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ON MODIFICATION THEOREMS

BY

MURALI RAO

Abstract. Given a right continuous family Ft of complete o-fields and a bounded

right continuous family Xt of random variables, we show in this paper that it is

possible to modify the conditional expectations E(Xt\Ft) to be right continuous.

When Xt=X, this reduces to a result of J. L. Doob.

A famous result of Doob states that any martingale has a right continuous with

left limits modification. This is an important result and is very useful in providing

modification theorems in the theory of Markov processes.

During a discussion with Professor T. Watanabe the following problem arose:

Suppose Ft is an increasing right continuous family of a-fields and Xt is a right

continuous with left limits stochastic process. Can we define a right continuous

with left limits modification of E(Xt\Ft)l

We shall show that it is always possible to select such a modification. Note that

whereas in the case of martingales we have available the upcrossing inequality of

Doob (this is an indispensable tool in the standard proofs of the martingale modifi-

cation theorem) there is no such tool in the general situation. The method developed

here generalizes without changes to Banach space valued martingales. Thus a

Banach space valued martingale has a right continuous with left limits modification.

Our methods do not require the notion of separability. The only prerequisite to

reading this note is the knowledge of the martingale convergence theorem and

familiarity with the notion of stopping rules. In the beginning of §1 we develop

what is needed about stopping rules in a more general setting than what is given in

standard books. Then we proceed to prove the main theorem (Theorem 6).

In §2 we show how the modification theorem for super martingales can be

deduced using Theorem 6. Lemma 9 gives a slight generalization of a theorem of

Meyer without invoking the upcrossing inequality.

Thanks are due to Karl Pedersen for many valuable discussions.

1. Let F„ denote a sequence of a-fields for «= 1, 2,..., oo; oo is included. An

integral valued nonnegative function Fis called a stopping rule relative to Fn iff for

all « the event (T=n) e Fn. If Fis a stopping rule we denote by FT the a-fields of

events A such that A n (T=n) e Fn, 1 ¿«¿oo. It is easy to verify that FT is indeed

a CT-field. We simply note the following:

1. T is Fr-measurable.
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2. If Xn is a sequence of random variables with Xn F„-measurable for l^n^oo

then XT is Fr-measurable.

3. Suppose the a-fields Fn increase, i.e. Fn^Fn + 1. Then if F, S are stopping rules

and FS51 we have FT<^FS. If on the other hand the a-fields decrease and T, S are

stopping rules with T^S then FT^ Fs.

The following lemma has an easy proof.

Lemma 1 (Optional sampling lemma). Let Xn be random variables and Fn

a-fields for l fínico. We will assume that all expectations occurring exist. Let T be

a stopping rule. If Yn = E(Xn\Fn), 1 ̂ «^co, then YT = E(XT\FT) almost surely.

The proof is easy. In fact YT is Fr-measurable. Hence the result follows from the

equalities

f XT = f Xn = f Yn=\ YT
jAn(.T = n) JAn(T = n) JAr\(.T = n) JAn(T = n)

and now sum over n; A denotes an arbitrary element of FT.

Remark. If for all n, Xn = X sind the a-fields F„ increase or decrease, Lemma 1

is the optional sampling theorem for martingales. The general optional sampling

theorem for super martingales then follows at once via the Doob decomposition

[1, P. 104].

Lemma 2. Let F„ be an increasing sequence ofa-fields; l^n^co.Let Xn, l^nf^co,

be a sequence of random variables such that

(1) Xn -> Xa almost surely,

(2) \Xn\^9 with E(9)<ao.

Then \E(Xn \ Fn)-E(Xaj | F„)| -> 0 almost surely.

Proof. We may assume that ^=0. Put Yn = E(Xn\Fn). We shall show that

Yn -> 0 a.s. Let e>0. Define the stopping rules Tk by

Tx = inf (n : | Yn\ â e), Tk+1 = inf (n : n £ Tk+l, \ Yn\ ä e),

= oo    if there is no such n; = oo    if there is no such n.

Then l+Tk^Tk + l, Tk<ao implies |FrJ^e, and if Ffc = co then |FTJ=0. We have

eP(Tk< co) ¿E(\YTk\) ÚE(\XTJ)

because YTk = E(XT]c\FTl). Since Tk^k by definition (note that F^l), Ffc^oo,

and hence XTk -> 0. Therefore (F|XrJ) and hence P(Tk < oo) tend to zero as k -> oo.

