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BOUNDED CONTINUOUS FUNCTIONS ON A

COMPLETELY REGULAR SPACE
BY

F. DENNIS SENTILLES

Abstract. Three locally convex topologies on C(X) are introduced and developed,

and in particular shown to coincide with the strict topology on locally compact A1 and

yield dual spaces consisting of tight, -r-additive and <r-additive functionals respectively

for completely regular X.

The Riesz-Markov Representation Theorem says that any continuous linear

functional F on the space of continuous functions on a compact Hausdorff space

X with the topology of uniform convergence on X must have the form

F(f) = f  fdp.
•> x

where p. is a bounded regular Borel measure on X. This yields a very satisfactory

relationship between the topology on X, the space C(X), a natural class of linear

functionals on it, and those measures on Jfthat measure at least the sets determined

by the topology on X in the usual way, the Borel sets.

This kind of representation was subsequently extended to locally compact spaces :

first to functionals on the space C0(X) of continuous functions vanishing at

infinity, and then further, to the bounded continuous functions on X. The last

result, due to R. C. Buck, demanded the use of a locally convex topology, the strict

topology, rather than a norm topology. In both extensions the same satisfactory

relationship between measure and topology was obtained.

In this paper we begin the development of locally convex topologies for C(X)

which extend this kind of representation to its last reasonable setting, completely

regular Hausdorff spaces. This setting appears to be ultimate in the sense of

Hewitt's example of a regular space upon which the only continuous functions are

constants.

1. Definitions and preliminaries. The actual work of integral representation of

linear forms has been done by other authors, going back to Aleksandrov [1] and,

following his work, by Varadarajan [39], and later Knowles [21] and more recently

Kirk [20] and Moran ([24], [25]). Our work relies heavily on theirs and will not

extend the representations they have obtained but will relate these works to earlier
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versions of the Riesz-Markov Theorem in the context of locally convex topologies

on C(X) ; C(X) henceforth denotes the bounded continuous real-valued functions on

a completely regular Hausdorff space Xand,forfe C(X), j|/|| =sup{|/(x)| :x e X}.

It is no restriction to consider only real-valued functions and functionals.

On the space C(X) Varadarajan, and Knowles following him, distinguishes three

classes of linear functionals. A real linear functional </> on C(X) is said to be

(1) tight—if for any net/a e C(X) with 1 ̂  ||/a|| such that/, -*■ 0 uniformly on

compacta in X, one has tj>(fa) -> 0,

(2) r-additive—if for any net fa e C(X) such that fa(x) -* 0 for each x e X and

f(x) ^fa(x) for ce S y and all x e X, one has <f>(fa) -> 0,

(3) a-additive—if for any pointwise decreasing sequence/, e C(X) withfn(x) -> 0

for each x e X, one has <f>(fn) -> 0.

The collection of all functionals satisfying (1), (2), and (3) is denoted by Mt, Mz

and Ma respectively and clearly Mt<= M,c M„. A net {/J satisfying the conditions

in (2) will be called decreasing and this will be denoted by/. \ 0.

Each of the pairings (C, Mt), (C, M,) and (C, Ma) are dual pairs in the sense of

[30, p. 32] where C= C(X). When X is locally compact, Mt=Mz and there is a 1-1

correspondence between Mt and the bounded regular Borel measures on X [21,

Theorem 25]. When X is compact, Mt=Ma and these are precisely the spaces of

bounded linear forms on C(X). We will define and investigate certain dual pair

topologies [30, p. 34] of each of these dual pairings and tie these to the locally-

convex topologies related to the aforementioned versions of the Riesz-Markov

Theorem; the actual integral representation theory follows from the works men-

tioned above and is summarized below.

To begin this outline of existing representation theorems, we choose from the

varied and varying definitions of Baire and Borel sets in a topological space F the

following: The Baire sets are those sets in the c-algebra Ba (F) generated by the

zero-sets in F; the Borel sets are those sets in the c-algebra B (F) generated by the

open sets in F. (A zero set is a set of the form/_1(0),/e C(X); the set X\f~1(Q) is

called a cozero set.) Clearly, Ba (F)<= B (F). A positive Borel (Baire) measure on F

is a countably additive set function p. defined on B (F) (Ba (F)) with values in [0, oo).

A Borel (Baire) measure on X is the difference of two positive Borel (Baire)

measures. Every positive Baire measure is known to be a regular Baire measure in

that ¿¿(F) = sup {/u(Z):Z<=F, Z a zero set} for all FeBa(F). A positive Borel

measure v will be called regular if v(E) = sup {v(C):C<^E, C a closed set}, and will

be called compact regular if v(F) = sup {v(K):Kcß, K a compact set}, both these

requirements being for all Ee B (T).

The need for three classes of measures arises quite naturally, for these correspond

exactly to the three classes of linear functionals just mentioned. This is set forth in

1.3 below and we discuss the matter in that context. If i'A'is the real compactifica-

tion of X, x e vX\X and/is the unique extension of/e C(X) to the Stone-Cech

compactification ßX of X, the functional <j>(f)=f(x) is seen to be a-additive but
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not T-additive nor tight. If x e X, this same functional would be tight. It is not so

easy to produce a T-additive, nontight and non-c-additive functional. Examples

appear in [21]. Varadarajan [39] and Knowles [21] both assert that T-additive

functionals and their corresponding measures should be the main point of interest;

[21, Theorem 4.3] is interesting in this regard. Finally, if one wishes a satisfactory

relationship between the topology on X, functionals on C(X) and measures on X,

the restriction of tightness is too strong, for the compacta in X generate neither

Ba (X) nor B (X), and for certain topological spaces (e.g., the rationals) may be a

rather trivial class.

It is clear that the closed regular Borel measures on Jfare more closely related to

the topology on X. However, used as representatives of a class of linear functions

on C(X), these are defective. Let X=[\, Q] x [1, Q]-{(Í2, il)}, Q. being the first

uncountable ordinal. Define vx, v2 on B (X) by vx(E)= 1 (v2(E)=\) if F contains an

unbounded closed subset of {0}x [1, Q) ([1, Q)x{Q}) and 0 otherwise. If v = vx

— v2, then ¡xfdv = 0 for all/e C(X), yet v=£0. However, if one restricts his interests

to closed regular nonnegative Borel measures p. and v such that </>(/) = jxfdp.

