
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 167, May 1972

MAPPINGS FROM 3-MANIFOLDS ONTO 3-MANIFOLDS(')
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ALDEN WRIGHT

Abstract. Let/be a compact, boundary preserving mapping from the 3-manifold

M3 onto the 3-manifold N3. Let Zv denote the integers mod a prime/», or, if p = 0, the

integers. (1) If each point inverse of/is connected and strongly 1-acyclic over Z„, and

if M3 is orientable for p > 2, then all but a locally finite collection of point inverses of/

are cellular. (2) If the image of the singular set of/is contained in a compact set each

component of which is strongly acyclic overZ,,, and if M3 is orientable forp/2, then

N3 can be obtained from M3 by cutting out of Int M3 a compact 3-manifold with

2-sphere boundary, and replacing it by a Zp-homology 3-cell. (3) If the singular set of

/is contained in a O-dimensional set, then all but a locally finite collection of point

inverses of/are cellular.

I. Introduction. We suppose throughout the introduction that /: M3 -»- A'3 is

a compact, boundary preserving mapping from the 3-manifold M3 onto the

3-manifold TV3 (where A/3 and N3 may or may not have boundary). Let Zp denote

the integers modulo a prime p, or, if p = 0, the integers.

If/_1(x) is connected and strongly 1-acyclic over Zp for all x e N3, and if M3 is

orientable for p > 2, then in Corollary 1 it is shown that all but a locally finite

collection of point inverses are cellular. This implies that N3 can be obtained from

M3 by cutting out of Int M3 a locally finite collection of compact 2-manifolds,

each bounded by a 2-sphere, and replacing them by a 3-cell (see Corollary 3).

Thus, if M3 is compact, N3 is a factor in a connected sum decomposition of M3.

Now suppose that the image of the singular set of/is contained in a compact

set X each component of which is strongly acyclic over Z„. If M3 is orientable for

p¥"2, then N3 can be obtained from M3 by cutting out of M3 a finite number of

compact 3-manifolds, each bounded by a 2-sphere, and replacing each by a

Zp-homology 3-cell. In particular, if Jfhas a neighborhood which is an irreducible

3-manifold with boundary (or if N3 is irreducible), then TV3 is a factor in a con-

nected sum decomposition of M3. This extends Theorem 1 of Lambert in [9]. In

the special case where the image of the singular set is contained in a Cantor set,
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we can say in addition that all but a finite number of point inverses are cellular.

This was previously proved by the author using other techniques.

Lemma 5 restates one of Armentrout's results on approximating cellular maps

with homeomorphisms. Using this lemma, we combine the results of Theorems

1 and 3 in Theorem 5. Thus if M3 is compact and orientable for p + 2, and if the

image of the point inverses of/which are not connected and strongly 1-acyclic

over Zp is contained in a compact set X each component of which is strongly

acyclic over Zp, then N3 can be obtained from M3 by cutting out of Int M3 a finite

number of 3-manifolds each bounded by a 2-sphere, and replacing each by a

Zp-homology 3-cell. Theorem 6 combines Theorems 1 and 4 in a similar fashion.

In Theorem 7, we extend a result of McMillan [13] to show that if the image of

the singular set off is contained in a (nonclosed) 0-dimensional set, then all but a

locally finite collection of point inverses are cellular.

Let G be a nontrivial abelian group. A compact set X^M is strongly k-acyclic

over G if for each open set £/<= M containing X, there is an open set F such that

JcKcf/ and such that the inclusion induced homomorphism /*: Hk(V;G)

-> Hk(U; G) is zero. (If Xis connected and strongly A-acyclic over G for 1 ̂ A^«,

then X^M has property wi,n(C7) in the sense of [8].) The compact set X<^M is

strongly acyclic over G if it is connected and strongly A-acyclic over G for all A S 1.

We refer the reader to [13 (especially Lemma 1)] for further facts about strong

acyclicity. In particular, for any positive integer A, a compact set X in the interior

of a 3-manifold M3 is strongly A-acyclic over G if and only if each component of

X is strongly A-acyclic over G. Also X is strongly acyclic over Z if and only if X is

connected and H*(X; Z) = 0 (see [7]).

The compact set X<= M has property UV" if for each open set t/<= M containing

X, there is an open set F such that X^ F<= U and such that V is contractable in U.

A set A' in a 3-manifold M3 is cellular in M3 if X=C\f=í F¡ where each F¡ is a

3-cell, and Fj + 1<=Int Ft for all i.

If a is a loop in a space M, we will denote its homology class in Hx(M; G) by

[a]. The symbol Zp for p>0 will denote the finite cyclic group of order p. The

symbol Z0 will denote the integers.

A manifold will be assumed to be connected and to have no boundary unless

otherwise specified. We assume that all manifolds have a piecewise-linear structure.

A 3-manifold is irreducible if every polyhedral 2-sphere in it bounds a polyhedral

3-cell. If M3 and N3 are 3-manifolds, possibly with boundary, the connected sum

M3 § N3 of M3 and N3 is obtained by removing the interior of a 3-cell from the

interior of each, and then sewing the two manifolds together along the resulting

boundary components, using an orientation reversing homeomorphism if M3 and

A'3 are oriented.

A map or mapping is a continuous function. A monotone map is a map all of

whose point inverses are connected. A map /: M -»• N is compact (proper) if, for

any compact set K in N,f~\K) is compact. Iff: M -» N is a compact monotone
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map, then the point inverses of M form a monotone upper semicontinuous decom-

position of M whose associated decomposition space is homeomorphic to N.

Conversely, if G is a monotone upper semicontinuous decomposition of M, the

projection map p: M^-> M\G is a compact monotone map.

Let {Xa}aeA be a collection of compact subsets of a space M. Then {Xa}aeA is a

locally finite collection if for y e M, y has a neighborhood U which intersects only

a finite number of elements of the collection.

II. Maps all of whose point inverses are strongly acyclic.

Lemma 1. If X is a compact connected subset of a space M and if X is strongly

k-acyclic over Z in M for l^k^n, then X is strongly k-acyclic over Zp in M for

l^íkfín and for any prime p>l.

