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TWO HILBERT SPACES IN WHICH POLYNOMIALS

ARE NOT DENSE

BY

D. J. NEWMAN(') AND D. K. WOHLGELERNTER(2)

Abstract. Let S be the Hubert space of entire functions f(z) such that ||/(z)||2

= JJ" \f(z)\2 dm(z), where zzz is a positive measure defined on the Borel sets of the

complex plane. Two Hubert spaces are constructed in which polynomials are not

dense. In the second example, our space is one which contains all exponentials and

yet in which the exponentials are not complete. This is a somewhat surprising

result since the exponentials are always complete on the real line.

Introduction. Let m be a positive measure defined on the Borel sets of the

complex plane C. In the quest for sufficient conditions on m that ensure that the

analytic polynomials be dense in the entire functions of L2(dm) one looks for

counterexamples. A study of these counterexamples often gives some insight into

the nature of the problem.

We denote by S the space of entire functions/(z) such that

(1) \\f(z)\\2 = ^\f(z)\2 dm(z) < cc.

The integration here is over the complex plane. S is then a pre-Hilbert space where,

as usual, the inner product </,#> = jfg dm(z). We are interested primarily in the

case where the space Sis a complete Hilbert space. By "dense in S" we mean dense

in the metric imposed by (1).

In this paper we give two examples of Hilbert spaces in which polynomials are

not dense. In our first example we use the well-known fact that exp (iz) cannot be

approximated by polynomials in L2[0, oo) with the weight exp( —x"), 0<a<^

[1, pp. 40-45]. Hence it is really a very special case. Our second example is much

more interesting in that we construct a Hilbert space containing all exponentials

and yet in which the exponentials are not complete. It follows that polynomials

-
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are not dense. This is surprising since the exponentials are always complete on the

real line.

Example 1. We divide the plane into two sets Rx and R2 where

Rx = {z | Re z 5i 0 or Re z > 0 and |Im z\ > 1},

R2 = {z j Re z > 0 and [Im z\ á 1}.

Let

dm(z) = exp (- |z[1 + a) dAz   (8 > 0)       for z in Rx,

= exp (- \z\a) dAz   (0 < a < 7)   for z in R2.

As above, we denote by S the space of entire functions/(z) such that ||/(z)||2

= J |/(z)|2 dm(z)<<x>. The function eiz is easily seen to belong to S. We shall show

that there exists a positive constant M such that for any function /(z) in 5

(1.1) f"W)|"exp(-x«)dx < M\\f(z)\\2.
.'0

It follows from (1.1) that in particular eiz cannot be approximated by polynomials

in S. For suppose the converse, i.e. given e>0 3P(z) such that \\eis—P(z)\\ <e. But

then eix could be approximated on L2[0, 00) with the weight exp ( — x"), 0<a<^,

and hence we would have a contradiction.

Let f(z) be in S. Then for any point u, u^O, we have

1   C2" C1
(1.2) f2(u) = - f2(u + reiB)r dr de,

■" Jo    Jo

and therefore

7*00 1       7*00 /*2ji     /*1

(1.3) \f(u)\2exp(-ua)du^- \    exp(-0 \f(u + reie)\2rdrdddu.
Jo                                                T Jo                       Jo    Jo

We let x—u+r cos 0, y = r sin u and <; = « in the right-hand integral of (1.3), and

obtain

|/(zz-)|2exp(-z77)iiw

1    f 00     f*l rx+1

(1.4)    ¿-\ \f(x + iy)\2\ exp(-v")dvdydx
"■J-lJ-l Jmax(0,x-1)

f2   P   |/(x + z»|2í/y(/x+í°°|      |/(x + z»|2fÄ    expí-^z/yz/yzix
.J-iJ-i J2J-1 Jx-i

<2

Let z = x + /y and note that for x^2 and \y \ < 1 we have

(i) i;^x-l = |x| + l-2^|x| + |y|-2ä|z|-2, and

(ii) \z\a = (\z\-2 + 2)aú(\z\-2y + 2a.
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Combining (i) and (ii) we have exp ( —i>K)<exp (— |z|a + 2a) and hence

\f(u)\2e\p(-ua)du
Jo

(1.5)    < m[J°   £   \f(z)\2txp(-\z\1 + i)dydx+\\™^ \f(z)\2exp(-\z\«)dydx\

< M\\f(z)\\2,

which is (1.1).

Remark. If we vary the conditions on dm(z) slightly, e.g., a = \ or S = 0 (in

which case eiz does not belong to S), the situation becomes entirely different and

whether polynomials are dense in the space S thus defined remains an open ques-

tion.

Example 2. We now construct a Hilbert space containing all exponentials and

in which the exponentials are not complete. Our construction is motivated by

Example 1.

Let z = x + iy. Denote by S' the space of entire functions/(z) such that

11/001! = r\f(x)\2+\Mx)\2dm'(x)
Jo

<   00

where dm'(x) = exp ( — 2x2)x11/(l — exp ( — x8)) and £ = exp (zV/4). S' is a pre-

Hilbert space where the inner product of two functions/ g in 5" is

</, g>s- = [ [f(x)g(x)+fmg(Çx)] dm'ix).

