
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 168, June 1972

ABSOLUTE TAUBERIAN CONSTANTS FOR
CESÀRO MEANS

BY

SORAYA SHERIF

Abstract. This paper is concerned with introducing two inequalities of the form

l?.9\T.-an\£KA and 2^0\rn-an\^K'B, where r„-C?»-'C?2i, C¡*> denote
the Cesàro transform of order k, K and K' are absolute Tauberian constants,

<4 = 2"=o |A(na„)|<co, B=2ñ=a |A((1/«) Zî;i w»)|<oo and \uk = ul<-uktl. The

constants K, K' will be determined.

1. Introduction. Let {sn} (n^O) (sn = a0 + a1+ ■ ■ ■ + an) be a sequence of real or

complex numbers. Denote by rn a linear transform T

(1.1) h  =    2,  Cn.A     0)
k

of sk supposed convergent for all sufficiently large values of n. In various special

cases, it has been found that theorems of the following type hold. Suppose that

p, n are related in an appropriate way (usually the assumption is that pjn -^aas

n -> oo, where <x>0 is a constant). Suppose that

(1.2) lim sup |nan| < oo.
n-* oo

Then there is a constant A such that

(1.3) lim sup |rn — sp\ S A lim sup |nan|.
n-» oo n-* oo

There are also analogous results in which (1.1) is replaced by a sequence-to-func-

tion transformation. Usually the best possible value of the constant A has been

determined.

Theorems of this type were first considered by Hadwiger [8] and have since been

investigated by various authors; see for example Agnew ([1], [2]) and Jakimovski

[10].
Some similar theorems have been obtained with (1.2) replaced by the weaker

condition

(1.4) lim sup |y„| < oo,
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where we write

(1.5)
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n+1

n

I va„

See, for example, Delange [5], Rajagopal [14], Meir [13] and Sherif ([15], [16]).

Also, other theorems have been obtained with (1.2) replaced by a condition of

Schmidt's type

(1.6) lim sup maximum \s„ — sp\ ^ XL       (A > 0),
P-+0O        |p-q|^Àp1/2

where lim supn_œ |n1/2an| =L<oo. See for example Anjaneyulu [3].

Denoting by Cnk) the Cesàro transform of order k so that

we introduce in this paper estimates of a new form for the absolute Cesàro summa-

bility defined by Fekete [6]. The corresponding Tauberian conditions to (1.2) and

to (1.4) will be

(1.7)

and

(1.8)

2  lA("ön)|   <   »,

? !€?>•)
<oo    (2),

respectively, where we define Awk by

(1.9) A«k = uk-uk+1.

The estimates will be of the forms

(l.io) 2K-fl"l ^*2lAM>

(i.ii)

respectively, where

(1.12)

2k-*n|^2|^2>v)

T   _ cm-C(k)i ■
1 n *-*n ^^n- 1 •>

K and K' are absolute Tauberian constants.

It has been proved by Hyslop [9] that, if 2 "n is absolutely Abel summable and

if (1.8) holds, then 2 an is absolutely convergent. Since absolute summability

\C, k\ implies absolute Abel summability(3), this theorem includes the result:

(2) (1.8) can be stated in the form that the sequence {na„} is absolutely summable |C, 1|.

(3) See Fekete [7].
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(A) absolute summability \C,k\ together with (1.8) implies absolute convergence.

A fortiori, it includes the result:

(B) absolute summability \C, k\ together with (1.7) implies absolute convergence.

It will be noted that, just as the Tauberian constant theorems already cited

include the familiar "o" Tauberian theorems, so Theorems 3.1 and 2.1 of the

present paper include (A) and (B) respectively.

I have much pleasure in expressing my gratitude to Professor B. Kuttner for his

valuable suggestions during the presentation of this paper.

2. Theorem 2.1. Suppose that (1.7) holds. Then, whether

(2.1) 2 w < °°>

holds or not, (1.10) holds, where for k^O,

(2.2) K=r'(k+l)/T(k+l) + y,

(y is Euler's constant).