Proof. Let W and V be chosen so that X<= W<^ K<= U and so that the inclusion

induced homomorphisms i'*: Hk(V; Z) -> Hk(U; Z) and./'*: Hk(W; Z) -> Hk(V; Z)

are zero for 1 áfcá«. Consider the following commutative diagram:

0->Hk(W;Z) -> Hk(W; Zv)-> Torx (Hk^(W; Z), Zp)-> 0

id

0->Hk(V;Z)®Zp ->Hk(V;Zp)->Tor1(Hk_,(V;Z),Zp) ->0

j* ® id ./*

0->//,(</; Z) -» Hk(U; Zp) -> Tori (Hk_,(U; Z), Zp) 0

The horizontal rows, which are exact, are from the universal coefficient theorem.

By our choice of W and V, the outer vertical maps are zero. Using a diagram

chasing argument, we see that/*/'* is the zero homomorphism.

Lemma 2. Let M3 and N3 be 3-manifolds, and let f: M3 -^ N3 be a compact,

monotone, onto map. Let p be 0 or a prime, and suppose M3 is orientable if pj=2.

Iff~\y) is strongly l-acyclic over Zpfor every y e N3, then eachf~1(y) is strongly

acyclic over Zp in M3.

Proof. By Alexander duality and Theorem 3 of [8] we see that Hk(f~1(y); Zp) = 0

for k^2. Then the continuity of H* and the universal coefficient theorem for

cohomology show that/" 1(y) is strongly acyclic over Zp for all y e N3. (For more

details, see Theorems 4.4 and 3.2 of [7].)

Lemma 3. Let M3 and N3 be 3-manifolds, andf: M3 -^ N3 be a compact, mono-

tone, onto map such that f~\y) is strongly l-acyclic over G for each yeN3. If

H,(N3; G) = 0, then H,(M3; G) = 0.

The proof of Lemma 3 is similar to the proof of Theorem 2.1 of [15].
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If Mn and Nn sire //-manifolds with boundary, a map/: Mn -*• Nn is said to be

boundary preserving if /| Bd Mn is a homeomorphism of Bd A/n onto Bd JVn, and

if/_1(Bd Nn) = Bd Mn. A 2-manifold with boundary S is properly embedded in a

3-manifold with boundary M3 if S n Bd M3 = Bd S.

A Zp-homology (homotopy) 3-cell is a compact Zp-acyclic (contractible) 3-mani-

fold with boundary. A cube-with-handles is obtained by adding orientable 1-handles

to a 3-cell. We define a Zp-homology (homotopy) cube-with-handles similarly. We

will say that a set X is the intersection of a decreasing sequence of (Zp-homology,

homotopy) cubes-with-handles if X= f\f= x Kf where each Kf is a (Zp-homology,

homotopy) cube-with-handles and Kf+x^lnt Kf.

Theorem 1. Let p denote 0 or a prime, and let M3 and N3 be compact 3-manifolds,

possibly with boundary, where M3 is orientable if p>2. Let f: M3 -*- N3 be a mono-

tone, onto, boundary preserving map. Let U be an open subset of N3. Iff~\x) is

strongly l-acyclic over Zp for all x e U, then {x e U : f'\x) is not cellular) is a

finite set.

Remark. This theorem was first proved for p = 0,2 in [16]. It has since been

generalized by D. R. McMillan in [13].

Proof. The case wherep = 0 reduces to the case where//= 2 by Lemma 1. By the

proofs of Theorems 1 and 2 of [11] and by Kneser's Theorem [6] it is sufficient to

prove that {xeU : f'l(x) is not UV™} is finite.

We can apply Lemma 2 to see that/-1(x) is strongly acyclic over Zp for each

x e U. By Theorem 2 of [12],/-1(-v) is the intersection of a decreasing sequence of

Zp-homology cubes-with-handles.

Let a be the rank (i.e. the minimum number of generators) of nx(M3). By a

corollary to the Grushko-Neumann Theorem (p. 192 of [10]), there are at most a

disjoint Zp-homology 3-cells in M3 which are not homotopy 3-cells. Thus there are

at most a points in U whose inverse images are not the intersection of a decreasing

sequence of homotopy cubes-with-handles.

Let x e U, where f'\x) is the intersection of a decreasing sequence of homotopy

cubes-with-handles. We will complete the proof by showing thatf~1(x) is UV*.

Let U' be an open set in M3 containing f~\x). There is a homotopy cube-with-

handles H3 such that

f~\x) c Int H3 <= H3 <=■ U' nf-\U).

Let W be an open 3-cell in U such that x e W and f~\W)^\nt H3. Define

inductively G0, G\, G2,... by letting GQ = TTi(f'1(W)), and by letting

G, = Gi.x(XxX2X1-1X2iXS).

(See p. 74 of [10] for notation.) In other words, G¡ is the subgroup of G¡-x generated

by all elements of the form uvu'1v~1t" where u, v, t e G¡-x- Let F0, F1; F2,...

be the corresponding subgroups of 7r1(A/3).
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The subgroup G, certainly contains the commutator subgroup of G0. The image

of G1 in H,(f-1(W\,Z) i%pHx(f-\W);Z). Thus

"iCZ-W)/^ S Hx(f-1(W);Z)\P-H,(f-\Wy,Z) s H,(f-1(W);Zp).

Let 8e-n-,(f-1(W)). Since H^f-^W); Zp) = 0 (by Lemma 3), S e G,. Thus 8 is

a product of elements of the form uvu~1v~1r" where u, v, r e G0. By applying the

same argument to u, v, and r, we see that «, v, r e G1. Thus 8 e G2. By repeating

this argument, S e Hf-o G{. By Corollary 2.12 on p. 109 of [10], n¡°°=i F= 1. Thus

8 = 1 in tt,(H3), andf~\x) is UV°°.

Corollary 1. Let M3 and N3 be 3-manifolds, possibly with boundary, and let

f: M3 -»• N3 be a compact, monotone, boundary preserving, onto map. Let p denote 0

or a prime, and suppose that M3 is orientable if p>2. Iff'1(x) is strongly 1 -acyclic

over Zp in M3 for all x e U, then {x e U : f"1(x) is not cellular} is a locally finite

set in N3.

