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MULTIPLIERS FOR SPHERICAL HARMONIC

EXPANSIONS

BY

ROBERT S. STRICHARTZ

Abstract. Sufficient conditions are given for an operator on the sphere that

commutes with rotations to be bounded in V. The conditions are analogous to those

of Hörmander's well-known theorem on Fourier multipliers.

1. Introduction. Let {m,} be a bounded sequence of complex numbers and let

T be the operator defined on a suitable class of functions on the (n— l)-sphere

S"1"1 by Tf(x) = 2T=otnjYi(x) if/(x) = 2f=o T/x). Here 2 Y¡(x) is the expansion

of/into spherical harmonics Y¡ of degree/ Such operators commute with the

action of the rotation group SO(ri) on S""1 and are bounded on L2(S'n~1) with

norm equal to sup \m¡\. We shall give sufficient conditions for Jto be bounded on
L"(Sn-1).

The basic condition we consider is Jf(q, a.) that

26 + 1

2  |AaWy|9 ̂  A2m-'"X)

i = 2"

for all nonnegative integers b. Here q is a real number in the interval 1 fíq<oo,

a is a nonnegative real number, and the difference operator A" is defined as

follows :

(i) if a is an integer then A" is just the usual difference given inductively by

à°mj = mj, à" +l m, = A°m, + j - Aaw, ;

(ii) if a = a+ß, a an integer and 0</3< 1 then

/^lA'm.-A-^IY*

if2b^j<2b+1.

We denote by H(q, a) the space of sequences satisfying ¿?(q, a) and #P(q, a)

for all integers a < a.

Theorem 1. Assume q ̂  2, aq > n — 1 and the sequence {wy} lies in H(q, a). Then T

is bounded on L"(Sn~1) provided \ 1 /p — \\ < 1 /q.

Corollary. Let m(x) be a function of a real variable satisfying

\xkm(k)(x)\ ̂  A   for k = 0,..., a.
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116 R. S. STRICHARTZ [May

Ifmj = m(j) then T is bounded on L^S"'1) for \l/p-\\ <a/(n-\), p^\, oo.

An immediate consequence is the following weak version of the Littlewood-Paley

theorem:

Theorem 2. If 6(x) e Cln,2\Rx), 0(x) = l for l^x^2 and 6 has support in

i^x^4, then for l<p<<x> we have

2  Yk(x)    Ú   (|T0(x)|2+2     *£  0&-'k)Yk(x) 2Y>'<
ic = 0 p \ j = 0   k = 2i-i

g Bv  §  Yk(x)
k = 0

Our theorem is a generalization of Hörmander's theorem on Fourier multipliers

[7, Chapter 4] and its refinement in Littman [3] and Peetre [5]. Our method of

proof closely parallels Stein's proof of Hörmander's theorem.

An example of Askey and Wainger [1] will indicate the sharpness of our result-

They show that if w;=y-" exp ((-l)1'2/) for 0<ß< 1 and /¿>0 then Tis bounded

on ¿"OS"-1) for 11//>-i| </*/(«-l)jS and T fails to be bounded if \l/p-$\

>p./(n-\)ß (recent results of Stein [8] indicate that T is probably bounded if

\\/p—i| =p./(n-\)ß). It is not hard to show that {m,} belongs to H(q, p./ß) for any

q, so the boundedness for \\/p—i| <p./(n — \)ß follows from our result.

Weaker versions of our result are contained in more general results of Stein [6]

and the author [9]. The approach of this paper has been taken independently by

N. Weiss (see announcements in [12]) who solves the more general problem of

multipliers for the Peter-Weyl expansion of an arbitrary compact Lie group. We

believe that our work is still of interest for three reasons. First, our proof is simpler

since it does not involve the general theory of compact Lie groups. Second, we have

used interpolation methods that may also be applicable to Weiss' work. Third,

our results are not completely contained in his, since the sphere is a homogeneous

space of SO(n). If one lifts functions on S"'1 to SO(n) and applies Weiss' results

one obtains a version of Theorem 1 with n— 1 replaced by roughly the dimension of

SO(n), which is n(n-\)/2.