— ¡xfdv is T-additive on C(X), it follows from [20, Corollary 1.15] and 1.3 below

that p. = v. When X is normal one can show that, even without this assumption,

p. = v.

According to the representation theorem of Aleksandrov [39, p. 165], there is a

1-1 order preserving correspondence between the positive linear functionals on

C(X) and the positive, totally finite, finitely additive set functions p. defined on

Ba (X). Using the Stone-Cech compactification ßX of X and the Riesz-Markov

Theorem, we, following Knowles, adopt the following notations. If <f> is a positive

linear functional on C(X), let <j>(f) = 4>(f) be its unique extension to C(ßX) where

fe C(ßX) and/=/on X. Then,

Of) = f fdy. = f   fdp. = f   /* = <f>(f)
•¡X Jßx Jßx

where p. is a positive, totally finite Baire measure on X, p. is a positive regular Baire

measure on ßX and v is a positive regular Borel measure on ßX. On ßX, regular of

course implies compact regular.

From [21, Theorems 2.1, 2.4 and 2.5] one has

Theorem 1.1. The positive linear functional </> is

(1) a-additive ijfp(Z) = 0for every zero set Z<^ßX\X,

(2) r-additive iff~v(Q) = 0 for every compact set Q^ßX\X,

(3) tight iff r-additive and X is v* measurable, where

v*(E) = inf {?(£/) : U => E, U open}

for any set E.

And in terms of sets and additivity, from [21] one has
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Theorem 1.2. The positive linear functional <j> is

(1) a-additive iff p-(Zn) -*■ 0 for every sequence of zero sets Zn decreasing to the

null set,

(2) T-additive iffp.(Za) -> Ofor every net of zero sets Za decreasing to the null set,

(3) tight iff for any e > 0 3 a compact set F<= X such that p.*(X\K) < e, where

/u*(F) = sup {p.(Z) : Z^E, Z a zero set} for all sets E.

Finally [21, Theorems E, 2.1, 2.4 and 2.5],

Theorem 1.3. If $ is positive linear functional, then, if $ is

(1) a-additive, then p.* induces a Baire measure on X agreeing with p. and hence

<l>(f) = jxfdp. with p. a regular Baire measure,

(2) T-additive, then v induces a regular Borel measure von X with <f>(f) = Jxfdv and

v(U) = p,*(U) for open sets U and hence agreeing with p. on Baire sets,

(3) tight, then v is a compact-regular Borel measure.

Our development of locally convex topologies on C(X) is keyed to 1.1. We will

cast our results in the context of Mt, Mz and Ma, and leave integral representation

by a unique Borel measure as a (properly) measure theoretic problem, save for a

few remarks in §9.

If tp is any real and bounded linear functional on C(X), we define

tp + (f) = sup{<f>(g) : OSgSf}, <£-(/)=-inf{¿(/i) : Og/îS/} for all/^0, extend

these functions to all of C(X) in the usual way, and set \<t>\(f) = <p + (f) + 4'~(f) f°r

all/eC(X). Varadarajan proved that the conditions of <r-additivity, T-additivity

and tightness of <f> are equivalent to the same for (1) \<j>\ or (2) tf>+ and <p~, so that

the above theorems tell it all for such functionals. Finally, we define ||</>|| = |</>|(1).

Remaining notions of measure theory and locally convex topological vector

spaces are found in [15] and [30], respectively, unless otherwise noted. In par-

ticular, if Fis a locally convex space with dual F', then <*, x") represents the value

of x' e E' at x e E. Finally, if x e X then 8X represents the tight linear functional

m=*ñx).
2. The strict, substrict and superstrict topologies on C(X). At least two other

authors ([31] and [37]) have defined "strict" topologies for C(X). van Rooij [31]

uses the bounded, but not necessarily continuous, functions on X which vanish at

infinity in the manner of Buck's work [3], for which he obtains Mt as the dual

space. Summers [37] makes use of the nonnegative u.s.c. functions on X vanishing

at infinity. In case X is locally compact both these topologies coincide with Buck's

original strict topology [3], generated by the seminorms/>c(/)= lj/£|[,/e C(X), one

for each £ e C0(X). The difficulty that one faces in extending these definitions and

concepts to the completely regular case is that C0(X) may be empty, and that

tying the definition to the compacta in Xalso ties one to a dual space that need not

be Mj, much less M„.

We proceed as follows. For each compact set Q<=ßX\X\et

CQ = CQ(X) = {feC(X):f\Q = 0}.
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Then CQ is a Banach algebra with approximate identity and C(X) is a CQ module.

According to [34], CQ defines a "strict" topology ßQ on C(X), this topology gener-

ated by the seminorms p^(f)= \\jX\\, fe C(X), one for each £ e C0. Clearly, if

P((f) = 0 for every £ e C0 then/=0, so that ßQ is Hausdorff and [33], [34] and [35]

apply.

We define the strict topology ß on C(X) to be the inductive limit topology Lin ßQ

of the topologies ßa taken over the family â of all compact subsets Q of ßX\X

[30, p. 79]. Additionally, we define the superstrict topology ßx to be the inductive

limit topology Lin ßz of the topologies ßz taken over the family 2£ of all zero sets

such that Z<=ßX\X.

To define the subscript topology on C(X) first let k denote the compact-open

topology on C(X) and, for each r>0, let Br = {f : \\f\\Sr}. The collection °U

={U : U is absolutely convex and absorbent and for r>0 3 a «-neighborhood VT

of 0 such that U n Fr=> Vr n Br} is, by [30, p. 10], a base for a locally convex

topology on C(X) which we will denote by ß0 and call the substrict topology.

Clearly, ß0 is the finest locally convex topology agreeing with k on the sets Br and,

by virtue of [7], ß0 is the strict topology of Buck on locally compact X. Finally, let

SP denote the topology of pointwise convergence on X and let || || denote the

norm topology defined by the norm ||/||. If y denotes any locally convex topology,

let We y mean that IF is an absolutely convex absorbent y-neighborhood of 0.

Theorem 2.1. (a) 0^K^ßQ^ß^ßxS ||    ||.