III. Maps where the image of the singular set lies in a strongly acyclic set. We state

below a slightly strengthened version of Theorem 2 of [13]: here we assume that

M3 is orientable only if p>2, and thus the 1-handles which are attached to Bd Q,

to obtain H¡ may be attached in a nonorientable fashion. (See the statement of

Theorem 2 for the definition of Qx and //,.) The only additional difficulty in the

proof is when we have Sx^ Bd Zf and Sk<^ Bd Zf topologically parallel. (See p. 133

of [12].) As before, each loop in Sx Zp-bounds in Zf, and the same argument shows

that Si is a 2-sphere if S¡ is not homeomorphic to a projective plane. But if Sx is a

projective plane, it must contain an orientation-reversing simple closed curve since

Sx is two-sided. This contradicts the fact that every simple closed curve in Sx

Zp-bounds in Zf, since ̂  = 0, 2.

Theorem 2. Let p denote 0 or a prime. Let X be a compact, proper subset of

Int M3, where M3 is a 3-manifold, possibly with boundary. Suppose M3 is orientable

ifp>2, and suppose that X has the following property relative to M3 and p. For each

open set U^M3 with X<^U, there is an open set V, X<=- V^U, such that, under

inclusion, H,(V-X;ZP) -> H,(U;ZP) is zero. Then X=C]f=1 Hx, where Hx is a

compact polyhedron in M3, each component of Hx is a 3-manifold with nonempty

boundary, //¡ + 1clnt Hx and each //¡ has the following structure: it is obtained from

a compact polyhedron Qx, each component of which is a 3-manifold whose boundary

consists entirely of 2-spheres, by adding to Bd Q, a finite number of (solid, possibly

nonorientable) 1 -handles.

Let/: M -> N be a map. Then let Sf = {x e M : f~V(x) is nondegenerate}.

Theorem 3. Let p denote 0 or a prime. Let M3 and N3 be piecewise-linear 3-mani-

folds, possibly with boundary, where M3 is orientable if p + 2. Let X be a compact

subset of Int N3 such that each component of X is strongly acyclic over Zp. Let

f: M3 ^»- N3 be a compact, boundary preserving map with f(Sf)c X. Then N3 can
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be obtained from M3 by cutting out o/Int M3 a finite number of polyhedral 3-mani-

folds which are each bounded by a 2-sphere, and replacing each by a polyhedral

Zp-homology 3-cell.

Proof. By Theorem 2 of [12], X is the intersection of a decreasing sequence of

Zp-homology cubes-with-handles. Thus we can assume that A'3 is a Zp-homology

cube-with-handles, and that each two-sided surface in Int A'3 separates N3.

The first half of the proof will be to show that/_1(X) has the following property

in Int M3: for each open set U^lnt M3 withf~\X)^ U, there is an open set V,

withf-^X)^ ycu, such that, under inclusion, H1(V-f-1(X);Zp)-+H1iU;Zp)

is zero.

Let U be an open set in Int M3 with/^1(A')c: U. Since Cl (S,)<= U,f(U) is open.

Let Z3 be a compact polyhedron in f(U) such that each component of Z3 is a

3-manifold with boundary, and such that X<=IntZ3. Since X is strongly 1-acyclic

over Zp, there is an open set W containing X such that, under inclusion

Hx(W-X;Zp)^Hx(Z3;Zp)

is zero.

Let V=f~\W), and let [a] e Hx(V-f~\X);Zv) where we can assume that a

is a finite, pairwise disjoint collection of (oriented, if p + 2) simple closed curves

such that/(a) is polyhedral in Z3. Let F3 be a regular neighborhood of f(a) in

(IntZ3) — X. We can triangulate Z3 so that F3 and f(a) are subcomplexes of the

triangulation. Then the homeomorphism/_1|(Bd Z3 u F3) induces a triangulation

of/_1(BdZ3 u F3). Since each of the finite number of components of/_1(Z3)

is a 3-manifold with boundary, by Theorem 5 of [2] there is a triangulation of

f~l(Z3) which is compatible with the above triangulation of f~1(Bd Z3 U F3).

Using the relative simplicial approximation theorem, there is a piecewise-linear,

nondegenerate map g from f'1(Z3) onto Z3 such that

g\f-\BdZ3\J F3) =/|/"1(BdZ3uF3),

^-HBdZ3UF3) =/"1(BdZ3UF3).

By subdividing we can assume that g is simplicial.

At this point we divide the remainder of the first half of the proof into three

cases: Case 1 (p=0), Case 2 (p = 2), and Case 3 (p>2).

Case 1 (/z = 0). Since/(a)c W- X, [f(a)] = 0 in Hx(Z3;Z). Thus/(a) must bound

a 2-complex L2 in Z3 where each component of L2 is an orientable, two-sided

2-manifold with boundary. We can adjust L2 slightly so that it is in general position

mod/(cr) with respect to our last triangulation of Z3. Then g_1(F2) will be a

2-complex in/"1(Z3)c: U, where each component of g_1(F2) is a two-sided 2-mani-

fold with boundary. Thus, since M3 is orientable, each component of g~\L2) is

orientable. Since a bounds g~x(L2), [cr] = 0 in ff±(U; Z), sind the inclusion-induced

homomorphism Hx(V-f~\X);Z) -> HX(U; Z) is trivial.
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Case 2 (p=2). The proof is essentially the same as Case 1, except that L2 and

g~\L2) may not be orientable.

Case 3 (p > 2). Note that

H,(Z3;Z)\G ~ H,(Z3; Z)®ZP% H,(Z3;ZP)

where G is the subgroup of H,(Z3;Z) generated by elements of the form p[y]

where [y] e H,(Z3; Z). Since [f(a)] = 0 in H,(Z3;ZP), there is a 1-cycle [t] e

HX(Z3;Z) so that [f(<j)]=p[r] in H,(Z3;Z). We can assume that r is a finite,

pairwise disjoint collection of polyhedral, oriented, simple closed curves which are

in general position with respect to our last triangulation of Z3. Then g_1(T) ¡s a

finite, pairwise disjoint collection of simple closed curves in f~1(Z3). We can find

a regular neighborhood F3 of t so close to t that g~ 1(F3) is a regular neighborhood

of g-\r). We can find a 1-cycle [S] e H,(Bd T3; Z) so that [f(o)] = [8] in

H,(Z3 — Int T3 ; Z). We can assume that 8 is a finite collection of mutually exclusive,

oriented, simple closed curves on Bd F3. Then there is a 2-complex L2^Z3-Int F3

where each component of L2 is a two-sided, orientable, 2-manifold, and where

BdL2=/(a)uS (homologically f(o) - 8). We can assume that L2 is in general

position mod f(a) with respect to our last triangulation of Z3. Then g'\L2) will

be a 2-complex where each component of g~x(L2) is a two-sided 2-manifold with

boundary. Thus g_1(F2) is orientable.