Also (lim sup \Yn\^e) = (Tk<co for sill k) = f)k(Tk<co). Hence F(lim sup | Fn| ^ e)

^lim inf P(Tk<oo) = 0.    Q.E.D.

A version of Lemma 2 for decreasing a-fields also holds. We have

Lemma 3. Let Fn be a decreasing sequence of a-fields. Let Xn, 1 ̂ náoo, be a

sequence of random variables with

(1) Xn -> Xm almost surely,

(2) \Xn\è9withE(9)<œ.

Then \E(Xn\Fn)-E(X0O\Fn)\->0 almost surely.
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Proof. Assume that ^"„=0 and put Yn = E(Xn\Fn). Let £>0 and define the

stopping rules Tn by

Tn = sup (k : k S n and | Yk\ ^ e),

= 1    if there is no such k.

Clearly Fn<.« and Tn^Tn + l. If S = limn Tn then 5 is F^-measurable for all w.

The event (S=co) is contained in \Jn (Tn > 1) and so (5=oo) = ljn (S=oo) n (Tn > 1).

Since Tn increases the events (Fn> 1) are nondecreasing. It follows that ¿(£=00)

= lim F(S=co, Tn> 1). Now Tn> 1 implies | FrJ ^e. We have

E(\ YTb\ : S = 00, Tn > 1) <. F(|^r„| : 5 = co, Fn > 1) <. £(|*rJ : 5 = 00).

We deduce that

eP(S = 00, Fn > 1) <. F(|A-rJ : S = 00).

Let « -> 00 to get F (S = 00) = 0. Finally note that (S=00) = (lim sup | Yn | ä £).

Remarks. 1. Martingale convergence theorem implies

E(XX I Fn) -> E(XX I Fœ)   almost surely.

Thus Lemma 3 shows that E(Xn \ Fn) -> E(XX \ Fœ) almost surely. This will be

used below.

2. The absence of an upcrossing inequality makes the following theorem

interesting.

We have the following modification theorem.

Theorem 4. Let Xt be right continuous and uniformly bounded. Suppose F, is an

increasing and right continuous family of a-fields. Then there exists a right continuous

modification of the stochastic process E(Xt \ Ft).

Proof. Assume Xt is right continuous. Let F be any stopping rule relative to Ft.

Put Yt = E(Xt I Ft). We shall show below that the limit as r j F, r running over the

diadic rationals of Yr exists and equals E(XT \ FT). For this purpose we may assume

that E(XT IFT) = 0. Let e > 0 be given. Define a decreasing sequence Tn of stopping

rules by

Tn = infi/^" : i ä [2nF]+l and Yil2* g e),

= 00   if there is no such i,

where [x] denotes the integral part of x. If Fn<oo then YTn^E. Let 5=limFn.

The event (S=T) is identical with the event (lim supr>T;r^T Yr7îe).

Since pin Frn = Fs [1, T42, p. 67], Lemma 3 implies that lim YTn exists and equals

E(XS I Fs), almost surely. Thus

sP(S=T) S E(lim YTn : (F = S)) = F(F(;rs|Fs) : (F = S)).
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The event (S=T)e FT<=FS. Hence

E(E(XS\FS) :S = T) = E(XS : S = T)

= E(XT : S = T) = E(E(XT \FT) : S = T)

= 0   because E(XT \ FT) = 0 by assumption.

Thus F(lim supr>T:r;T yr^£) = 0 for all e>0, i.e. lim supr>T;r^T 7r=0. A similar

reasoning shows that lim infr>T;r_T Fr = 0 almost surely. Thus with probability one

limr;T Y, exists and equals E(XT\FT). Define the processes Ut and Vt by

Ut = lim sup Yr,
r 4. t

,..-.,, r diadic rational.
Vt = lim inf Yr,

r J.Í

Ut and Vt are progressively measurable [1, D48, p. 70]. We also have

Ut ^ lim sup Us,       Vt <. lim inf Vs.

Fix £ > 0 and let the stopping rule F be defined by

T= mf(t: Ut-Vt ^ e),

= 00   if there is no such t.

If F<co from what we said above UT- Vt^e, i.e. that for the stopping rule T,

lim supr|T Frä£ + lim infri. r Yr. We have shown this cannot occur with positive

probability. Thus except for a null set limr j. ( Yr exists for all /. This limit then is

the right continuous modification of Yt we were looking for.    Q.E.D.