(b) All topologies in (a) are locally convex and Hausdorff.

Proof, (a) Clearly 0>^K^ßo and ßußxu\ \\- Let Weß0. To show that

Weßit suffices to show that WeßQ for every Q e J. According to [34, Theorem

2.2] it suffices to show that for a given r > 0 there is a V e ß0 such that W n Br=>V

n Br. Since We ß0 there is a compact set F<= X such that W n Br=>Br n U where

U~{f : l/MI ^ 1 for x e K}. Let £ e C(ßX) such that ||£] £1, ¿sl on K and £=0

on Q. Then I eCQ and ïîfeV={g : [|g£|| a«} and/e Br then |/(jc)| ge on Fand

hence /e U r\ Br which completes the proof that ßouß-

(b) Since ^ is Hausdorff so are all the others. That they are locally convex is

straightforward.

As to a characterization of the ß and ßx neighborhoods, we have from [30, pp.

78-79]

Theorem 2.2. (a) W e ß ( W e ßx) iff W e ßQfor all Q e â ( W e ßzfor all Z e &).

(h) Weß(Weßx) iff for each Qeâ(Ze2£) there exists VQeßQ(Vze ßz) such

that W=><\JQe2 VQ) (IF=><Uze^ Fz» where <K> denotes the absolutely convex

envelope of V.

Initially, we have the following relations of these topologies to previously defined

topologies:
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Theorem 2.3. (a) The topologies k through ||    || are equal iff X is compact.

(b) If X is locally compact, then ß is the original strict topology of Buck [3] and,

additionally, ß = ßQ.

Proof, (a) This is clear.

(b) If X\s locally compact, then ßX\X e 2. and C0(X) = Cpx\x(X). Let 0 denote

Buck's strict topology, generated by the seminorms Fç(/)= ||£/||, £eC0(Ar). It is

apparent that ß^ß. On the other hand, if W e ß, then W=>{f: ||/£|| ^ 1} for some

£ e C0(X). Since £ e CQ for all Q e â, it follows that We ßQ for every Q e â and

hence that Weß.

To see that ß=ß0 in this case, note from [3] that ß = x on the sets Br and from

[34] that ß is the finest locally convex topology on C(X) equal to ß and hence k on

all sets Br.

Turning to the other "strict" topologies found in the literature, let mx denote the

topology of van Rooij [31] determined by the seminorms p^(f) = ||/£|| where £ is a

bounded function on X such that {|£|äe} = {x : |£(x)|ä£} is compact for any

e>0, and let w2 denote the topology tu„ of Summers [37, §3] generated by the

seminorms F„(/)=||t/|| where » is a nonnegative u.s.c. function of X such that

{v S: e} is compact for each e > 0. Finally, let m denote the mixed topology y[/c, || || ]

as defined by Wiweger [42, §1, p. 50]. We have

Theorem 2.4. (a) ß0 = m and ß0 has a base of neighborhoods of the form

CO

W(Kh fl|) = D {/ : sup {|/(x)| : x e KJ Z a,}
i=l

where 0 < at —*■ oo and K¡ is a compact subset of X.

(b) ß0 = a)x = ü)2.

Proof, (a) Clearly, W(K¡, at) e ß0 for any choice of the sequences {F¡} and {aj.

According to [42, Example D, p. 65], the sets W(KX, a,) form a base for the neigh-

borhood system at 0 for the topology m and hence m^ß0. On the other hand,

since ß0 = K on each set BT, then /?„ satisfies the hypothesis of [42, 2.2.2] and hence

ßo^m.

(b) Clearly, o>2g t^ gj80. Suppose W= W(K¡, a¡) e ß0 and let

w(x) = sup {f(x) :feW}^0.

Choose N such that a„^l for n^N and let a = min{l,ax,a2,...,aN}. Set

l,(x) = 2l(w(x) + a) for x e \J%=1 Km and 0 for x i Um = i Fn. Then £ is bounded and

u.s.c.

Hence F={£^e} is closed. Choose M so that l/an<e/4 for n^M. Now

K<^{w^2/e} and {w^2/e}^{Jk = 1 Kk. For suppose there is an x with w(x)^2¡e

and x$(J%=xKk. Choose feC(X) such that \\f\\^4/e, f(x) = 4¡e and /=0 on

Uk = i Kk. Then/e W and hence 2¡e^ w(x)^f(x) = 4/e, an impossibility. Since K

must then be a closed subset of a compact set, K itself is compact.
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Finally, xeK¡ implies (w(x) + a)/2^ai for all i and hence {/: ||/£|| i 1}<= W.

Consequently, W e to2 and ß0 = ojx = w2.

We will look again at the relationship between ß0, ß and ßx in the sequel. For the

moment we again consider the original strict topology. If Q e â, then ßX\Q is a

locally compact Hausdorff space and C(ßX\Q) can be given the strict topology

defined by the Banach algebra C0(ßX\Q). It is straightforward, and important in

the light of the relatively well-known strict topology vis-à-vis a locally compact

space, that

Theorem 2.5. C(X)ßQ is topologically isomorphic to C(ßX\Q) with the strict

topology defined by C0(ßX\Q).

The topology ßz is particularly nice. A topology $ on a locally convex space F

with dual F' is called the strong Mackey topology of the duality (F, F') iff in-

compact (i.e. o(E', E) compact) subsets of F' are |-equicontinuous; in such a case

| is the finest locally convex topology on F with dual F' [30, p. 62].

Corollary 2.6. C(X)ßz is a strong Mackey space for Zef. If £ e C(X) such

that £(x) = 0 iff xeZ, then p(f)= ||£/|| is a norm on C(X) defining a topology

equivalent to ßz on each set Br.

Proof. For Ze2£, ßX\Z is a-compact locally compact and by [6, Theorem 2.6]

C(ßX\Z) with the strict topology is a strong Mackey spaced). By 2.5, so is C(X)ß2.

The functions £n such that £n = 1 on {x : | £(x)| â 1 ¡n} and 0 off {x : \ t,(x)\ > 1 ¡n +1}

form an approximate identity for the algebra Czand ||£n/£|| Sn+l. By [33, Theorem

3.3], pc satisfies the conclusion of the theorem.