Since L2 is two-sided in Z3, S is two-sided in Bd F3. Thus g~1(8) is two-sided in

g~x(Bd T3), and using this two-sidedness, we can induce an orientation of g'\8)

which is consistent with that on g~\L2). Thus [g-l(8)] = [o] in H,(f-\Z3);Z).

Let a be a meridional curve on Bd F3 which is in general position with respect

to 8. Then a will intersect 8 algebraically ±p times. Since the two-sidedness of 8 is

preserved by g~x, each component of g_1(a) which is a meridional curve must

intersect g ~1(8) algebraically ±p times. Thus, [g'1(8)]=p[g~1(r)] in H,(T3;Z).

Therefore, [cr]=p[g~1(r)] in H,(Z3;Z), and the inclusion-induced homomor-

phism H,(V— X; Zp) —s- H^U; Zp) is trivial. This completes Case 3.

By Theorem 2, we can find a compact polyhedron H%, where each component

of H3 is a 3-manifold with nonempty boundary, and where H% has the following

structure: it is obtained from a compact polyhedron Q%, each component of which

is a 3-manifold whose boundary consists entirely of 2-spheres, by adding to Bd Ql

a finite number of (solid, possibly nonorientable) 1-handles.

We can also assume that each 1-handle is attached to only one boundary com-

ponent of Bd Ql since we can add 1-handles to Bd Ql which join different com-

ponents of Bd Ql without destroying the property that Bd Ql consists entirely of

2-spheres.

We claim that each component of Bd Ql separates M3. For suppose that So is a

component of Bd Q30 that does not separate M3. Then there is a polyhedral simple

closed curve / which intersects S0 at exactly one point which is a piercing point.

It is easy to see that we can choosey so that it does not intersect any of the 1-handles
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which are added to Ql to obtain H%. Let Sx be the component of Bd A/3 which is

obtained from S0 by adding handles. Then J intersects Sx only in the same piercing

point. Since/-1 |/(Bd A/3) is a homeomorphism,/(./) is a loop in A'3 which inter-

sects f(Sx) in exactly one piercing point. Thus /(Si) does not separate N3. But

f(Sx) is a 2-sided surface in N3, so f(Sx) must separate A'3. This is a contradiction,

so S0 does separate M3.

Let Q3 be the closure of the "inside" complementary domains of the "outer-

most" boundary components of Ql. (Here, "inside" and "outermost" are relative

to Bd M3, which is connected.) Thus we have "filled in the holes" in Ql to obtain

Q3, sind each component of Q3 has connected boundary. We define H3 to be Q3

union the 1-handles of A/,3 - Ql which are not already contained in Q3.

There are properly embedded polyhedral disks B\,..., Bf in H3 such that the

1-handles which are added to Q3 to obtain H3 are regular neighborhoods of

B\,...,Bf in A/3. Let these 1-handles be N(B2),..., N(B2). Since S^f-^X)

clnt//3, each component of f(H3) is a 3-manifold with boundary in Int A'3.

Each Bf is mapped properly into/(AY3) by/ and furthermore,/! Bf has no singu-

larities near Bd Bf. So by Dehn's Lemma, there exist nonsingular properly em-

bedded polyhedral disks D\,..., D2 in/(A/3) with Bd A2=/(Bd Bf). By a cutting

and pasting argument, we can choose D\,..., Df to be disjoint. We can also find

disjoint regular neighborhoods N(Df),.. .,N(Df) of Df,..., Df in /(AY3) so that

f(N(Bf) n Bd H3) = N(Df) n Bd f(H3).

For each i, there is a homeomorphism A¡: N(Bf) -»■ N(Df) such that

A, | (Bd A/3 n 7V(F,2)) = f\ (Bd AY3 n /V(F(2)).

We define a homeomorphism

A: M3-Int Q3 -* (Af3-Int/(AY3)) u f IJ /V(Y)2))

by A|(AY3-Int Y/3)=/| (A/3-Int //3), and by A | N(Bf)=h, for each / = 1,..., r.

Then A(Bd g3) is a finite disjoint collection of 2-spheres in N3 each of which

bounds a Zp-homology 3-cell. Furthermore, these homology 3-cells are disjoint

since each component of A(Bd Q3) is outermost in the sense that it can be joined

to Bd A'3 with an arc which misses A(Bd Q3) except at one end point.

Let F3,..., K3 be these homology 3-cells, and let Ql,..., Q3m be the corre-

sponding components of Q3 so that A_1(Bd Kf) = Bd Q3. Each Q3 is a 3-manifold

with 2-sphere boundary. Then A is a homeomorphism from M3 — (Uim=i Q¡) onto

N3 — (Ui"=i ^¡3). Thus we obtain A'3 from M3 by cutting out the Q3,s and replacing

each with the corresponding K3.

Remark. If we define *Q3 to be the closed 3-manifold obtained from Q3 by

sewing a 3-cell onto Bd Q3, and if we define *Kf to be the closed 3-manifold

obtained from K3 in the same way, then

M3 # *K3 #• • •# *K3 s TV3 # *Q\ #■ • •# *Q3m.
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We should also note that we have shown that for any open set U in M3 which

contains X, thenf'1(X) has a polyhedral neighborhood H3^ U where each com-

ponent of//3 is formed by adding 1-handles to a 3-manifold with 2-sphere bound-

ary. Furthermore, we have shown that these 1-handles are attached in an orientable

fashion to the 2-sphere boundary.

Corollary 2. Let M3 and N3 be compact 3-manifolds, possibly with boundary.

