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ADDENDUM TO "ON A PROBLEM OF TURAN ABOUT
POLYNOMIALS WITH CURVED MAJORANTS"

BY

Q. I. RAHMAN

Let TTn denote the class of polynomials />„(*) = ££=o okxk of degree « which

satisfy |yn(x)| ^(1 — x2)112 for — 1 <x< 1. Given any x0 in [—1, 1], how large can

IPif'C*")! (the kth derivative at x0) be ifpn(x) belongs to the class -nn1 In case x0 = 0

the problem is equivalent to the problem of estimating \ak\ ifpn(x) = J.k = o okxk e trn.

It has been shown [3] that if pn(x) — 'Ek = o okxk e nn then

\ax\£n-l,       \a2\û{(n-iy+l}j2.

Here we prove the following theorem which gives a sharp estimate for each of the

coefficients.

Theorem. If Pn(x) = Xk=oOkxk is a polynomial of degree n such that \pn(x)\

á(l — x2)112 for — 1 <x< 1 and Un(x) denotes the nth Chebyshev polynomial of the

second kind, then, according as n — k is even or odd, \ak\ is bounded above by the

absolute value of the coefficient of xk in eiy(l-x2)Un-2(x) or eiy(l—x2)Un-3(x),

respectively.

The idea of proof comes from a paper of O. D. Kellogg [2].

Proof. Without loss of generality we may suppose pn(x) to be real for real x.

Taking first the case in which k, n are both even, we consider the polynomial

i{Pn(x)+pn(-x)} = a0 + a2x2 + aixi+ ■ ■ ■ +a„-2xn-2 + anxn

and compare it with the polynomial

a-x2)u   (x)     y-v+Vf  i)'-1 Í   ("~1^)!    i1  ("-2-JV- }(1    x)Un^2(x)-    2     x+Z(    I)    \(j_mn_w+4JHn_2-20l)

x(2xy-2'+(-iyi2-1

n

= 2 AkXk   (say).
k = 0

If — 1 < A < 1, the difference

D(x, X) = (1 - x2) Un _ 2(x) - X{a0 + a2x2 + a¿a + ■ ■ • + an _ 2xn "2 + anxn}

is positive at all points of the interval (—1, 1) where (1 — x2)i/n_2(jc) = (l — jc2)1'2

and negative where (1 — x2)Un-2(x)= —(1 —x2)1'2. It is readily seen that there are
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a total of n— 1 points on the interval (—1, 1) where (1— x2)Un.2(x) is alternately

equal to (1 — x2)112, — (1— x2)112. Hence the polynomial D(x, X) has at least n — 2

real zeros in (—1, 1). Since it also vanishes at —1, +1 we conclude that all the

zeros of D(x, X) are real and distinct. All the odd coefficients of D(x, X) being zero,

none of the even coefficients can vanish ; for then by Descartes' rule of signs, the

zeros of D(x, X) could not all be real. Thus, for every even k f¿ n and for — 1 < A < 1,

\Ak — Xak\ /0. This is possible only if \ak\ ̂  \Ak\ for k = 0, 2, 4,..., n.

In case k, n are both odd we apply the above reasoning to the polynomial

( 1 - x2) Un - 2(x) - (Xß){p(x) -p( - x)}

(whose even coefficients are all zero) in order to get the desired conclusion.

If k is even and n is odd we consider

(1 -x2)Un-3(x)-(XI2){p(x)+p(-x)}

whereas if k is odd and n is even we argue with

(1 -x2)Un-3(x)-(X/2){p(x)-p(-x)}.

One can in fact show that only those polynomials given at the end of the state-

ment of the theorem are extremal for the kth coefficient when n — k is even or odd

respectively.

We also observe that Theorem 2 of our paper [3] is an immediate consequence of

a theorem of Levin which appears as Theorem 11.7.2 in [1]. If we set/(z) =/?n(cos z),

oj(z) = ei{n~1)z sin z the conditions of Levin's theorem are satisfied with r = n,a = n.

Since differentiation is a 77-operator we have

\(d/dx)pn(cos x)\ è \(d/dx){e^-^x sin *}|,       -co < x < co,

which readily gives the desired result.

We take this opportunity to make it clear that z* appearing on p. 448 of [3] is

real and the polynomials pjz) in Theorems C and 4 of that paper are supposed to

have real coefficients.

i
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