3. The general inductive limit of strict topologies. Certain arguments carry over

verbatim from ß to ßx. With the above as models and in the context of [34] we

derive some general results.

Let Xhe a Banach space and suppose that, for each a e A, Ba is a Banach algebra

having approximate identity {F"} with ||F"|| il, la Ba-modu\e, and ||Fx|| =0 for

all T e Ba implying x = 0. According to [34] each ßa determines a strict topology ßa

on Xhy way of the seminorms x-> ||Fx||, Te Ba. Let /3 = LinaeA ßa be the inductive

limit of these. The absolutely convex set W e ß iff W e ßa for all a e A. Certain

properties of each ßa carry over quite easily to ß; others, such as a description of

jS-convergence, give evidence of great difficulty.

Theorem 3.1. If W^X is absolutely convex and for each r>0 and »eA there

is a Ve ßa such that V c\ Br<^W, then We ß. Hence ß is the finest locally convex

topology on X agreeing with itself on each set Br = {xe X : ||x|| Sr}.

(') Actually [6, Theorem 2.6] is valid for paracompact, locally compact spaces. In fact,

w*-countably compact subsets are equicontinuous in that context.
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Proof. Let W be an absolutely convex absorbent set in X such that W=> V? n Br

where V? e ßa. Then We ßa by [34, Theorem 2.2], hence Weß. The remainder of

the proof follows readily.

Corollary 3.2. The continuity of linear maps on Xe is determined on the norm

bounded subsets of X and is equivalent to ß-continuity there on.

Theorem 3.3. A linear mapping A : X-> Y, where Y is a locally convex topological

vector space, is continuous on Xß iff A is continuous on Xßa for every a.

Proof. For if F is a neighborhood of 0 in Y, then A~l(V) eß iff A~\V) eßa

for every a.

More generally,

Theorem 3.4. A collection of linear mappings sé of X into Y is equicontinuous

in Xß iff si is equicontinuous in Xßafor every a.

From 3.4 we obtain an important result concerning the strong Mackey topology

for the duality (Xß, X¡¡). Precisely,

Corollary 3.5. (a) As subsets of X' (the dual of X in the norm topology (see

[35, Theorem 4.\])), X'ß = C\a X'ßa.

(b) ß is the strong Mackey topology of the duality (X, X'ß) if ßa is the strong

Mackey topology of the duality (X, Xßa)for each a (2).

Proof, (a) If Fe X'ß, then F e X'ßa for some a and hence F is bounded and we

can view FeX' according to [35, Theorem 4.1]. By 3.3, F e X'ßa for every a.

Conversely, Fe f)a X'ßa implies Fe Xe again by 3.3.

(b) If ßa is its strong Mackey topology for all a then every a(X'ß, A^-compact set

in X'B is (8a-equicontinuous for each a and hence is ^-equicontinuous.

Theorem 3.6. (a) X« is a Banach space in the norm

\\x'\\ =sup{|<x,x'>| : \\x\\ í l,xeX}.

(b) When the ß-bounded sets are norm bounded, this norm generates the strong

topology on X'ß.

Proof. It is apparent from 3.2 that (a) holds. Since the norm bounded sets in

X are ^-bounded for some a and hence ß-bounded, (b) follows readily under the

stated hypothesis.

4. Duality. In this section we establish that the dual spaces of C(X) with the

ß0, ß and ßx topologies are respectively Mt, M% and Ma and thus link these topolo-

gies with the extensive work of Varadarajan [39] and the later integral representa-

tion work of Knowles [21].

(2) We take this opportunity to point out that throughout [33] the topology T-represents

the strong Mackey topology on Xe and that without this interpretation (carelessly overlooked

by the author) [33, Theorem 2.1] is not valid.
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It follows readily from the definition of ß0 and from 3.1 that all these topologies

possess the important property first discovered by Dorroh [8].

Theorem 4.1. The topologies ß0, ß andßx are the strongest locally convex topologies

agreeing with their respective selves on each set Br and the continuity of linear maps

in each of these topologies is thus determined on the sets Br (3).

Theorem 4.2. Let <f> be a bounded linear functional on C(X), and let £ represent

any one of the topologies ß0, ßorßx- The following are equivalent : (a) <f> is ^-continuous,

(b) \4>\ is ^-continuous, (c) <p+ and <j>~ are ¡¡-continuous.

The proof will be a good deal clearer if we retrieve the following special result in

the locally compact setting; this lemma can also be observed as a Corollary to

[35, Theorem 4.1].

Lemma. If Y is locally compact and Hausdorff and <p is a positive linear functional

on C( Y) and if {¿¡a} is an approximate identity of norm one for C0( Y), then <f> is

ß-continuous iff for each e>0 there is an a0 such that <p(\ —¿¡ao)<e.

Proof. If <j> is ß-continuous, then <f>(l — £a)-^0 since fa i> 1. Conversely, for

each a let <pa(f) = <p(fîa)- Each <f>a is ß-continuous and, since c¡> is bounded by 0(1),

the existence of an a0 such that </>( 1 - |ao) < e implies that <j> is uniformly approxi-

mated by the net {tf>a} on the sets Br and so by 4.1 is ß-continuous.

Proof of 4.2. We prove (a) -> (c) -> (b) —> (a) in the context of ß-continuity.

It will be observed that /^-continuity is a bit easier. For (a) -> (c) it suffices to

show that <j> + is ß-continuous and, in turn by 3.3, that <j>+ is ßQ-continuous for

each Q.

The collection of functions {<¡>P : >pP e C(X), fPsl on the compact set P^ßX, 0

on Q, 0 ^ 4>p(x) ̂  1 for all x e ßX} is an approximate identity for C0. It suffices to

show that <j> + (\— >pp)^0 where the compact sets F in ßX disjoint from Q are

ordered by P^P' iff P=>P'.

Since </> is ßQ-continuous, then given e > 0 there is a compact set F0 such that if

F^F0 then \<p(g->pPg)\<efor all ||g|| i \,geC(X). UO^h^l ->¡>P we claim that

<p(h)^e and hence that tf> + (\ ->pP)^e for any P^P0-

Let hn=hl(l+l/n-i>p0). Then 0^hn^l and, if £ e CQ, then \C[hn(l-<l>Po)-h]\

= |£P[(- A/fi)/(l/« + (l -^Po))]\ ^ |£|/« and hence hn(\ -&.„) -> h in the topology ßQ.