Let X be a compact proper set in Int TV3 with the following property: For each open

set f/<=Int N3 with X<= U, there is an open set V, X^ V<= U, such that under inclusion

H,(V— X; Zp) -> //i(<7; Zp) is zero. Suppose also that X has a polyhedral neighbor-

hood each component of which is an orientable, irreducible 3-manifold with boundary.

If there is a boundary preserving map f from M3 onto N3 such that f(Sf)<^X, then

M3 can be obtained from N3 by removing the interiors of a finite number of 3-mani-

folds each of which is bounded by a 2-sphere, and by replacing each by a 3-cell.

Proof. By using Theorem 2 and the fact that X has a polyhedral neighborhood

each component of which is an irreducible 3-manifold with boundary, we see that

Xhas a polyhedral neighborhood each component of which is a cube-with-handles.

Thus we can assume that TV3 is a cube-with-handles. The remainder of the proof

of Theorem 3 now goes through with the weaker hypothesis on X.

Theorem 4. Let M3 and N3 be 3-manifolds, possibly with boundary, and let

f: M3 -»- N3 be an onto, compact, boundary preserving mapping from M3 onto N3

such thatf(Sf)<^ X where X is a closed ^-dimensional set in N3. Then fis monotone,

and {x e N3 : f~x(x) is not cellular in M3} is a locally finite subset of N3.

Proof. Let xe X, and let U be an arbitrarily small open 3-cell containing x.

Then there is a polyhedral 3-manifold with boundary K3 so that x e Int K3^K3^ U

and so that Bd K3 n X=0. In fact, using Theorem 2 of [12] and the fact that U

is irreducible, we can see that K3 can be chosen to be a cube-with-handles. Then

f~\K3) is a connected neighborhood of f'\x) which can be chosen "arbitrarily

close" to/-1(x)- Thus/is monotone.

We can cover X with the interiors of a locally finite collection of mutually

exclusive collection of cubes-with-handles. Thus, in order to prove the theorem, it

suffices to consider the case where N3 is a cube-with-handles, and where M3 is a

compact 3-manifold with connected boundary. In this case, we will prove that all

but a finite number of point inverses off are cellular.

The set Xis strongly l-acyclic over Z2 in N3, and thus by the remark following

the proof of Theorem 3, we have f'1(X) = f)^L, Hf, where Hf is a 3-manifold

with connected boundary, and where //¡3<=Int Hf.,. We can assume that Hf is

obtained from a compact polyhedron Q3 where each component of Q3 is a 3-mani-

fold with 2-sphere boundary, by adding to Bd Q3 a finite number of (orientable,

solid) 1-handles. We also have that each 1-cycle in Bd Hf bounds in Int Hf_,.

We have assumed that M3 is compact and that H,(M3;Z2) is finitely generated;
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so it is easy to show that there is an integer N so that there are not more than N

disjoint 3-manifolds with 2-sphere boundary and nontrivial Z2-homology in

Int M3. Therefore, all but at most N components off~\X) are the intersection

of a decreasing sequence of Z2-homology cubes-with-handles.

If Zf is aZ2-homology cube-with-handles, the inclusion-induced homomorphism

Hx(Bd Z3;Z2) -» Hx(Zf;Z2) is onto. Thus, if Z?<=Int Zf. x where Zf_, is another

Z2-homology cube-with-handles, and if each 1-cycle in Bd Zf Z2-bounds in

Int Zf_x, then the inclusion-induced homomorphism Hx(Zf;Z2) -»■ Hx(Zf_x', Z2) is

trivial. Therefore, each component of f~\X) which is the intersection of Z2-

homology cubes-with-handles must be strongly 1-acyclic over Z2. This shows that

at most a finite number of point inverses off are not strongly 1-acyclic over Z2.

We can now apply Theorem 1 which implies that only a finite number of the

strongly 1-acyclic over Z2 point inverses of/are not cellular.

IV. Maps almost all of whose point inverses are strongly 1 -acyclic over Zp.

Lemma 4. Let f: M -» N be a compact map from a metric space M onto a metric

space N. Let X be a closed set in N. Let G be a decomposition of M defined by

G = {f'Ky) :yeX}u{xeM: f(x) f X}.

Let Q = M/G and let n: M -> Q = M/G be the projection map for the decomposition

G. Let p: Q-^N be defined so as to make the following diagram commute:

M --—» Q

N

Then

(1) G is upper semicontinuous and hence n is continuous and compact.

(2) The decomposition {p~x(y) : y e N} is upper semicontinuous and hence p is

continuous and compact.

Proof. Lemma 4 follows from the fact that {f~l(y) : y e N} is an upper semi-

continuous decomposition of M.

Lemma 5. Let p: Q^> N3 be a compact, monotone map from a metric space Q

onto a 3-manifold N3, possibly with boundary. Let X be a closed set in N3 containing

BdN3. Suppose that p\p'1(X) is a homeomorphism, and that W=Q-p~x(X) is

an open 3-manifold. If p~\x) is cellular for all x e N3- X, then there is a homeo-

morphism h: N3 -» Q such that h\X=p~1\X.

The proof of Lemma 9 is the same as the proof of Theorem 1 of [1].

Suppose/: M3 -» N3 is a mapping. We let Apf = {x e M3 : /_1/(x) is either not

connected or is not strongly 1-acyclic over Zp}.
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Theorem 5. Let p denote 0 or a prime, and let M3 and N3 be compact 3-manifolds,

possibly with boundary, where M3 is orientable ;//?#2. Let Y be a compact set in

Int A" each component of which is strongly acyclic over Zp. Let f: M3 -»■ N3 be an

onto, boundary preserving map such that f(Ap{)<^ Y. Then N3 can be obtained from

M3 by cutting out of M3 a finite number of polyhedral 3-manifolds, each bounded

by a 2-sphere, and replacing each by a Zp-homology 3-cell.

Proof. By Theorem 1 there are only a finite number of points x,, x2,..., xn in

N3- Y whose inverses under/are not cellular in M3. Let

X = Y u {x,, x2,..., xn} u Bd N3.

We use this X to define Q, n: M3 -»■ Q, and p: Q -»- N3 as in Lemma 4. Since

n\(M3-f-\X)) is a homeomorphism from M3-f~\X) onto W= Q-p~\X),

W is an open 3-manifold. And since p\p~\X) is one-to-one and continuous,

p \p~1(X) is a homeomorphism. Therefore, by Lemma 5, there is a homeomorphism

h: N3 -» Q. In particular, Q is a 3-manifold Q3. Let

X' = Yu{x,,...,xn}.

