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Abstract. This paper deals with the problem of constructing envelopes of holo-

morphy for Riemann domains over a locally convex space. When this locally convex

space is a countable product of complex planes the existence of the envelope of

holomorphy is proved and the domains of holomorphy are characterized.

For the Riemann domains over the cartesian product CN of a countable number

of complex planes, the domains of holomorphy are characterized and the existence

of the envelope of holomorphy is proved. Also, for Riemann domains over a

complex separated locally convex space F such that the closed convex hull of every

compact subset is compact, the existence of the normal envelope of holomorphy is

proved.

Let (U, q>) be a Riemann domain over E. This means that U is a connected

separated topological space and <p is a local homeomorphism from U into E. If

a £ U and A^E, a + A is defined by

a + A = [cp\Wy\cp(a) + A),

W being an open subset of U where cp is a homeomorphism, aeW, and cp(a) + A

<^<p(W). When A has only one element h, a + h denotes the unique element of

a + {//}. If B is a subset of U,

B + A = \J(b + A)
beB

where b + A has the meaning just stated. A complex mapping / defined in U is

holomorphic if, for every u in U, there is an open convex balanced neighborhood U

of zero in F and a sequence of continuous «-homogeneous polynomials in E:

(n!)"1 dnf(u), n = 0, I,..., such that «+t/<= £/and

co

f(u + h)= 2 (nl)-1 d»fC)(h),
n = 0

the series converging uniformly for h in U. In the algebra Jf (U) of all complex
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holomorphic mappings in U it is considered the Nachbin topology generated by

all algebra seminorms ported by compact subsets of U[l]. Let S(U) be the spectrum

of Jf(U), that is, the set of all continuous homomorphisms from 3f(U) onto C.

Proposition 1. If heS(U), there is a unique aheE such that T(ah) = h(T ° </>)

for all T in the topo lógica I dual E' of E.

Proof. There is a compact subset K of U such that

\h(f)\ ï sup {\f(k)\;keK}

for every/in Jf(U). This fact is denoted by h<K. Let K be the closed convex hull

of <p(K). lf$~ = {Tx, T2,.. ., Tn} is a finite subset of F' and

ar = {.v e K; Tt(x) = h(Tt ° <p), i = 1, 2,..., n},

ay- is nonempty. If this was not the case, T—(Jx,..., Fn) would be a continuous

mapping from F into C such that (h(Tx o çp),..., h(Tn ° 93)) $ T(K). Hence there

would be a complex linear mapping G in Cn such that

Re G(h(Tx o <p),..., h(Tn ° </>)) > sup {Re G ° T(x) ; x e K}.

This would imply that the holomorphic mapping in Uf= exp G ° T o tp would

satisfy the inequality

\h(f)\ >sup{|/(8)|;«eiT},

against the assumption that h <K. Since K is compact and the collection {a.r ;TcE',

3~ finite} of closed subsets of K satisfies the finite intersection property, the inter-

section of the whole collection is nonempty. This intersection has a unique point

because F' separates the points of F.

Let h<K and U be an open balanced convex neighborhood of zero in F such

that K+ t/<= U sind K+L is compact for every compact subset F of U. If u e U and

fe3t(U),
00

K(f) = 2 (»O-^Yi •)(«)),
Tt = 0

defines an element hu of S(U) such that ahti = ah + u. For all h, Ä"and U as above,

the collection of all

Nh,u = {K;ue U}

defines a topology in S(U) such that the mapping n: he S(U) i-> ah e E is a local

homeomorphism which maps the connected open set Nh¡u onto n(h)+U homeo-

morphically. The proofs of these facts are the same as those of the case in which F

is a Banach space [2]. It is supposed now that Jf(U) separates the points of U.

If i(u)eS(U) is the evaluation homomorphism associated to we U, then i: U^*S(U)

is a biholomorphism from t/onto an open subset Us of S(U). Let (E(U), n) be the

Riemann domain over F, where E(U) is the connected component of S(U) con-

taining Us. If feJt(U), its extension f e^f(E(U)) is defined by f'(h) = h(f) for

all h in E(U).
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Let (E, i/i) and (D, cp) be Riemann domains over F such that D is canonically

identified to an open subset of E by means of a biholomorphism. (E, D) is an

extension pair if for each/in 3tf(D) there is/' eJif(E) such that f'\D=f If the

mapping/E Jt(D) v^f e J^(E) is a homeomorphism, the extension pair (E, D) is

normal.