Now a natural question is whether we can require Yt to have left limits provided

Xt has left limits. The answer is yes. We need

Lemma 5. Let Xt and Ft be as in Theorem 4, and let Yt be a right continuous

modification of E(Xt | Ft). Then for any stopping rule T we have YT = E(XT \ FT).

Proof. The proof is simple. If the stop rules Tn are defined by Tn = ([2nT]+-l)/2n

where [x] denotes the integral part of x, then Tn j F. By right continuity YTn -> YT.

Lemma 1 implies that YTn = E(XTn \ FTn). Since XTn ->• XT we may use Lemma 3 to

complete proof.

Now we have

Theorem 6. Let Xt be right continuous, have left limits and be uniformly bounded.

If Ft is an increasing right continuous family of a-fields then we can choose a right

continuous with left limits modification of E(Xt\Ft).

Proof. Let Yt be a right continuous modification of E(Xt\Ft); this is guaranteed

by Theorem 4. We will show that Yt has left limits almost surely. Let e>0 and

define stopping rules Tn as follows:

rx = inf(i: |Ft-F0| ^e),

= 00   if there is no such t,
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and, in general,

Fn + 1 = inf(/: / ^ Fn, \Yt-YTt\ ^ e),

= 00   if there is no such /.

If Fn + 1 <co, by right continuity of Yt we have | Fr„ + 1- YTJ ^e. By Lemma 5 we

have YTn = E(XTn | FTJ. Since the sequence Tn increases and Xt has left limits XTn

converges on the set (lim F„<oo). We have

£F(lim Tn < oo) ^ eP(Tn + 1 < oo)

í F(|Frn + 1- YTn\ : Tn + 1 < oo) ^ E(\XTn + 1-XTJ : Tn + 1 < oo).

Letting H->oowe conclude that

F(lim Tn < oo) = 0.

Thus almost surely for each e > 0, there exists a sequence Tn of stopping rules with

Tn<Tn + 1, Tn f oo such that the oscillation in the intervals [Tn, Tn+1) is less than 2£.

This means that Yt has left limits almost surely. That finishes the proof.

2. In this section we develop some results that contain the modification theorem

on super martingales. We assume that all processes considered are progressively

measurable relative to a fixed increasing right continuous family F, of a-fields.

For simplicity we further assume that all processes are uniformly bounded. This

restriction can easily be removed. If for the process X(t), X(<x>) is not defined,

simply define it to be zero.

Theorem 7. Let X(t) be a stochastic process with the following property:

If Tn is a decreasing sequence of discrete valued stopping rules then lim X(Tn)

exists almost surely.

Then except for a null set the limit limr 11 Xr, r running over diadic rationals,

exists for all t.

Proof. We will only indicate the proof since it is similar to the proof of Theorem

4. Let F be any stopping rule. We will show that limr|T X(r), r running over diadic

rationals, exists almost surely. If this were not the case there would exist numbers

b > a with

lim sup X(r) > b > a > lim inf X(r).
r|T r|r

Define the stopping rules F„ and Sn as follows :

F„ = inf(//2n : i = [2nT] + l sind X(i/2n) > b),

= oo   if there is no such i;

Sn = inf 072" :j ^ [2T] + 1 and X(JjT) < a),
= co   if there is no such /

Clearly Tn and Sn decrease. The set where lim supriT X(r)>b>a>lim infriT X(r)

is identical with lim F„=lim Sn = T. Call this set A. Choose small positive en with
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Zn En<P(A). Define a decreasing sequence of discrete valued stopping rules Un as

follows: U1 = T1. There exists an integer nx with

P(A, Tx £ Sni) < eu   since Sn | Fon /f.

Put U2=U,ASni. There exists an «2 with F (/I, C/2^Fn2)<£2. Put U3=U2/\Tnr

And so on. We thus get a decreasing sequence Un of stopping rules such that at

least on a subset of A of positive measure, X(U2n + i)>b and AXf/^^a, con-

tradicting the assumption that X(Un) converges almost surely. Now define, as in

Theorem 4,

Yx(t) = lim sup X(r),        Y2(t) = lim inf X(r).
Tit Ti,t

If P(Y,(t)^ Y2(t) for some t)>0, then there exist a stopping rule Fand e>0 with

YX(T)> Y2(T) + e and this contradicts what we have already proved. This com-

pletes the proof.