Finally we mention related results of Muckenhoupt and Stein [4]. They show that

restricted to zonal functions Tis bounded on V for \\/p—\\ < \/2(n-\) provided

{mj) is in H(\, 1). The restriction to zonal harmonics seems to be essential here.

2. Properties of g-functions. We denote points of S""1 by x' and points of Rn

by x. We write r= |x| and x' = x/|x|, so x=rx'. If/(x') is a function on S"'1 we

denote by u(x) = u(x', r) the harmonic function in the ball |x| < 1 which has/(x')

for boundary values in a suitable sense. If/(x') = 2 Yk(x') then u(x', r) = ^rkYk(x').

We also have the Poisson integral formula

u(x) = cj       lW.f(/)dy'.
js"-1 \x~ y
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For each positive real a we define the radial derivative da of order a as follows :

if a is an integer daf(x', r) = (r(8/dr))af(x', r), and if a = k-ß with k an integer and

0</3< 1 then

daf(x', r) = =^ |o dkf(x', rO|log il""1 y-

It is easy to verify the semigroup property dadß = da+B. If w(x', r) = 2i° rkYk(x')

then dau(x', r) = 2f karkYk(x') as may be seen by direct computation. These

properties are also a consequence of the fact that under the change of variable

r=e~' the da become the usual fractional derivatives.

In analogy with the Euclidean theory described in [7, Chapter 4] we introduce

the following auxiliary functions :

ga(f,x')2 =  f \dau(x',r)\2\\ogr\2«-^,
Jo "

S(f,x')2=\[ \dxu(y',r)\2(l-r)2-"drdy'
JJa-rfèl-x'-y'

gt(f'X')2 = JX- (l-r + d-x'.^2)"""'^/.^)!^!-^-^/^

We will usually require A > 1. The following theorem summarizes the properties of

these functions we will use. It is a rather straightforward elaboration of the

techniques of Stein [6] and [7], but we include the proof for completeness.

Theorem 3. LetfeL2(Sn-1)nL"(Sn-1) and assume ¡f(x')dx'=0. Then

(a) H^COL^pIL/Ip, 1<P<co;
(b) \\f\\r>^Ap\\gi(f)\l, 1 </>«*>;
(c) lkA*(/)|p^||/|P,2<p<co,A>l;

(d) ga(f, x')uAaßgß(f x'), ß>a;

(e) S(f,x')úAxgt(f,x').

Proof. Parts (a) and (b) are special cases of a very general theorem of Stein [6].

We define the Poisson semigroup by T'f(x') = u(x', e~'). Using the explicit form of

the Poisson integral it is easy to check that the conditions of [6] are satisfied.

Theorem 10 and its corollary of [6] give (a) and (b).

We deduce (c) from (a) in exactly the same manner as in the Euclidean case

[7, Theorem 4.2]. We prove

(*) j gt(f, x'mx') dx'ÚA^j gx(f, x')2Mt(x') dx'

where Mi/j is the maximal function

M<p(x')=    sup    |l-#f-»f \<l>(y')\dy'.
-Kr<l JU-rrsi-x'-!/'

This function is easily seen to have all the properties of the usual maximal function,
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in particular,  ||Mi/í|p^/íp||i/r||p for l<p¿ao. Once we have established (*) we

obtain

llsíCOL ú AKp\\gl(f)l   îor2ïp<œ

by setting </>= 1 for/? = 2, or by taking the supremum over all </> with \\>fi\\Q= 1 where

l/q + 2/p=\.