Then ■n-(Sn)c:p~1(X') = h(X'), and X' is strongly acyclic over Zp, so the map -n

satisfies the hypotheses of Theorem 3.

Theorem 6. Let p denote 0 or a prime, and let M3 and N3 be 3-manifolds, possibly

with boundary, where M3 is orientable ifp > 2. Let Y be a closed ^-dimensional set in

Int N3, and let f: M3 -»■ N3 be an onto, compact, boundary preserving map such

that f(Avi)^ Y. Then {x e N3 : f_1(x) is not cellular in M3} is a locally finite subset

ofN3.

Proof. By Corollary 1, the set {xeN3- Y : f~\x) is not cellular in M3} is.a

locally finite subset of N3.

Let

X = YuBdN3v{xeN3-Y: f-\x) is not cellular}.

Let Q, tc: M3 -»- Q, p: Q^> N3, and «: N3 -» Q be defined as in Lemmas 4 and 5.

Let

X' = Yv{xeN3-Y : f~\x) is not cellular}.

Then ir(S„)^p~1(X') = h(X'), and thus tt(S^) is contained in a closed O-dimensional

set in Q. Theorem 4 can be applied to the map -n: M3 -» Q3 to say that

{y e Q3 : ■n~1(y) is not cellular in M3}

is a locally finite subset of Q3. The image under p (or h'1) of this set is

{xe N3 : f~x(x) is not cellular in M3}

which must then be a locally finite subset of N3.
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V. Further applications. The following lemma is a slight generalization of

Lemma 5 of [13]. While the proof of Lemma 5 of [13] suffices to prove our Lemma

6, a proof is included here for completeness and since part of the proof will be

needed to prove Theorem 7.

Lemma 6. Let M3 and N3 be 3-manifolds. Let f: M3 -^- N3 be a compact, mono-

tone mapping so that f(Sf) is 0-dimensional. Let x e N3. If there is an open set U

containing f'\x) so that the inclusion-induced homomorphism from HX(U;Z) into

Hx(M3;Z) is trivial, thenf~\x) is strongly l-acyclic over Z.

Proof. Let B3 be an open 3-cell in A73 with compact closure so that xeB3 and

W=f~1(B3) is contained in U. Let Klt K2, K3,... be si locally finite collection of

compact sets in Wso that (J,™ x Kt=Wsind each F¡ is contained in an open 3-cell

F?c w. Let

«, = inf {p(x, y) : xeKi and y e W- B3}

where p is a metric on M3. Let

C, = {x e N3 : diam (f~\x)) S e, and f~\x) n K, ¿ 0}.

It is easy to see that each C¡ is a closed set. Let C=(J¡™ i C¡.

We will show that {/(F,)} is a locally finite collection in F3. Let x0 e B3 and let

F be a neighborhood of x0 in F3 with compact closure. Since/is a compact map,

f~\V) has compact closure. Since {F¡} is a locally finite collection in W, f~\V)

intersects only a finite number of the Ft's, and thus F intersects only a finite number

of the/(F¡)'s. Using the fact the {/(F¿)} is a locally finite collection, we see that C

is a closed O-dimensional subset of B3.

Consider the following commutative diagram where the horizontal maps are

induced by inclusion, and the vertical maps are induced by/

Hx(W-f~\C);Z)-Ü—> AYi(lF; Z)

Hx(B3-C;Z)->Hx(B3;Z)

First, we claim that a is an epimorphism. Let [S] e Hx(W; Z) where 8 is a simple

closed curve. Let O be an open set in B3 so that/(S)c0 and (Bd O) n C=0. By

applying Lemma 2 of [13], we see that 8 is homologous in/_1(0) to a 1-cycle in

f-\O)-f-\0 n C)e W-f-\C).
Finally, we claim that a is the zero homomorphism. Let [t] g H1(W—f~1(C);Z)

where t is a simple closed curve. We can also suppose that/(r) is a simple closed

curve, and that/(r) bounds an orientable surface S in F3 - C. By our choice of the

ef's, for each y e B3 — C, there is an open set Vy so that/-1(Fj,) is contractible in W.

Let 'V = {Vy : y e B3 — C}. We can find a triangulation F of S which is so fine that
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for each 2-simplex a e T, there is a Va e y so that a<= Va. Using the fact that/is

monotone, we can find a map « from the 1-skeleton of F into W—/-1(C) so that,

if a is a 2-simplex of T, h(8a)^f~\Va). (See the proof of Theorem 2.1 of [15] for

details.) We can also suppose that hf\ r is the identity. Since each Va is contractible

in W, h can be extended to a map H which takes the surface S into W and which

takes 8S onto t. Thus, «[t] = 0 in H,(W; Z).

Theorem 7. Let M3 and N3 be 3-manifolds, possibly with boundary. Let f be a

compact, monotone, boundary preserving mapping from M3 onto N3 such that f(Sf)

is f)-dimensional. Then {x e N3 : f_1(x) is not cellular} is a locally finite subset ofN3.

Proof. By a procedure similar to the first part of the proof of Lemma 6, we can

find a closed set C^f(Sf)^N3 so that, if x $ C, then there is an open set Ux where

/-1(x)<= Ux and Ux is contractible in M3. By Lemma 6, if x e N3-C, then/_1(x)

is strongly l-acyclic over Z. Thus/(^°)CC, and C is a closed O-dimensional set.

Theorem 7 now follows from Theorem 6.

Let/: M3 -»- A'3 be an onto, compact, boundary preserving map as before. Many

of our earlier results have shown that {x e N3 : f_1(x) is not cellular in M3} is a

locally finite subset of A'3. The following three corollaries concern mappings of

this type.

Corollary 3. Let M3 and N3 be 3-manifolds, possibly with boundary. Let

f: M3 -»- Af3 be a compact, monotone, boundary preserving map such that

{xe N3 : f~\x) is not cellular} is a locally finite subset of N3. Then

(i) For each xe N3 and each open set U containing f~\x), there is an open set

V withf~1(x)^ Kc U, such that V—f~1(x) is homeomorphic to S2 x (0, 1).