Since O^hnf^l, we have \<j>(hn — <Pp0nn)\<E and hence that \<p(h)\?¿e. Thus

<p + (l —ipPg)^E and cf>+ is ßQ- and hence ß-continuous.

Since (f>~ =tf>+ — ̂ it follows that <¡>~ is also ß-continuous. Clearly (c) -*■ (b), and

by the lemma above applied to each space ßX\Q, (b) -»■ (a).

(3) Actually, because m = y[k, |] ||] is the finest linear topology agreeing with k on each set

Br it follows from 2.3(b), 2.4(a), 2.5 and a reworking of the proof of 3.1 that the words "locally

convex" may be replaced by "linear."
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In the case of ß-continuity, we take as an approximate identity in Cz the sequence

defined in 2.6 and proceed analogously. Forß0 we appeal to the definition of ß0 and

[39, Theorem 9].

Theorem 4.3. Let <f> be a positive linear functional on C(X). Then

(a) 4> is ßo-continuous iff <j> is tight,

(b) (j> is ß-continuous iff <j> is T-additive,

(c) <f> is ßx-continuous iff <j> is a-additive.

Proof. For (b) write <t>(f) = }ßxfdv~ where v is the regular Borel measure on ßX

mentioned in 1.1. According to 3.5(a), v e C'ßQ as a subset of C(X)' for all Q. But

this readily implies that v(Q) = 0 for all Q e J and hence by 1.1 that <j> is T-additive.

Conversely, if j> is T-additive then v(Q) = 0 for all Q e â. If Q is given and r>0, then

there is an open set U^ Q such that v(U) < 1 /2r. Letting £ = 2v(ßX\U)+\onßX\U,0

on oand0^£a2¿(j3A-\í/)+l, we have £ e CQ and, for/eFrn{g : ||g£||ál},

lm HI Há L m H"*171 * - » w"»*™ *i-
Hence cj>~1(—\, l)=>Br r\ {g : ||g£|| g 1} and hence, by 3.2, <j> is ß-continuous.

The proof of (c) can be made similarly, but the latter part can be more clearly

seen as follows. If Z is a zero set in ßX\X, and/(x) = 0 iff x e Z and/n = (|/|/||/||)1'B,

then {/„} is an approximate identity for Cz, and since 1 —/„ \ 0, <¿(1 —/„) -> 0

when (¡> is a-additive. From this one immediately obtains the ßz-continuity of <j>.

Part (a) follows from the definitions of ß0 and tightness and is essentially van

Rooij's [31] result.

Theorem 4.4. ß0, ß and ßx are topologies of the dual pairs (C, Mt), (C, Mx) and

(C, Ma) respectively.

Proof. Combine 4.3 with 4.2 and [39, Theorems 7, 8, 9].

Theorem 4.5. C(X)01 is a strong Mackey space and ßx is the finest locally convex

topology of the dual pair (C, Ma).

Proof. By 2.6 and 3.5(b), ßx is the strong Mackey topology of the dual pair

(C, Ma) and hence ßx is the Mackey topology of this duality.

The question of when the strict topology ß is itself its strong Mackey topology

has been of long standing interest ([3], [6], [33]). In the next section we will obtain

some further answers to this question with a summation in §9. To close out this

section we obtain for these topologies other analogues of the results in [3] and [35].

Lemma 4.6. The spaces Ma, Mz and Mt are complete in the norm

U\\ =sup{|0(/)| :feBx} = H(l).

Proof. This follows readily from 4.1.

Theorem 4.7. The topologies ß0, ß, ßx and ¡    || have the same bounded sets.
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Proof. If B is ß0 bounded, then B is pointwise bounded as a set of linear func-

tionals on the Banach space Mt and hence sup/eB supxeX \f(x)\ <°o since the func-

tionals hx for x e X belong to Mt with norm 1. Hence B is || ||-bounded and the

proof is complete since ß0 á ß á ßx ̂  ||    ||.

The next theorem says that in all cases where ß0, ß and ßx are of interest, these

topologies fail to possess certain desirable properties!

Theorem 4.8. The following are equivalent:

(a) is compact (pseudocompact),

(b) ß (ßx) is barrelled,

(c) ß (ßx) is bornological,

(d) ß (ßx) is metrizable,

(e) ß (ßx) is normable.

Proof. We consider first the topology ß. If X is compact, then â = {9}, and

Ce = C where 9 is the null set. Since 1 e Ce, then {/ : ||/| g 1} e ß and (e) holds.

Clearly (e) implies (d) and (d) implies (c) as is well known. Given (c), it follows

from [30, p. 82] that ß is the finest locally convex topology on C(X) having the

same bounded sets as ß. But the ß and || || bounded sets are identical and the

norm topology is the finest locally convex topology on C(X) having the same

bounded sets as || ||. Hence ß=|| || and so must be barelled. Finally, if ß is

barelled, then B± must be a neighborhood of 0 being weakly closed. If A'were not

compact, then picking xeßX\X, we would have Bxeß{xh a clear impossibility.

Hence (a) holds.

For the topology ßx, if X is pseudocompact, then !% = {9} and the implications

(a) -> (e) -> (d) -*■ (c) -> (b) hold as above. Given Bx, again Bx e ßx and if X were

not pseudocompact, then there would be aZc=ßJ¥\A'withZ^öand we would have

Bx eßz, an equally clear impossibility.

It is also clear that 4.8 is true with ß replaced by ß0. Note also that 4.8 implies

that ß<ßi when X is pseudocompact and not compact.

In revising this paper we want to note related results found in several preprints

of other authors that have been received since submission of this work. These

will be injected at the close of each section that follows. The first is due to Giles

[12] who introduced the topology ß0 and obtains, among others, 2.1, 2.3(b), 4.3(a),

4.4, 4.7 and 5.12 as these involve ß0; Giles does not always assume complete

regularity or the Hausdorff property for his results. A second article by Cooper [7]

includes our 2.4(a) for locally compact X. A third article by Hoffmann-Jorgensen

[16] introduces a topology on C(X) which by virtue of our 2.4(a) is seen to be ß0.