To establish (*) we compute

\gt(f,x')2i(x')dx'

= fi      (\-r)\d,u(y',r)\2
Jo Js"-1

■ il (i-r+íiixv^r" <» -^-"^ *] * *
so it suffices to show

SUP   Í       L + .1    v' v'Y'2T'   V^-n\^')\ dx' ̂  cMH/).
o<£<iJs"-i \e+(i— x ~yj  i

Now we may compute that

(e \A(n-l) /    e    \A(n-l)

£+(i-x'-/H     = el~Eb+r)

fl-(l-x'-!/')l'2

+ (\-ry~nhe(r) dr       forx'-y^O
Jo

where

/i£(r) = e-A(„-l)(7TT-7) ^¿7)^0.

From this we obtain

f / . \A(n-l)

£l_n L-1     r'  v' \^')\dx'

-P-ffl-f)»-f      , |<¿(x')| ¿x'Wr) ¿r
Jo L Ju-rrël-x'-!/' J

If we set 0= 1 we obtain ¡I hs(r) dr¿c independent of e (note «^"(e/^ + I))^-1'

is bounded since A> 1). Since he(r)^0 we thus obtain

''~L,. Uo-Wy*) "   w» « - c'mn
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and the integral over x'-/áO is easily dominated by

c f \<P(x')\ dx' í c'Mip(y').
Jx'-y'¿0

Thus (*) is established.

To establish (d) it suffices to show ga(f x')^Aaßga+ß(f x') for 0<y3< 1 and

ß<2a. To do this we begin with

d&jU(x', r) = Y7Ö-A   da+ßu(x', rt)\\og /I*"1 —■

We apply Schwartz' inequality and make use of the fact that

f1 |log (rOI -2a|log /Ie"1 ^ = caß\\og r|"-2a
Jo t

if 0</3< 1 and /3<2ct to obtain

\dau(x',r)\2 Í c|logrr2« C \da+ßu(x',rt)\2\log(rt)\2"\logt\*^~
Jo t

Thus

ga(f,x')2=   fV«"(*','0Mlog'f"-1^
Jo '

^ c í1f|4+A»(^'-0|a|logr|''-1|log(rOHlog/|A-1~"
Jo Jo t   r

= c\       \da + ßu(x',r)\'
Jo Jo

log j ''llogrHlogfl'-^^.

Interchanging the order of integration and using the fact that

j:
log \ llog/l'"1- = cß\\ogr\2*-^

I + 2Í-1 "r
2°+2o-ij = Aaßga+ß(f,xy.

for 0<ß< 1 we obtain

ga(f,x')2^AaßC\da+ß(x',r)\2\[og
Jo

Finally (e) is trivial because

/ I—/- \Mn-l)

\l-r + (l-x'-/H

on the set where (1 -r)2^ l-x'-y'.

3. Proof of the main theorem. We assume now for technical convenience that

mo=w1 = 0. It is clear that the theorem holds in general if we can establish it with

this assumption. We form the function

M(t, r)=2 m¡r%(t)
i = 2
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where Z,(t) is the zonal harmonic of degree/ Recall that

Zi(x'.y') = ZYjk(x')Yjk(y')
k

if {Yjk} is an orthonormal base for the spherical harmonics of degree j. The crux

of the proof is the following lemma which translates the hypotheses on {my} into

properties of M(t, r).

Lemma 1. Assume {mj) lies in H(2, a). Then

(a) \daM(t,r)\úAar2(\--rf-n-« if a>(n-\)/2;

(b) jl, (\-t)a\daM(t, r)\2(\-t2y~2)l2 dt^Aar2(\-rf-n.

Let us complete the proof of the theorem assuming the lemma. We first do the

case q=2. We will show that Jf*(2, a) for a>(n-l)/2 implies ga+,(Tf)ÚAgt(f)

pointwise for X = 2a/(n —1)> 1. In view of Theorem 3 this proves that Tis bounded

on V for 25/xoo, and the usual duality argument shows that ris also bounded

onL'for \<p^2.