(ii) N3 can be obtained from M3 by cutting out of M3 a locally finite collection of

mutually exclusive, polyhedral 3-manifolds, each with 2-sphere boundary, and

replacing each by a 3-cell.

Proof, (i) If/_1(x) is cellular, this follows from Theorem 1 of [3].

Let x,,x2,x3,... be the points in N3 such that f~1(xl) is not cellular for

/= 1, 2, 3,.... Let X={x„ x2, x3,...} u Bd N3. Let the 3-manifold Q3, the maps

■n: M3 -» Q3, p: Q3 -*■ TV3, and the homeomorphism «: N3 -»- Q3 be defined as in

Lemmas 4 and 5. It will be sufficient to show thatf'1(x1) has the required neigh-

borhood. We are given an open set U=>f~\x,). Let U' be an open set in M3 so

thatf-^x^U'cUand U' nf~1(xi) = 0 for i£2. Then h-^U') is an open set

containing x, in N3. Let W be an open 3-cell so that xl<^W<^h~iir(U'). Let

V=TT~xh(W). Then V—f~\x,) is homeomorphic by ■rr~1h to W—{x,} which is

homeomorphic to S2 x(0, 1).

(ii) As in part (i) let x,, x2, x3,... be the points of A'3 whose inverses are not

cellular. We can find pairwise disjoint closed neighborhoods K,, K2, K3,... of

f~1(x1),f~1(x2),f~1(x3),... respectively so that Kf—f'^x,) is homeomorphic to

S2x(0, 1]. Then each Kt is a 3-manifold with 2-sphere boundary, and tt\K, is a
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boundary preserving map of F¡ onto a 3-cell. Furthermore, n\M3-{J¡% i K¡ is a

homeomorphism. Thus Q3 can be obtained by cutting Fx, F2, F3,... out of M3,

and replacing each by a 3-cell.

Corollary 4. Let M3 and N3 be compact 3-manifolds, possibly with boundary.

Letf: M3 -» N3 be a boundary preserving, onto map such that {xeN3 : f~ \x) is not

cellular in M3} is a finite set. If M3 is homeomorphic to N3, thenf~1(x) is cellular

for every x e N3.

Proof. By Corollary 3, part (ii), there are closed 3-manifolds *FI3,..., *K3 such

that

M3 = N3#*K3#---#*K3.

By a corollary to the Grushko-Neumann Theorem (see p. 192 of [10]), the rank

of ttx(M3) is equal to the sum of the ranks of ttx(N3), ttx(K$), ..., ttx(K3). Therefore

TÁ*K%)   = • • •  =   7Tx(*K3)   =   1,

and each *F3 (i=0,...,«) is a homotopy 3-sphere.

If M3 is closed and orientable, we use the unique decomposition theorem of

Milnor [14] to show that *K$,..., *F3 are all 3-spheres. This shows that f'1(x)

is cellular for every x e N3.

If M3 is orientable with boundary, we can sew a cube-with-handles onto each

boundary component of M3 to obtain a closed manifold Ml. The homeomorphism

from M3 to N3 induces a similar sewing of cubes-with-handles onto Bd N3 to give

a closed 3-manifold A',3 which is homeomorphic to M%. We have

M3 = N3#*K30#---#*K3

and the argument for the closed orientable case applies.

If M3 is nonorientable, we apply the previous argument to the orientable double

covering of M3.

Corollary 5. Let M3 and N3 be compact (i.e., closed) 3-manifolds. Let

f: M3 -» N3 be an onto map such that {x e N3 : f~1(x) is not cellular in M3} is

finite, and let g: N3 h*- M3 be an onto map such that {x e M3 : g~\x) is not cellular

in N3} is finite. Then M3 is homeomorphic to N3.

Proof. By Corollary 2, we have M3 = N3 # *F03 #• • •# *F3 and N3 = M3

# *Ql #• • •# *Qm- By a corollary to the Grushko-Neumann Theorem (p. 192 of

[10]) we see that *Fq, ..., *F3, *Ql,. .., *<23 are all homotopy 3-spheres. This

implies that all of the point inverses of/and g have property UV". Then Corollary

5 follows from Corollary 2.3 of [11].

VI. On Haken's finiteness theorem. In [5], Wolfgang Haken stated a finiteness

theorem for incompressible surfaces in a compact 3-manifold M3. We are inter-

ested here only in the special case of the theorem where the surfaces are closed : this
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case is stated as Theorem C. Some difficulties arise with Haken's proof in the case

where M3 is not irreducible. Haken's proof is correct and can be simplified con-

siderably in the case where M3 is irreducible. We give here an argument due to

John Hempel to show that the finiteness theorem holds in the case where M3 may

not be irreducible. Haken intended to prove Kneser's Theorem [7] as a special case

of the finiteness theorem; our argument uses Kneser's Theorem. The previous

results of this paper depend on the finiteness theorem directly through Theorem 2

of [12].

In this section we will be working in the piecewise-linear category. A surface is a

2-manifold. If F2 is a surface in a 3-manifold M3, and if F2 is not a 2-sphere, then

F2 is incompressible in M3 if every simple closed curve in F2 that bounds an (open)

disk in M3 — F2 also bounds a disk in F2. A 2-sphere is incompressible in M3 if it

does not bound a 3-cell in A/3. A 3-manifold M3 is irreducible if every 2-sphere in

M3 bounds a 3-cell in M3.

Two surfaces F| and Ff in a 3-manifold M3 are parallel in M3 if there is an

embedding a: Ff; x [0, 1] -> M3 such that a0: Fg -> Af3 is the inclusion map, and

a,: Fg —> M3 takes Fg homeomorphically onto Ff. If Ff,...,Ff are disjoint

surfaces in a 3-manifold M3, and if L3 is the closure of a complementary domain of

Af3-IJ?=i F2, then L3 is a parallelity component if, for some z'=l,..., «, there is

a homeomorphism «: Ff x [0, 1] -»L3 such that h0: Ff -+L3 is the inclusion map,

and h,: Ff ->L3 takes Ff homeomorphically onto Ff for some/=1,..., n,j^=i.