Clearly all exponentials belong to S'. We exhibit a function F(z) in S' which cannot

be approximated by a linear combination of exponentials. We then construct a

Hilbert space S such that

(2.1) F(z) belongs to S,

and

(2-2) ||/(z)||s. < M\\f(z)\\s,

where/(z) is any function in S and M is some positive constant independent of/(z).

As in our first example, (2.2) implies that in particular F(z) cannot be approximated

by a linear combination of exponentials in S and therefore the exponentials are not

complete in this Hilbert space.

Let

F(z) = exp((l-z')z2)(l-exp(-z8))/z8.

Clearly F(z) is in S' since

II EY MI2 T   i™ (l-eXP(-X8))
||F(z)||§. = 2       s-^-'- dx < co.

Jo x
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To show that F(z) cannot be approximated by a linear combination of exponentials

it suffices to show that

(2.3) <e* F(z)}s. = 0,

for all complex A.

Let

g(z) = z3 exp (Xz-(l-i)z2).

g(z) is analytic. Moreover,

(•31/4

(2.4) lim R\g(Reie)\ de = 0.
7Z-.CO   JO

Hence by contour integration we have

(2.5) g(x)dx-¿\    g(Cx)dx = 0,
Jo Jo

i.e.

(2.6) I " exp (Ax-(1 -/)x2)x3 dx-? P exp (A£x-(1 +/)x2)x3 dx = 0,
Jo Jo

£4 = 1 and therefore (2.3) follows.

We now define our Hubert space S. Let

Rx = {z | \z\ > 3, x > 0, ¡xy| á 1},

R2 = {z | \z\ > 3, x > 0, y > 0, |x2-y2| á 2},

R3 = {z | \z\ ^ 3},        F4 = C-(/7u/v2U.R3).

We let dm(z) = K(z) dx dy where

K(z) = exp ( - 2x2)x12 (z e Rx),

= exp(-(x+y)2)(x+yy2 (zeR2),

= 1 (ze R3),

= exp(-3|z|8) (zeRi).

As above S is the Hubert space of entire functions/(z) such that J" |/(z)|2 dm(z) < co.

It is obvious that the exponentials belong to S. Moreover one easily verifies that

f |f(z)W,)<cff" ggefcausa»«.
J«! J2   J-l/x |z|

r™ i
< C       -g fix < oo,

J2   •*

where C is a generic constant.
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Similarly, letting z=^r¡, r¡ = t + iw we have

•OO    7.1H

71

(f« eilt

\F(z)\2 dm(z) < C\ r12 exp (-2w2-4tw) dw
. ü2 .'2    J-llt

-rl
L A

dt

< C < co.

Obviously, ¡n3URi \F(z)\2 dm(z)<oo. We therefore conclude ||/r(z)¡|s<oo.

Finally we must prove (2.2). Let/(z) be in S. It evidently suffices to show

(2.7) 1/0)111- < constant f        \f(z)\2dAz+\ \f(z)\2 dm(z)\

Indeed, for 3¿ \z\ ̂ 4, dm(z)>m1>Ç). From (2.7) we shall then have

||/0)||I. < m\\        \f(z)\2dA2+\ \f(z)\2 dm(z)+\        \f(z)\2dm(z)
-J|e|S3 J3<|z|g4 Jr-íXjR-í

< M\\f(z)\\l

Since/(z) is entire we have for any point wäO

(2.8)

Hence,

(2.9)

4,.2   /'2JI /• 1/212

P(u) = AL p(u + reiB)r dr de.

¡f(u)\2exp(-2u2)u11r i/o)
Ja   "      1

du
- exp ( — u8)

¿Lp     c °° r2" r1'2"

tr(e

\p        z* œ <-2zi rl/2u

ZPrA \f(u + reiB)\2exp(-2u2)u13rdrdddu.

We let x = u + r cos 6, y = r sin 0 and zj = u in the right-hand integral of (2.9) and

obtain

|/0)|2exp(-2«>11

(2.10)

1 — exp ( — u8)

< C

< C

< c

du

J3-1/6

rfoj rllx

¡•llx cx+llx -]

dx I/O)\ady\ exp (-2zj>13 dv
J-lIx Jx-llx J

-J3-1

Similarly,

|/0)|2exp(-2x2)x12i/y^
1/6 J-lIx

\f(z)\2dAz+\    \f(z)\2 dm(z)\
J\z\%i J«i J

o      i —exp (, —w j J|2is4
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Let r¡ = t + iw. In exactly the same manner we obtain

f- \Mu)\2exp(-2u2)u11 du

Jo l-exp(-u8)
(2.11)

< C | \f(fr,)|2 dt dw + I |/(¿7)|2 exp (- 2/2)/12 dt dw]
J|i?|g4 Jlu|g3;|iu)|gl;t>0 1/|U|g4 J|iî|È3;liui|Sl;t>0

Letting z = z;i7 we have from (2. II)

(2.12)

p|/(^)|2exp(-2«2)^

Jo       1 — exp ( — m8)

< C
l»IS4

|/(z)|2 dxdy+ f    |/(z)|2 exp (-(x+y)7(x+y)12 ¿4,1-
J«l J

The desired result, namely (2.7), follows from (2.10) and (2.12).
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