(E(U), U) is an extension pair. It is normal by the following result.

Theorem 1. Let (E, D) be an extension pair. If, for every x in E, the mapping

fe Jf(D) h>/'(jc) e C is linear and continuous, then (E, D) is normal.

Proof. Let 77 and cp be the local homeomorphisms defining the Riemann domains

E and D respectively. To prove the theorem it is enough to show that for every

algebra seminorm p in J^(E), ported by a compact subset L of E, there is an

algebra seminorm q in 2tC (D), ported by some compact subset K of D, such that

p(f')úq(f) for all/in J*i?(D). By the assumptions of the theorem, for each x in L

there is a compact subset Kx of D such that \f'(x)\ ^sup {|/(i)| ; t e Kx} for every/

in Jf(D). Let Vx be a closed convex balanced neighborhood of zero in F such that

Vx is contained in the interior (2KX)° of 2VX and (i) x + 2Vx^E, (ii) KX + 4VX<=D,

(iii) Kx+L is compact for all compact subsets L of 4VX. Since L is compact, there

is a finite cover {xx+ Vx=Xi+ Vx; i= 1,2,...,«} of L. For /'= 1, 2,..., « we set:

Lx = KXt+ (J   A{KF n (jt(+ Ví))-tt(xí)] n Vx).
|A!S2

Hence Li<=KXi + 2Vi'=D and F¡ is compact. Let K be the union of the Lu i =1,2,

...,«, which is a compact subset of D. For every open subset W of D containing

K, there is an open balanced neighborhood A of zero in E such that

Wi = KXi+ U   KHiL + A) n (xi + (2Vxy))-Tr(Xi)] n (2Vxf}
IM S 2

is an open subset of D containing Lx for all ¡=1,2,...,«. The union of all Wi

contains K. The set A may be chosen in such a way that this union is a subset of W.

Now

B(W)=\J [(L + A)n(Xi + (2Vxf)]
i = l

is an open subset of F containing L. If x e B(W), then x is in jc¡ + (2 F¡)° for some /,

tt(x)-tt(xx) belongs to (2VX)° and, for |A|^1, jt¡ + A(t7(jc) — 77^)) is in E. The

function g(X)=f'(xx + X(TT(x) — TT(xx))) defined in a neighborhood of the set

{AeC;|A| á 1}
is such that:

g(X)=  2 A»(m!)-VB)(0)   and   f'(x) = g(l) = f (m!)"Vm)(0).
m=0 m=0

Therefore

|/'(*)| ¿ t (mij-^TWW^)-^))!

Ú  2 M)"1   sup |J»/(ft)(w(x)-,K*())|.
m = 0 *eAx,
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If keKx¡, then k + X(n(x) - n(xt)) is in D for all |A|á2. The function gx(X) =

f(k + X(n(x)-n(xx))) is defined for all |A|^2. The Cauchy inequalities for this

function at 0 imply that

\dmf(k)(n(x)-n(Xi))\   Í IWÎ2-» SUP |/(i)|
»elf,

for m = 0, 1, 2,.... These inequalities and (1) imply

CO

\f'(x)\ g sup |/(0|-2 2-»á2sup|/(0|.
tefV

Therefore

sup   \f'(x)\ Ú 2 sup |/(0|
xeB(W) teW

for every open subset W of D such that K is contained in W. It follows that for

every open subset W of D containing K there is c(B(W))>0 such that

p(f')^2c(B(W)) sup \f(t)\
teW

for all/in Ji?(D). The supremum of the family of all algebra seminorms s in J^(D),

ported by K and such that

s(f)^2c(B( W)) sup |/(0|
kW

for all open sets W containing K and all / in JP(D), is a member of this family.

This supremum is the seminorm q we need to complete the proof of this theorem.

Now it is easy to show the following result:

Proposition 2. If (U, <p) is a Riemann domain over E such that ^(U) separates

the points of U, then (E(U), n) and the biholomorphism i from Uonto the open subset

Us ofE(U) are such that (a) J?(E(U)) separates the points of E(U); (b) (E(U), U)

is a normal extension pair. Moreover, (E(U), n) is maximum relative to (si) and (b)

in the following sense: if(M, </>) is a Riemann domain over E and j is a biholomorphism

from U onto an open subset Um of M and (a) and (b) are satisfied when we replace

E(U) by M, then M may be identified to an open subset ofE(U) by a biholomorphism

preserving the points of U.