His work contains our principal results on ß0 as well as those of [12] and further

results to be noted in the sequel (some interesting results on a(C, Mt) compactness

also appear in [16]). Finally, and very recently, a preprint by Fremlin, Garling and

Haydon [11] was received which likewise introduces ß0, as well as two additional

topologies which we will discuss at the close of §6. Finally all these authors include
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a Stone-Weierstrass theorem for C(X)ßo. We observe that a theorem of the Stone-

Weierstrass type for C(X)ßo can also be drawn from [27].

5. Convergence. The continuity of linear maps on C(X) with any of the

topologies ß0, ß and ßx is, in the sense of 3.3, easily determined. Continuity into

C(X) with these topologies is another matter entirely, except in the case of ß0

where convergence can be referred to uniform convergence on a. distinguishable class

of subsets of X, the compacta. Any analogous description for either of ß or ßy

would be of interest(4).

As is well known, any locally convex topology y on a vector space F is the

topology of uniform convergence on the equicontinuous subsets of the dual F', the

sets W° where Wey [30, p. 48] and W° = {x' e E' : |<x, x'}\ ^ 1 for all x e W}(%

Consequently a description of the equicontinuous sets gives in this sense a descrip-

tion of convergence. For the topology ß0 we have the analogue of the descriptions

found in [6] and [35] of the ß-equicontinuous sets(e).

Theorem 5.1. For H a subset of Mt the following are equivalent:

(a) H is ßQ-equicontinuous.

(b) |//|={|<£| : 4> e H} is ß0-equicontinuous.

(c) H is bounded in the norm on Mt and for every e>0 there is a compact set K such

that \<p\(\f\)^efor allfe Bx withf=0 on K.

(d) Identifying H with the collection of compact-regular Borel measures p. on X

which uniquely represent each </> e H (1.3), then (1) sup„eH |^|(Z)<oo, and (2) if

e>0, then there is a compact set K^Xsuch that \p.\(X\K)<e for all p.e H, where

\p.\ is the total variation of p..

Proof. We show that (a) -> (c) -> (d) -> (h) -> (a).

Given (a), it is clear that H is bounded in norm since the norm bounded set Bx

in C(X) is ßo-bounded. Given e>0, the supposition that H be ß0-equicontinuous

means that there is a compact set F<= X such that

{/: |/(x)| =£ 1 for all x e K} n Bxlt = \H°.

Hence if/sO on K, and ||/|| S 1, then (\je)fe\H° or \<p(f)\ <e/2 for all <f> eH.lt

follows that \<l>\(\f\) = T'+(\f\) + <l>-(\f\)^s and (c) holds.
Given (c), (1) of (d) follows because H is uniformly bounded and |jn|(Ar)= ||^||.

For (2), we have \p.\(X\K) = sup {\p.\(C) : C^X\K, Ccompact}. Given C^X\K,

C compact, \etfeC(X) be zero on F and 1 on C with 0^/^l. Then, \p.\(C)

ú¡xfd\p.\ = \<l>\(f)úe for all </> e H. Hence (2) of (d) holds.

Assuming (d) and given r>0, let e=l/2r and let a = sup l/u-KA'). Suppose that

W={f: \f(x)\^l/2a for x e K} and that ge W n Br. Then, \<j>\(\g\) = 3x \g\ d\fi\

C) For some very recent results, in terms of localization topologies, the reader is referred

to Wheeler [41].

(5) Note that for H^E', H° = {xeE : |Or, *'>| S 1 for all x' e H).

(e) This result also appears independently in [11] and [16].
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= Lr \g\ d\n\+]X\K \g\ d\p.\gl. Hence Wn BT^\H\° and since Weß0 and \H\°

is absolutely convex and absorbent it follows from 4.1 that \H\is ß0-equicontinuous.

Clearly (b) implies (a), to complete the proof. The equivalence of (a) and (d) is

another form of the result in [4, Proposition 2].

Unfortunately, a similar characterization of ß- or ß^equicontinuity in terms of X

is not apparent. In terms of ßX one can use 5.1, 2.3(b) and 2.5. The aim of this

section is to say as much as we can about ß0, ß and ßx convergence in terms of the

w*-compact, rather than the equicontinuous subsets of the dual space. The key

idea is the use of Dini's Theorem, which allows us to confine matters to the w*-

compact sets of positive linear functionals.

Suppose that H<^Mt+ is w*-compact and suppose that/a e C(X) and/, \ 0 on

X. The functions </a, </>> \ 0 for <f> e H and are continuous in <p with the w*-

topology on H. The convergence must then be uniform since H is w*-compact.

If ßeJ, let 2 = {l,eC(X) : 0^£al,£>0 on Q}. Direct B by £ä£' iff £(x)

ä Í'(x) for all x e X so that 3) is a directed set and let /= 1 — £ for leS>. Then

/\ 0 on X and hence uniformly on H. Let r>0 and let a = sup {||</> || : j> e H} and

choose £0 such that </>(l -£0)< l/2r for all ¿ e Hand let F={/: ||/£0|| £ 1/2«}. Then

VeßQ and if/e Knßr then \4>(f)\í<t>(\f\)í \\f\\<f>(\ -£o) + 0(/£o)¿ L ^°=> V n Br
and, by 3.1, H° e ß, and hence H is ß-equicontinuous. Clearly one can replace ß

by ßx and Mz by M„ and obtain the same result. The remainder of this section is

largely based on these ideas. We have proven

Theorem 5.2. The w*-compact subsets of M%+ (M„+) are ß- (ßx-)equicontinuous.

The topology ß0 must now be brought back into the mix. A set //<= Mt is called

tight if it satisfies 5.1(d) or, in other words, is ß0-equicontinuous. It has long been

an outstanding problem to characterize the tight subsets of Mt, the original in-

vestigations being undertaken by Aleksandrov [1] and Prohorov [28] followed by

Le Cam [4], Varadarajan [39] and Conway [6]. A sequential version is Dieudonné's

well-known theorem [39, p. 198] for sequential convergence in Mt. The conjecture

was that tv*-compact subsets of Mt+ must be tight, and while Varadarajan [39] had

a result in this direction, Billingsley [2] asserts that the "proof contains a lacuna."