If C3 is a 3-manifold, possibly with boundary, we define C3 to be the 3-manifold,

possibly with boundary, obtained from C3 by capping off each 2-sphere boundary

component of C3 with a 3-cell.

If B3 is a 3-cell, and if B\,..., 53 are disjoint polyhedral 3-cells in Int B3, then

we call the manifold-with-boundary B3 — (Uf=i Int #?) a punctured 3-cell.

Lemma A. If F2 is an incompressible surface in the product M2x[0, 1], where

M2 is a compact 2-manifold, then F2 is parallel to M2x {0} and M2x{\}.

This lemma is stated and proved by Haken on pp. 91-96 of [5].

Lemma B. // C3 is a 3-manifold, possibly with boundary, and C3 is irreducible,

then the finiteness theorem holds for C3. In other words, there is an integer n = n(C3)

such that if F2,..., Ff+1 are « +1 disjoint incompressible polyhedral surfaces in C3,

then two of these surfaces are parallel.

Proof. We have assumed the finiteness theorem for irreducible 3-manifolds, so

there is an integer n(C3) such that if there are more than n(C3) disjoint incom-

pressible surfaces in C3, then two of them are parallel. There are disjoint 3-cells

B3,,...,B3k such that C8 = <?3-RJf-i IntBf]. Let «=«(C3)=«(C3)+2jt. Let

Ff,..., Ff+1 be «+1 disjoint incompressible surfaces in C3. Then n — k +1 of these

surfaces are incompressible in C3. There are k +1 distinct pairs from Ff,..., F2+1

which are parallel in C3. (We say that the pair (Ff, Ff) is distinct from the pair
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(Ff, Ff) if either i/r, s or/#r, s.) Then, using Lemma A, we see that there are

A+l parallelity components in C3 whose interiors are disjoint. Thus, one of these

parallelity components does not contain any Bf, sind is a parallelity component

in C3.

Theorem C. Let M3 be a compact 3-manifold, possibly with boundary. Then there

is an integer n0 = n(M3) such that if Ff,..., F20 + 1 are n0+ 1 disjoint polyhedral-

incompressible surfaces in M3, then two of these surfaces are parallel.

Proof. Let 2 = {S2,..., Sf} be a disjoint collection of 2-spheres in M3. Let

Nf,...,Nf be disjoint regular neighborhoods of S\, ...,S2 respectively. Let

Cf,..., Cl be the components of Cl (AY3-IJi = i A?)- (The Cf's are determined

up to homeomorphism by the S,2's and do not depend on the choice of the YVf3's.

Note that A may not equal / since some of the Sf's may not separate M3.) We will

call 2 a complete system of 2-spheres in M3 if Cf,..., C3 are each irreducible.

We will let n(M3, 2) = 2K i n(Cf) where n(Cf) (i = 1,..., A) is defined in Lemma B.

Kneser's Theorem [7] shows that there is a complete system 20 of 2-spheres in

M3. We will assume 20 is a fixed complete system and we will let n0 = n(M3, 20).

Let Ff,..., F20 + 1 be disjoint incompressible surfaces in AY3. Let F2 = {J?i\1 F2.

Suppose 2 = {S2,..., Sf} is a complete system of 2-spheres in M3, each of which

is in general position with respect to F2, and suppose that n(M3, 2) = /j0. Let

m(M3, 2, F2) be the number of components of (Uí=i Sf) n F2. (Each of these

components is a simple closed curve.) We can suppose m(M3, 2, F2) is minimal

over all such complete systems of 2-spheres in AY3. Theorem C will be proved if

m(M3, 2, F2) is zero. For then there will be more than n(Cf) of the surfaces

Fx2,..., F20 + i in one of the components Cf, and two of these surfaces must be

parallel in Cf by Lemma B. (Let Nf,..., Nf and Cf,..., Cf be defined as before.)

So we suppose that m(AY3, 2, F2)>0. Any simple closed curve of ((Ji = i S2) n F2

must bound a disk in F2, since F2 is incompressible. Therefore, we can choose an

"innermost" (on F2) simple closed curve/of (U'=i Sf) n F2; suppose/<= sf n Ff

for some r=l,..., I and 5=1,..., «0 + l. Let D2 be the disk that /bounds in Ff.

Then D2 is contained in some Cf (where a= 1,..., A) except for a regular neigh-

borhood of Bd F»2.

Let F2 and Ff be the two disks bounded by /in Sf. We can push each of the

2-spheres Ef u D2 and F2 u D2 to one side so that they each miss D2, and so that

they are each contained in Cf. Then one of these 2-spheres must be in the boundary

of a punctured cube F3 in Cf since Cf is irreducible. Let S'2 be the 2-sphere that

is not in the boundary of F3, and let 2' = {S2,..., S2_i, S'2, Sf+1,. ..,Sf}. We

will show that 2' is a complete system of 2-spheres in AY3, that n(AY3, 2') = «0, and

that m(AY3, 2', F2)<m(M3, 2, F2).

Let Cf (t = 1,..., A) be the component of Cl (AY3 - \J\ = i Nf) on the " other side "

of Sf. (If Sf does not separate AY3, then Cf may equal Cf.) If we choose a small

regular neighborhood A/;3 of S'r2 (so that N'3 n D2 = 0) and let N[3 = Nf for
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zVr, we can define C'3 and C'3 to be components of Cl (M3-\J\=1 N¡3). A sub-

disk D% of D2 is a spanning disk of C3 and if we remove the interior of a regular

neighborhood of D2, this separates C3 into two components, one homeomorphic

to C'3, and the other homeomorphic to the punctured cube F3. Thus C3 is homeo-

morphic to C'3. Furthermore, C[3 is homeomorphic to the manifold obtained by

sewing P3 to Cf along a disk on the boundary of each. Thus Cf is homeomorphic

to C'3. We also have n(C3) + n(Cf)=n(CQ3) + n(C[3) since the 2-sphere boundary

components of C3 r\ P3 which were removed from C3 to obtain C'3 were added

to Cf to obtain C't3. Thus n(M3, £') = «„.

Since S'2r\D2 = 0, m(M3, £', F2)<m(M3, X, F2), and this contradicts our

assumption that m(M3, S, F2) was minimal.
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