This result is the best possible in the sense that (1.10) becomes false ifK is replaced

by any smaller constant.

For the proof of Theorem 2.1, we require the following lemmas.

Lemma 2.1. Let

(2.3) An = 2 «n, A-
V

Suppose that

(2.4) 2 Kvl    is bounded?).
n

Let

(2.5) AT=sup2K.vI-
v       n

Then

(2.6) 2M"i^2i*vi
n v

and this constant is the best possible in the sense that (2.6) becomes false if K is re-

placed by any smaller constant.

Proof. 2 M„|áZn2v k.A|=2v AI In k.vl^Sv A|. On the other hand,

given e>0, there is a vQ say such that 2„ |anvo| > K— e. The conclusion follows on

taking bVo=l;bv = 0(v^v0).

(4) It has been shown by Mears [12], K. Knopp and G. G. Lorentz [11] that for the trans-

formation (2.3) to transform every absolutely convergent series into an absolutely convergent

series, it is necessary and sufficient that (2.4) holds.
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Lemma 2.2. Let

(2.7)

Then

SORAYA SHERIF

ß > flt+1.

[June

(2-8) 2 {"7_T)/{n+nß) = WW-l-^M

Proof. The left-hand side of (2.8) is equal to

(2.9)
n (1+«)(»-+1) , (\+a)(2 + a)(v+])(» +2)

1+- +
(v-f/3+1) 2l(y+ß+l)(v + ß + 2)

+

n ■F{(l+a);(v+l);(v + ß+l);l},

n
with the notation of Chapter I of Bailey's tract [4]. By Gauss' theorem of §1.3 of

Bailey [4], (2.9) is equal to

r> + /3+l)r(/3-l-«)
r(y + ß-a)r(ß)

from which the right-hand side of (2.8) is established.

We are now in position to prove Theorem 2.1. It is clear that r0 = a0. But for

näl,

/n + ÂA"]-1 ̂  ¡n-v + k\       r/n-l+Zh]-1 V /"-I -v + k\

1  n  )\     ¿A  «-»Ml  n-l   )\     M  n-i-,  T
//t + M]-1  ^   /n-fi+k-l\

i n )\  M  „-„   Y-
»rt)l"í("-"+í:-|)"íA(~.)

\   n   !\     Kfi \      n-p.      } v-fo

»fr)]-'l^.)(";:;:r)-

(2.10)

(2.11)        =

Also

(2.12)

Thus, it follows from (2.11) and (2.12) that

(2-13)     '•-* - S ̂ HfH «-^i )/(.)

1 i  n- 1

an=-nan= -- 2 ¿(va,)-
«v = 0
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Now, (2.13) is a transformation of the type considered in Lemma 2.1 and, for nä 1,

(2.14)
= 0 for v > n,

= (l/n)[ -e^il*)/«*)]        forv^n-1.

Thus, the conditions of Lemma 2.1 are satisfied with

(2.15) A:=supSv
V

where

Ä      l f      ln-v-\+k\ lln + k\

provided that S, is bounded; next, we note that, since k>0, 0<(n~l~lik)<(nXk),

so that we may omit the modulus sign in (2.16). We now have

(2.17)
1     & ln-v+k

~k+\¿A     n-v
-1\    1

Replacing n by n+1, we thus get

1
(2.18) 6V    ¿v-i

Ä    ln-v + k\lin + k + l\_l

n£-i\n+l-v)l\     n     )7k+\

Applying Lemma 2.2, we find that

(2.19) ^-Sy.! = r(v)/r^ + l)-l/v - 0.

Thus,

The conclusion thus follows from (2.20) and §12.16 of Whittaker and Watson [17].

3. Theorem 3.1. Suppose that (1.8) holds. Then whether (2.1) holds or not, (1.11)

holds, where

K' = K fork^ 1,

= -K+2   forO < k < 1.
(3.1)

Proof. Write

(3.2)

Let

(3.3)

^=-A(^2/«v)-

1 r
»n = rrrj  2 Va*' $" = """"»-I-
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Then,

(3.4)

i.e.