Throughout the remaining part of this paper E=CN and the points and the

subsets of Cn sire identified to the points and subsets of Cnx(0, 0,.. .)<^CN,

«=1,2,....

A Riemann domain (U, <p) over CN is of order « at a point u of U if n is the

smallest positive integer such that there is an open polydisc B in n~x(CN) with

center 0 for which u + ve U for every v in n^1(B). Here 7rn denotes the projection

mapping from CN onto the space of the first n variables. (U, cp) is of order (at most)

« in a subset A of U if (U, <p) is of order (at most) n at each point of A. (U,<p) is

locally pseudoconvex if (Uv, <pv) is pseudoconvex for each affine subspace V of CN

of dimension two. Uv denotes the topological subspace <p_1[cp(i7) n V] of U and
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<pv denotes the restriction of <p to Uv. In this case, for each v in V, the mapping

z e Uv h» —log 8uY(z, v) £ C is plurisubharmonic. Recall that

&uv(z, v) = inf{|A|; u + Xve Uv}.

Proposition 3. If (U,cp) is a locally pseudoconvex Riemann domain over CN,

then there is a positive integer n such that (U, cp) is of order n in U and

Cf(U)   =   TTnOCp(U)xCN-i°-n-1\

Lemma 1. Let (U, cp) be locally pseudoconvex and of order n at a point u of U.

Let r be the largest real positive number such that u + b e U for each b in the open

polydisc BT in Trn(CN) with center 0 and radius r. Then u + ve Ufor each v in tt~ 1(Br).

(U, cp) is of order at most « at each one of these u + v.

Proof. cp(u) may be considered equal to zero with no loss of generality. Let

w = (Wj)jeN e TT~1(Br). If 77n(w) = 0, then u+w e U because (U, cp) is of order « at u.

If nn(w)^0 and vv,=0 for each jsïn, u + w e U because w e Br. If 77n(w)^0 and

w;t¿0 for some j^n, consider z = (z,)jeN = (0,..., 0, wn, wn+1,...) e CN. The sub-

space Vof CNgenerated by zand w has dimension two. Since (Uv, cp\Uv) is pseudo-

convex, — log 8Uv(t, w — z) is a plurisubharmonic function of t in Uv. (U,cp) of

order n at « implies that there are positive real numbers e0,..., en_, such that

u + v e U for each v in CN such that \vx\ <ex, i = 0, 1,...,«— 1. Hence u + Xz e Uv

for each XeC because Az4 = 0, i'=0, 1,...,«—1, and <p(h+Az) = Az £ V. Conse-

quently — log 8yv(u + Xz, w — z) is a subharmonic function of A in C. If e is the

minimum of the e¡, i = 0, 1,..., «— 1 and 8 is the product of e by the inverse of the

supremum of the \wx\, i' = 0, 1,...,«, then \a(wt — zx)\<e for each |a|<8 and

/' = 0, 1,..., «—1. It follows that K + Az + a(iv — z) is in Uv for all A in Cand |a| <8.

Thus —log S^^+Az, w — z) is a bounded above subharmonic function of A in C,

hence constant. Since 8Uv(u + ùz, w-z)>l, 8Uv(u + z, w — z)>l and u+we U.

Lemma 2. Let (U, cp) and u be as in Lemma 1. Let W be an open connected neigh-

borhood of u such that cp\W is a homeomorphism from W onto cp(u) + A0x---xAs

x CN~[0,sl, where each Ax is an open ball in C with center 0 ands^n—l. Then (U, cp)

is of order at most « in W and cp(U)^><p(u) + A0x ■ ■ ■ x An-yx CN~l0,n~1'i.

Proof. cp(u) may be considered equal to 0 without any loss of generality. Let

Wn = A0x • • • xAn-x and W'n be the set of all points w of Wn such that (U, cp) is of

order at most « at [cp\W]~1(w). By Lemma 1, if we W'n, W'n contains the largest

polydisc of radius r>0 with center w which is contained in Wn. Since 0e W'n, it

follows that Wn= Wi If w e W, cp(w) e W'n x cN~i°-n-1\ Hence, applying Lemma 1

for the case K = 99-1[7rn9?(H')], it is easy to see that (U, cp) is of order at most « at

W = U+-(cp(w)-TTncp(w)).