Let U(x', r) be the Poisson integral of Tf(x'). Then we have

U(x', rs) = [      M(x' -y', r)u(y', s) dy'.
Js"-1

This is an immediate consequence of

U(x',r) = ZmkrkYk(x')   and    u(x', r) = 2 rkYk(x'),

and the properties of zonal harmonics. If we apply da in the r-variable and d1 in

the j-variable to both sides we obtain

da+1U(x',rs) = daM(x'-y',r)d1u(y',s)dy'
Js""1

and setting r=swe have

da+1U(x', r2) = f       daM(x' ■/, r)dlU(y', r) dy'.
JSn-l

We break up the integral into two regions and apply the Schwartz inequality :

\da+1U(x',r2)\2

gf \dxu(y',r)\ady\ \daM(x'-y',r)\2dy'

+ í ^nU{í'rX ty í 0 -x'-y'Y\daM(x'-y', r)\2 dy'.
J (l-r)2Sl-x'-¡/'   \1~X -y ) J(l-ri2gl-x'-!/'

Now by (a) of Lemma 1 we have

\daM(x'-y',r)\2dy'
ll-x'-ï'

á ^ar2(l-r)2(1-n-a) f dy' ¿ cr^l-r)1-"-2«,
J(l-r)2El-*'-v'

Í
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and by (b) we have

I (\-x'-yr\daM(x'-y',r)\2dy'

f     (l-t)a\daM(t,r)\2(l-t2yn-2Wdt ^ cr2(l-ry-n.
,"1

Thus

where

\da+xU(x',r2)\2^c(Ix(r) + I2(r))

Ix(r) = r2(l-ry-"-2°( \dxu(y',r)\2dy',
Ja-r)2il-x'-y'

I2(r) = r2(l-ry-»\ ^^V

We may then estimate (substituting r2 for r)

ga+i(Tf,x'f = 22« + 2 Ç\da+xU(x',r2)\2\logr\2"^-
Jo "

S ci 71(r)|logr|2a + 1- + cí1/2(r)|log/-|2a + 1--
Jo '"Jo r

Using r|log r |2et + 1 ̂ c(l — r)2or + 1 we have

p/iOOllogif«*1^ g cS(fix')2 í cgt(f,x')2
Jo '

and

r^wiiogA-i2"'1-
Jo tr

= cíí ^lU(y','r)}2a(\-r)2-n + 2ady'dr
JJa-r^ûi-x'-y (i—x -y)

="SIL* \^^Mi-r4-^f^il^'u^*
= 4acgï(f, x')2

for X=2a/(n-1). Thus we have g2a+1(Tf, x')^cg*(f x') as desired.

We complete the proof of the theorem for c7>2 by interpolation. We use the

complex method (see Calderón [2] for details).

Lemma 2. The intermediate space [H(q0, aQ), H(qx, ax)]e may be identified with

H(q, a) for a = (l -9)a0 + 9ax and \/q = (\ -9)/q0+9/qx.

This is a simple extension of results in Taibleson [10, II] (cf. [3] and [5]). We

omit the details.
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Now we consider 7/as a bilinear operator on H(q, a)xV. Write a = (n— l)/q+e.

By the q=2 case we know it is bounded from H(2, (n — l)/2 + e)xLF° to Lp° for

any p0 in 1 <pQ < oo. On the other hand Sobolev's inequality shows that all

sequences in H(qu (n—l)/q, + e) are bounded (see [10, I]) so 7/is bounded from

H(qu (n — l)/q, + e)xL2 to L2, 1 <q,<cc. It follows from the bilinear interpolation

theorem [2] that Tf is bounded from H(q, (n-\)/q + e)xLp to U for \/q = (\-6)/2

+ 8/q1 and l/p = (\-9)/p0 + 6/2. It remains to show that for fixed q>2, one can

choose p0 and qx so as to obtain all values of/? in the interval |l//?-i| < \/q. But if

p>2 we ha\e ^—l/p = l/q—(6/q1 + (l — d)/p0) and so we need only take p0 and qx

sufficiently large, and a similar argument works for p< 2. This completes the proof

of Theorem 1. We turn now to the proof of Lemma 1.