Recent work ([26], [11], and [16]) has shed quite a bit of light on this question and

is summarized at the close of this section.

Theorem 5.3. Every w*-compact subset of M* is tight iff ß0 is the topology of

uniform convergence on the w*-compact subsets of Mt+.

Proof. Let y denote the topology of uniform convergence on the w*-compact

subsets of M*. From 5.6, y^ß0 if we assume every w*-compact set in Mt+ to be

tight. Now ß0 has a base of neighborhoods of the form

W(KU at) = {fe C(X) : |/(*)| á a, for all x e FJ
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where a¡ -> oo. Letting G = \Jñ=i OKX^ : x e Kn} it follows that G^Mt+

n W(KU a,)0 and hence that the w*-closure H of G is w*-compact in Mt+ [30, p. 61].

Since W(KU a¡)^H0 = {fe C(X) : |</ <f>)\ á 1 for all <j>eH}ey, then ß0 = y.

Conversely, ß0 = y implies that every w*-compact set in Mt+ is tight by 5.1.

Let us call X a F-space iff w*-compact subsets of Mt+ are tight. We have the

following known result:

Theorem 5.4 // X is either locally compact or a topologically complete metric

space, then X is a T-space.

Proof. If X is locally compact, then ß = ß0 and X is a F-space by 5.2.

If X is a topologically complete metric space then, given <peMt+, one has

<]>(f) = )xfdp., with p. a compact-regular Borel measure on X, and it follows that¿¿

has separable support. If //<= Mt+ is w*-compact and e > 0, then

Hx = {<peH: ¿(1) ä e}

is w*-compact and it readily follows that J={<f>/\\<f>\\ : <j> e Hx} is also w*-compact.

From [2, p. 240], / is tight and hence there is a compact set K such that

(l¡\\<l>\\)p.(X\K)<e/a where a = sup{\4>\ : <f>e Hx} and <p(f) = jxfdp. Hence

p.(X\K) < e for all p. e H.

Summarizing these results, we have

Theorem 5.5. (a) ß (ßx) is the topology of uniform convergence on the w*-compact

subsets of Mz   (Ma+).

(b) ß0 is the topology of uniform convergence on the w*-compact subsets of Mt+

iff X is a T-space.

Proof, (a) Let y denote the topology of uniform convergence on the w*-compact

subsets of M+. By 5.2, y^ß.

For the converse, let Weß. We can suppose that W= V where V=((~)Qs3 Fig>

and iQ e CQ, |o^0, for by [30, p. 12], ß has a base of ß-closed neighborhoods.

Let H={<¡>+ : <f> e W0}. Then, for each Q, ■£//<= V$Q and hence \H^ W° = \JQeS Fç°s

so that H is ß-equicontinuous. But then W° is a subset of F—F where F<= M,+ is

the w*-dosure of H and is therefore w*-compact. From this it follows that

W= W00 e y.

The proof for ßx is entirely the same.

(b) This is simply a restatement of 5.3. Hence the proof.

These results are indicated by earlier work. The result in [4, Theorem 5] is closely

related to 5.5(a) because of 4.5, 5.1, 2.3 and 2.5.

As an immediate corollary we have

Theorem 5.6. ß=ßi iff Mt = Ma and in this case ß is the strong Mackey topology

of the duality (C, Mz). Under these conditions X must be realcompact.

That X must be realcompact follows from [21, 3.2] or our earlier observation in

§1. Moran [23] has pointed out that the converse of [21, 3.2] is not valid and goes
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on to study spaces for which Ma = Mt or Ma = Mz in his papers [24] and [25]. We

will make more detailed references to these in the sequel. In any case, 5.5 is another

partial answer to Buck's longstanding question of equality between the Mackey

and strict topologies. In case of the equality Ma = Mt we have

Theorem 5.7. If Ma = Mt, then ß = ßx is the strong Mackey topology of the dual

pair (C, Mt).

If A'is a topologically complete separable metric space it follows from [2, p. 10]

that Ma = Mt. The hypothesis of separability is closely related to the problem of

measure. It is also evident that Mt = Mz when Xis er-compact. Regarding tight sets

of measures and Prohorov's Theorem we have

Theorem 5.8. (a) ß = ß0 iff Mt = Mz and X is a T-space.

(b) ß — ßo = ßx iff Mt = Ma and X is a T-space.

(c) If X is a T-space and Mt=Ma then w*-compact subsets of Mt are tight.

Part (c), of course, follows from (b), 5.5 and 5.6 and is an improvement over

Varadarajan [39, Theorems 29 and 30, p. 205].

Since the equality of ß0 and ßx seems to be a rather strong topological require-

ment on X, we have the rather surprising directive from 5.8(b), that when ßo^ß,

then w*-compact sets can be tight only when topological restrictions on X are not

strong enough to obtain Mc = Mt. Similar thoughts follow from 5.8(a). Finally, we

point out that Varadarajan [39, p. 200] characterizes the w*-compact sets in Ma-

in the light of 5.7 it is relevant to point out

Theorem 5.9. ßx is finer than the topology of uniform convergence on the pseudo-

compact subsets of X.

Proof. LetFc A'be pseudocompact and let W={feC(X) : |/(x)|^l forallxeF}.

If Z e 3f, then P r\Z=9 since every continuous function on F is bounded. Hence

there is a £ e Cz such that £"= 1 on F and W^{f : ||/£|| â 1} e ßz. Hence Weßx and

the proof is complete.

Let us consider convergence in terms of subsets of X. LetFy — {<p e My+ : </>(l)=l},

where y represents t, r or a, be the probability measures in My and give Fy the

relative w*-topology a(Mr, C). As is well known, the mapping x -> 8X is a homeo-

morphism of X into Pt and the w*-closure of {8X : x e X} in the space M of all

positive linear functionals on C(X) is homeomorphic to ßX, while the realcom-

pactification vX of X is this same closure restricted to Ma. Our next theorem

characterizes ß and ßx convergence within the bounded sets Br, r>0, in this context

and extends [3, Theorem l(v)] to ß and ßx.