Proof of Proposition 1. Let V be the set of all points of U where (U, cp) is of

order at most «. By Lemma 2, V is open. Let (xk)k = 0 be a sequence of points of V

converging to je in U. Let W be an open connected neighborhood of x in U such
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that <p I Wis si homeomorphism from If onto q>(x) + A0 x ■ ■ ■ xAsxCN~l0's\ where

each A¡ is an open ball in C with center 0. Thus xk e Wfork large enough and, by

Lemma 2, (U, <p) is of order at most n in W. Hence x e V and V is closed in U.

Since 17 is connected, Fis equal to U. Now the remaining part of the proof follows

easily.

Proposition 4. Let (U, <p) be a locally pseudoconvex Riemann domain over CN.

There is n > 0 in N such that (U, 93) is of order n in U and (Un, yn) is a manifold of

holomorphy spread over Cn if Un = q>~1[nn o <p(U)] and cpn = <p\Un.

Proof. Proposition 1 implies that there is a positive « in A7 such that (U, 93) is

of order n in U. Thus <p(U) = nn o <p(U) x cw~t0,"~u. If (Un, <pn) is defined as above,

it is a manifold spread over Cn. Since (U, 93) is locally pseudoconvex, (Un, <pn) is

locally pseudoconvex, hence a manifold of holomorphy spread over Cn.

Proposition 5. Let (U, 93) be a Riemann domain over CN of order n in U and let

v be a point of CN. Consider the manifolds spread over C (Un, <pn) and (Vn, </>n)

given by Un = q>-1[nn ° q>(U)], Vn = cp-1[v-nn(v) + nn° cp(U)], <pn = <p\Un, i/>n = <p\Vn.

Then there is a biholomorphism between them. In particular, if (Un, <pn) is of holo-

morphy, (Vn, >jin) is also of holomorphy.

Proof. Consider the mappings

bx'.xe Vn h> x+ [nn o <p(x)-<p(x)] e Un,

b2: ze Un^z+[v~nn(v)]e Vn.

It is easy to see that bx ° b2 and b2 ° bx sire the identity mappings in Un and in Vn

respectively. They are also local homeomorphisms. In fact consider .r in Vn and an

open neighborhood W' of x in U such that <p\W' is a homeomorphism and

<p(W') = cp(x) + A0x ■ ■ ■ xAtxCN~l0-n, where each /1¡ is an open ball in C with

center 0. Let W be an open neighborhood of x + [nn<p(x) — <p(x)] in U such that

(p\W is si homeomorphism and y>( W) = nn<p(x) + B0 x ■ ■ ■ x Bs x CN~[0,s] is con-

tained in nntp(x) = A0x ■ ■ ■ xAtxCN~l0,t\ each B¡ being an open ball in C with

center 0. Let W" be the open neighborhood of x e U given by

[<f>\W']-x[9(x) + B0x ■ ■ ■ x BsxCN-i0-%

Now it is easy to see that bx\ W" n Vn is a homeomorphism from W" n Vn onto

W<~\ Un. It is also easy to verify that/° bx e^(Vn) sind g° b2e 3t(Un) for every

feJ(f(Un)sindgeJe(Vn).

A Riemann domain (U, <p) over CN is a domain of holomorphy if there is

fe$F(U) with no extension/' eJif(U') for every Riemann domain (U', <p') over

CN extending (U, 93) properly. (V, 93') extends (U, 93) properly if there is a biholo-

morphism / from U onto a proper open subset U0 of £/'. In this case, / has an

extension/' eJf(U') iff °j=f.

Proposition 6. Let (U, <p) be a Riemann domain over CN of order n in U and

such that (Un, <pn), defined as above, is a manifold of holomorphy spread over Cn.

Then (U, q>) is a domain of holomorphy.
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Proof. There is fneJf(Un) with no extension f'n e 2P(U'n) for each manifold

(Un, cp'n) spread over Cn extending (Un, <pn) properly.

/: x e U^f(x) = fn[x + (Trncp(x)-cp(x))] e C

is holomorphic in U. In fact: if* is in U, let W" and Wbe considered as in the

proof of Proposition 5. It is quite clear that

(*) /» [cp\W'T1(cp(x) + b) =/o [cp\W]-1[Trncp(x) + b]

for each b in B0x ■■■ xBsxCN-i0-s\ But, in <p(W),f° [^W]'1 depends only on

the first « variables and it is holomorphic in Trncp(W) since it is equal to

f^^WnUnY1

there. Hence it is holomorphic in cp(W) ([3], [4], [5]). Since cp(W) is a translation of

cp(W") and (*) holds,/« [<p| W"\ is holomorphic in cp(W"). Thus/is an element of

3tf (U) and the restriction of it to Un is equal to/n. If/has an extension/' in Jif(U')

for some Riemann domain (£/', cp') over CN extending (U, cp) properly, there is

some manifold (Vn, </>n) spread over Cn (of the type used in the proof of Proposition

5) which is not of holomorphy. Proposition 5 implies that (£/„, <pn) is not a manifold

of holomorphy spread over C", a contradiction to the hypothesis of this proposition.