Proof of Lemma 1. First we observe that it suffices to prove (b) in the case when

a is an even integer. For we may write

daM(t, r) = 2 jamjr%(t)

which makes sense for complex a. Furthermore, if a=a+ib then

daM(t, r) = 2yaO'iH>izxo

and the sequence {jibm,) belongs to H(q, a) if {m,} does with a norm growing at

most like a power of b. In view of Lemma 2 one may thus apply the Phragmen-

Lindelöf principle to interpolate inequality (b).

The proof for the case when a is an even integer is based on the recursion relation

iZ^ = 2^2Z-^ + 27Tfc-2^-1(0

which follows immediately from the recursion relation for Gegenbauer poly-

nomials

?c^ = 27+ic-l(i)+7:wc/-l(0

[11, p. 514] and the fact that

Ut) = TQ+ñ-2) °r2),\t)       HL P- 461].

We will also use the well-known estimates \\Zj\\2^cjin~2)l2 and \Z¡(t)\^cjn~2,

and the elementary inequality ^js~1r'ècr2(l— r)~s for s>0 which may be

deduced by estimating the sum by ¡2 xs~1exloer dx.

Now (a) is a simple consequence of the boundedness of {/%}:

\daM(t, r)\ = ¿yVHZ/O   = csup \mj\ 2/* + n-V S Aar2(l-ry~n-
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Next we turn to (b). For a = 0 we have

f     \M(t,r)\2(l-t2fn-2)l2dt

=   fntf'Ztt) 2 = 2\mj\2r2'\\Z1\\22
2 2 2

S c^¿jn-2\m¡\2r2i S c f 2Wn-2V2k + 2 2  Kl2
2 fc = 1 i = 2

CO 00

á c^ 2 2*<''-2V2'£ + 22'c ^ c,4 ^jn~2r2i è A'r2(l-ry-n
k=l i=2

if {m,} e H(2, 0).

We consider next the case a = 2. We write

<p(j)=j2miri   and    </>(j) = (2j+n-2)~1<p(j).

Using the recursion relations we compute

(1-0 d2M(t, r) = (1-02 rtßZ/O = "i 2 (?0'+ 1)-2<p0-) + çp0- 1))Z,(0

Now if {m,} e 7/(2, 2) we easily compute (using Leibnitz's formula for differences)

that

2P + 1

2 |co(y+i)-2ç,o-)+<pa-i)i2 ¿ /?f2rt'(i+(i-r)?+(i-o2n
7 = 2''

and

2P + 1

2  IW+1)-0O'-1)I2 = ^'2V2p-1(l+(l-r)2-).
3 = 2"

Thus we have

\(\-t)d2M(t,r)\2(\-t2yn~2)'2 dt

= 2 I-X.VÜ+ i)-MJ) + 9U-l)) + ((n-2)/2)(t(j+ 1)-0(J-l))|a||Zy||I
00    2P+ 1

^22 (same expression)
P = 1 ; = 2"

^ 4" 2 2p(n-1V2P + 1(l+(l-r)2p + (l-r)2221')
p = i

= -4" ^ jn~2r2i(\+j(\-r)+j2(\-r)2) = -Sr^l-r)1"".
y = 2

We establish (b) for a = 2k in an analogous fashion, using the recursion relations

to write (1 — t)kd2kM(t, r) as a zonal harmonic series with coefficients involving

A2k<p(j) and related terms. We omit the details.
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The deduction of Theorem 2 from Theorem 1 is a routine argument using

Rademacher functions as in [4, Chapter 4]. We use Theorem 1 to show that

2, 8,0(2-*) for e,= ±1 and (2; 0(2"'*))-1 are U multipliers.
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