T)}.

It then remains to show that

(11) D(Hx(I+Ch-^), G, 4) = ±D(H+C+T, G, 8).
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We should note that since 8 e Dx, we can choose dx = 8.

To prove (11) we denote Ch'1 by K and proceed with the following. Suppose

that {y„ ..., ym} is an e/2-net of K(G) (exists since K(G) is compact). Since, for any

x e X, Qn(x) -> x, we see that for any e/2>0 there exists an N¡ such that näiV,

implies that |¡ön(jfi) —_ViII <«/2. Let A=max {A1;..., Nm} and consider Xn where

«SA. Then for any v e K(G) there exists a _y¡ such that || j^—_vt || <e/2. We then

have that

\\Qn(yd-y¡ =i WQn(yi)-yi\\ + \\y-y\\ < *•

Thus {Qn(y1),..., Qn(ym)} is an ¿-net of K(G)-

We next define Fe by

m /m

F£(.Y)=   2'".WÖn(>'i)/2WiW'
i = l / i = l

where

mix) = « - |x- ß„(*)|    if |*- Qn(yd || ^ «,

= 0 if\\x-Qn(yi)\\>e,

and choose e sufficiently small so that

(12) d(I+FeK,XnnG,8) = d(I+K,G,8).

Let us now choose N, such that, for n^N,,

d(QnHl(I+K), G n Xn, 8) = d(I+H,KH{\ H,(G), 8),

and suppose from this point on that n is always at least as large as N and N,. Now

consider the following lemmas.

Lemma 10 [2, Proposition 1].

d(QnH,(I+K), G n Xn, 8) = d(QnH,(I+FsK), G n Xn, 8).

Lemma 11. For n sufficiently large we have d(QnH„ Dx, 8) = d(I, //i(A), #)=1

if8eH,(D).

Proof. This follows from Theorem 3.

We now state the following theorem which can be found in [8].

Theorem 8. Suppose (1) the mapping f is continuous in the closure of a bounded

open set Qc^ (2) the mapping g is continuous on f(Q), and (3) g(y)réu0 for

y ef(dQ), where u0 is fixed in R". Then

d(gf D, i/0) = 2 d(f, Q, d,)d(g, A, «o)
(i)

where we sum over all of the components of Rn—f(dQ), Dt, that are contained in

f(Q.) and where dx is an arbitrary point in Dx.

Theorem 8 and the preceding lemmas allow us to prove the following product

theorem.
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Theorem 9. Let Hx andf=I+Kbe two mappings of subsets of the Banach space

X into X such that

(1) Hx is a homeomorphism which satisfies the hypotheses of Theorem 3 and K is

compact.

(2) G is a bounded open subset of X such that K is defined on G and Hx is defined on

the closure A of some bounded open set containing f(G).

(3) p tf(BG).
Then

D(Hxf, G,p) = 2 d{f, G, dJDtfx, Dt,p)
(0

where the sum is taken over all of the components, A, of X—f(8G) that are contained

inf(G) and d{ is an arbitrary point in D¡.

Proof. For sufficiently large n, Lemma 10 and Theorem 8 allow us to write

d(QnHxf Xn nG,p) = d(QnHx(I+FsK), Xn n G,p)

= 2 d(QnHx, Xn n Dl,p)d(I+FeK, Xn n G, dt).
(■)

Our choice of e allows us to state that d(I+ FeK, Xn n G, dt) = d(I+ K, G, d() sind

our choice of n allows us to write {d(QnHx, Xn n D¡,p)} = D(Hx, A,£)- Thus we

have the desired result.

We then have the following corollary.

Corollary 2. Iff(8) = 8 and 8 is an isolated 8-point of Hx, then

D(Hxf, G, 8) = d(f G, 8)D(Hx, A, &)

for one component of X—f(8G), A-

With the above corollary and Lemma 11 we have

D(Hx(I+K), G, 8) = £(/Y1(/+C/¡-1), G, 8) = {d(I+Ch~\ G, 8)}.

This result along with equation (10) yields

D(H+C + T,Br, 8) = {±m(H+C+T)}.

Thus the value obtained by using the generalized degree and the multiplicity are

the same up to a multiplicative constant ± 1.

5. An example. In this section we shall merely restate the example due to

Cronin-Scanlon in [3]. Consider Y=C[0, 1] (the continuous functions in [0, 1])

with the sup-norm. It is shown in [12] that if we let

*o(0 = Xio.u(t)   (the characteristic function of the set [0, 1]),

*i(0 = txioAt),
x2(t) = x1(2/) + y[0>1](2/-1)-x1(2/-1),

x2"+i(t) = x2(2n/-/+l),       /=!,...,   « = 1,2,...,
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then {xx} is a basis for C[0, 1]. Since {xx} is a basis for C[0, 1], each x e C[0, 1] can

be expressed uniquely as x=2£o a¡Xi (where the ax are real constants).

Let Xn = span {x0,..., xn} and Qn(x)=Qn(J4fLQaix{)=2f=o «¡*V This sequence

of subspaces and projections will be a projective approximation scheme for

mappings from C[0, 1] into C[0, 1].

We then define C by C(x(t))=y(t) where y(t) = x(l)t and define F by T(x(t))

=y(t) wherey(t) = [x(t)]2. Then /+C+Fwill satisfy the conditions set forth in this

paper. This is then an example of a mapping for which the generalized degree is

defined on some ball about the origin (and hence the multiplicity) while neither the

Leray-Schauder degree nor the extended degree due to Cronin-Scanlon [5] is

defined.
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