Therefore (U, cp) is a domain of holomorphy.

Proposition 7. Let (U, cp) be a Riemann domain of holomorphy over CN such

that Jf(U) separates the points of U. Then (E(U), n) is canónically identified to

(U,cp).

The proof of this proposition is an immediate consequence of Proposition 2.

A Riemann domain (U, cp) over CN is holomorphically convex if, for each com-

pact subset K of U and each balanced convex open neighborhood U of 0 in CN

such that K+ £/<= U and K+L is compact for every compact subset L of U,

Ku+U^U, where

Ku = [u e U; \f(u)\ ï sup |/(r)|, V/e^(í/)|.

Proposition 8. Let (U, cp) be a Riemann domain over CN such that ^(U) separates

the points of U and (E(U), tt) is canonically identified to (U, cp). Then (U, cp) is

holomorphically convex.

Proof. Let K be a compact subset of U and let U be an open balanced convex

neighborhood of 0 in CN such that K+ f/c u and K+L is compact for every

compact subset L of U. Then, by the remarks we have done after Proposition 1,

cp(Ku)+U^cp(U) and Nx(xhUcS(U) for each x in Ku. Since AiWU is open con-

nected and x is in E(U), it follows that Ni{x):U is contained in F(Í7) for every x in

Ku. But C/is identified to E(U) and Ni(x)iUis the same set as x+ U for each x in Ku.

Hence Ku+U^U.
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Proposition 9. If(U, 93) is a holomorphically convex Riemann domain over CN,

it is locally pseudoconvex.

Proof. If Fis an affine subspace in CN of dimension two, (Uv, <pv) is a manifold

spread over C2, where Uv = <p~1[<p(U) n V] and <pv = <p\Uv. To show that Uv is

pseudoconvex, it is enough to prove that d(K~vv) > 0 for every compact subset K of

Uv. Let K be a compact subset of Uv sind let U be an open balanced convex neigh-

borhood of 0 in CN such that K+ U<= U and K+L is compact for each compact

subset F of U. Then Kv+ [/<= t/ and <p(Ku)+U<=<p(U). Since ^(Ätv) is contained in

the closed convex hull of <p(K) sind q>(K) = <pv(K)<= V, it follows that

<p(Ku)+U n V c 93(17) n F = ^(tfy).

Now

Ä^ + f/n Fc ^n Uv+Un V<= (Ku+U)r\ Uv e i/n f77 c t/v.

It follows that there is a polydisc S in F with center 0 and radius r>0 such that

KUv + B<= Uv. This means that d(KUv) > 0.

Now it is possible to enunciate the following theorem whose proof we have just

finished.

Theorem 2. Let (U, 93) be a Riemann domain over CN such that J*i?(U) separates

the points of U. The following conditions are equivalent :

(1) (U,<p) is a domain of holomorphy.

(2) (E(U), n) is canonically identified to (U, 93).

(3) (U, 93) is holomorphically convex.

(4) (U, 93) is locally pseudoconvex.

(5) There is n > 0 in N such that (U, 93) is of order n in U and(Un, <pn) is a manifold

of holomorphy spread over Cn, if <prl = <p\Un and Un - <p ~1 [nn ° <p(U)].

Remarks, (a) Theorem 2 was proved by Hirschowitz in [5] for the case in which

(U, 93) is an open subset of CN.

(b) The implications (1) => (2) => (3) => (4) are true for a Riemann domain

(U,<p) over a locally convex space F such that the closed convex hull of each

compact subset is compact.

Let (U, 93) be a Riemann domain over CN such that 3V(U) separates the points

of U. The envelope of holomorphy of (£/, 93) is a Riemann domain (U0, (p0) over CN

which is maximum in the sense stated in Proposition 2 with the word "normal"

erased in condition (b).

Theorem 2 and Proposition 2 imply that the following result is true:

Proposition 10. If(U,<p) is a Riemann domain over CN and Jf(U) separates the

points of U, then (E(U), n) is the envelope of holomorphy of(U, 93).
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