Remark. In Theorem 7 if X(t) is a super martingale and we put Y(t) = limr ; ¡ X(r)

then Y(t) is right continuous. Y(t) is Frmeasurable since Ff is right continuous.

This then implies the existence of right continuous modifications of measurable

super martingales. The existence of left limits is no problem.

Lemma 8. IfX(t) is a right continuous stochastic process such that for all increasing

sequences Tn of stopping times lim X(Tn) exists then X(t) has left limits almost

surely.

Proof. This is implicit in the proof of Theorem 6. Indeed if £ > 0 and the stopping

rules Fn are defined by

Fj =inf(r: \Xt-X0\ ä e),

= oo    if there is no such /;

Fn + 1 = inf (t :t^Tn and \Xt-XTn\ ^ e),

= co    if there is no such t,

the assumption that XTn converges implies that Tn f oo almost surely. It follows

that X(t) has left limits almost surely.    Q.E.D.

Now suppose that X(t) is a super martingale. Consider the processes

Xn(t) = X((i+l)/2n)   if   ;/2Bá r<(/+l)/2».

Xn(t) are right continuous. Then there exists a right continuous modification Yn(t)

of the process E(Xn(t) \ Ft). Since X(t) is a super martingale Yn(t) is nondecreasing,

i.e. F„(0= Yn+i(t). Put F(/) = limn-.°o Yn(t). Y(t) is clearly a measurable modifica-

tion of X(t). (Of course we assume that E(X(t)) is a right continuous function of t.)

Theorem 7 and Lemma 8 say that Y(t) has a right continuous with left limits

modification. Since, for each «, Yn(t) is a super martingale, a result of Meyer

[1, T, p. 99] implies that Y(t) is right continuous and has left limits. The following

is a slight generalisation of the above mentioned result of Meyer.
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Lemma 9. Let X(t) be a super martingale with the following properties:

1. X(t) is progressively measurable and is lower semicontinuous from the right, i.e.

X(t)^liminfs>t.,sUX(s).

2. For stopping times T and S with Tú S we have E(X(T))^E(X(S)).

Then X(t) is right continuous and has left limits almost surely.

Proof. If Tn are decreasing, discrete valued stopping rules, X(Tn) converges by

the super martingale convergence theorem. By Theorem 7, except for a null set,

Yt = limrit X(r) exists for all /. Lower semicontinuity on the right implies that

Y(t)^X(t) for all /.

For each stopping time T we get

Y(T)=    lim    X(r) = lim x(l^¡¡^\

so that

E(Y(T)) = lim f(a-(^J±1)) í E(X(T))

because ([2"F]+ l)/2" being a stopping rule >Fwe have

Thus for every stopping rule F, X(T)= Y(T) almost surely. If e>0 and

F=inf(/: Yt-Xt ^ e),

= oo   if there is no such /,

then by right continuity of Yt and lower semicontinuity of Xt from the right we

must have YT — XT~^e on the set (F<oo). But this contradicts YT = XT for all

stopping rules. Thus

P(Yt = Xt for all/) = 1,

i.e. Xt is almost surely right continuous and by Lemma 8 has left limits. That com-

pletes the proof.

Remark. Let us indicate to what extent the results of §§1 and 2 generalise to

Banach space valued variables. The conditional expectation of a variable X relative

to a sub-a-field G will be defined as in [2, p. 22]. The proofs of Lemmas 1, 2 and 3

are generalised verbatim. Theorem 4 needs slight changes. Assume as in Theorem 4

that E(XT\FT) = 0. Define

Tn = inf (//2n : / ä [2T] + 1 and | Yil2»\ ̂  e)

= co   if there is no such i.

YutSn = ([2nT]+l)/2n.lf

Fflimsup |rr| ^ e) > 0
\r>T;r|r )
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we can always choose indices kn such that P(Tn<Skn for all «)>0. Define Un = Skn

AFn. Un \T so that YUn tends to E(XT/FT) = 0. This is not possible on the set

(Un<Skn for all n). Now let

Zt = lim sup \Yr-Ys\.
r,s>í;r,s ¿ í

Z( is progressively measurable and ZT = 0 for all stopping rules T. It follows that

F(Z(>0 for some 0=0.

Lemma 5 and Theorem 6 do not need any changes. The changes needed in the

proof of Theorem 7 parallel those that we have already indicated in the case of

Theorem 4.

Added in proof. Acknowledgement of priority. P. A. Meyer and F. Mertens

have obtained this result earlier than the author.
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