(3.5)

SORAYA SHERIF

nan = (n+lK-nWn-i = un + n<pn =  2 4>u+n<Pn,
« = 1

[June

1 V
a" = Z  Z,   'f'u + 't'n-

" « = 1

Using (3.5), it follows from (2.10) that

-1     n

(3.6)       T,

But

/I =

Thus,

(3.7)

irr zr:T){p^} - ̂  <->■
in + k\  -1 A   ,   4, ln-v + k-\\      \ (n + kxy1 A   , (n-p. + k

i nil »?,\?,( »- rH.jJ .1/4 .-,

»fr)]"'z{f;::V("":-J>K

(3.8)

It follows from (3.5) and (3.7) that

n

= 2 c£".^" (say)>
v=l

where

an>v = 0 for v > n,

- (l/«)[l-{(nnl+vi£) + Kn-nÎÏ-1)}/CI„fc)]    for v < n,

= (l/n)[l-(n + l)/e + 'c)] + l forv = n.

Thus, the conditions of Lemma 2.1 are satisfied with

(3.9) K' = sup K
V

where

(3.10) 0V = 2 k.v|.
71= V

Write

<Í>v + <Pn

so that

«».» = (l/«)(l-è„.v) for 0 Ú v <, n-1,

= (l/n)(l-6n>n) + l   forr = n.
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(3.11) <Av= 2 i(l-èn,v)+l

We note that, for O^v^n— 1, ¿>n>v+iA,v = «,i,v/gn,v where

"n.v = (n-v)[n-v-l+(v+2)k],       gn,v = (n-v-\+k)[n-v+(v+\)k\.

It is easily verified that rt„iV — gn,v = k(\— k)(v+\). Thus, for fixed n, ¿>n>v is an

increasing function of v if k < 1 and decreasing if k> 1. But

(3.12) An,o = 1.

Then, if fcèl, &„,»£!. Also, if 0<fc<l, ¿n,v>l.

(i) /cäl. Since ¿>„jV<1, we can omit the modulus sign in (3.11). We thus get

•¿v=   2^1-Ôn.v)+1-

</>v = Sv^-A/v+l,

(3.13)

We deduce that

(3.14)

where

^     ln-v + k\ I ln + k\
M,= yvk\ n\        \(n-v + k)       (Oá^d)

(3.15)        Á u-v ;/ \ » ;

-     V   /"-v+A:-i\//M+A:\

"^+Tn=V-il     "-v     //I  n y

Replacing n by n+1, we thus get

"       v    /«-" + A:\ //n+l+M

M' = w,IUi-J/(   «   )'
Now, using Lemma 2.2, we have

(3.16) Mv = 1.

Combining (2.15), (2.19), (3.9), (3.14) and (3.16), the result clearly follows,

(ii) 0 < k < 1. Since ¿>„iV > 1, then

(3.17)

But

<0   for 1 ^ v < n — 1.

(3.18)      «. „ =
1

+ 1 =
(n+Di-<-'>cr)

Hence, it follows from (3.10), (3.17) and (3.18) that

oo oo

<Av  =   -     2      an,v + «v.v =   - 2  a»,v + 2

-/er)> 0.
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The argument given in case (i) shows that 2"=v «n.v = S,. Thus,

(3.19) </.„ = -Sv + 2aViV.

Now, using (3.18), we find that

C:fe±!ï(.-./(?)).
But, since k < 1, (v % k) < (» +1 ). Hence

(3.21) l-l/("**).<l-l/(v+l).

It thus follows from (3.20) and (3.21) that

(3.22) «v>v < 1.

Since, aViV -> 1 as v -> 00, it follows from (3.22) that

(3.23) sup av>v = 1.
V

Combining (3.9), (3.19) and (3.23), the final conclusion holds.
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