Theorem 5.9. // \\fa\\^r, then fa -> 0 ß (ßx) iff <fa,<f>>->0 uniformly for <f>

belonging to any compact subset of Pz (Pa).

For the proof we need the
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Lemma 5.10. If H is a w*-compact subset in Mt+, Mz , or M„ respectively and

r > 0, then there is a compact subset J of Pt, Pz or P„ respectively such that Brc\J

<=Brr\H.

Proof. Given H, let Hx={</> e H : \\<p\\ à l/r} = {<p e H : <j>(l)^\/r}. Evidently, 7F

is w*-compact. Let J={<pl\\<j>\\ : <j> e Hx}cP, where P = Pt, Pz or Pa as the case may

be. Since ||<¿|| = <p(\),J is compact in F. Let a = sup {||<¿|[ : 4>eH}.lïfeBr n (\ja)J°,

thenfor¿ e H\HX, \<¡>(f)\ á<¿(||/1)¿ L while for <j> eHx, 1 ̂  \atff)IM\\=a\¥S)\IU\
and hence \<¡>(f)\ ¿ 1. Thus/e Br n H°.

Proof of 5.9. Let y denote the topology of uniform convergence on the compact

subsets of Fy in the cases y=T ox a. For P=PZ we have y aß. If We ß and Br is

given, then by 5.5 there is a w*-compact F/"<= Mz+ such that H°<= W. Choosing J

according to the lemma, one has Br r\J°<= W. Hence yeß on Br. The proof for ßx

is exactly the same.

It is also easy to see

Theorem 5.11. ß0 is the topology of uniform convergence on the subsets of Pt

when X is a T-space.

A number of new results on the F-space question have been discovered recently:

[26], [16], [11] and [36]. Tops0e [36] has an especially interesting characterization

of w*-compactness versus tightness in Mt. The remaining authors have, apparently,

independently shown that a hemicompact espace is a F-space, as is any complete

metric space [16]. In general, Mosiman [26] has shown that the property of being a

F-space is preserved under countable products and intersections and is inherited on

closed subspaces. A union of open subspaces is shown to be a F-space and the

property is preserved under continuous maps whose inverse images of compact sets

are compact. Similar results are found in [16]. Wheeler [26] has studied those spaces

in which ß0 = ß = ßi centered around conditions under which A'is a F-space and Xis

strongly measure compact (Mt = Ma [25]). An example is given therein of a metric

space A'for which Mt = M„, yet Zis not a F-space. Fernique's example [10] of a

separable Hubert space with weak topology is a <r-compact non-F-space. Vara-

darajan [39] gives an example of a countable non-F-space. A much more complete

discussion can be found in [26, §4] and in [11].

6. Another view of strict topologies: Dini's Theorem. We have seen how Dini's

classical convergence theorem comes into play in establishing the convergence

theorems for the topologies ß0, ß and ßy in §5. In §4 we saw that these topologies

generalize the norm topology on C(X), X compact, in that the dual of C(X)ßo,

C(X)ß and C(X)Bl is the dual of C(X)¡¡ ít when X is compact. In this section we

show that ß and ßx are extensions of the supremum norm topology for compact X

to completely regular X in the sense of Dini's Theorem : If the net {fa} \ 0 on X,

then ||/a|| ->0 when Zis compact.
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Not surprisingly this matter involves the order structure on C(X) as well as the

locally convex linear structure of the norm and strict topologies. Let

C+ ={feC(X):f^0}.

Our principal reference is [32, pp. 203-230]. By 2.1, C+ is ß0, ß and ßj closed and

C(X) with any of these is an ordered topological vector space. But much more is

true.

In terms of [32], C+ is a normal cone for a topology y on C(X) iff y has a base

of neighborhoods at 0 of absolutely convex, absorbent sets W with the property

figeW and f-¿ h ¿ g implies he W.lf additionally y has a base of neighborhoods

W with the property |/| á \g\ and g e W implies fe W, then C(X)y is said to be

locally solid.

Theorem 6.1. Let ¿j represent any one of the topologies ß0, ß or ßx-

(a) C(X)( is locally solid.

(b) C+ is a normal cone for i; and the lattice operations f—>f + , f—> \f\,

(/> g) "**" max (/, g) are all ^-continuous.

(c) A ¿j-equicontinuous set A<=C(X)'t is contained in some set B — B where

B<=C(X){ + ={<f>e C(X){ : <¿S0} is ¿¡-equicontinuous.

(d) f is the topology of uniform convergence on the ¿J-equicontinuous subsets of

C(X)'K + .

Proof, (a) By [32, p. 234], (a) is equivalent to (b).

(b) For ¿j = ß0, we have a base of neighborhoods of the type W(K¡, a¡) and hence

(a) holds forß0 and hence (b) holds. For ¿j=ß or ßx, C+ is first of all a normal cone

because ¿j has a base of neighborhoods of the form 77° where Hc^C(X)'i_+ is w*-

compact by 5.5. If fige H° and f£h£g, then \<p(h)\ ¿ max (| </>(/)], \<t>(h)\)^\ for

<¡> e H and hence h e H°.

According to [32, p. 234], the continuity of the map/-^ |/| implies the continuity

of the remaining mappings in (b). Let We ß and let \W\ ={/: |/| e W}. We claim

11F| eß. For this it suffices to show that 1W\ is absolutely convex, absorbent and

\W\ eßQ for each Q e J. If f, g e \W\ and |«| + |*|S1, then 0£\af+bg\¿\a\ \f\

+ \b\ \g\eW. We can choose IF with the property O^h^ke IF implies heW.

Since 0 g IF and \af+bg\ e W then af+bg e W and hence | IF| is absolutely con-

vex. Clearly |IF| is absorbent.

Let Qel. Since WeßQ there isa £ e CQ, £ä0 such that V={f: ||/£|| ^ l}c: W.

Now/e F implies |/| e V<=W. Hence V<=\W\ and thus W e ßQ.

The proof for £ = ßi is exactly the same.

(c) and (d). These follow from (b) and [32, p. 219].

Incidentally the relationship of (a) to (c) is not trivial, being essentially founded

on a category type argument used for example in the proof in [32, p. 66].

From this point on we deal solely with ß and ßx. It follows easily from 5.5 and

the techniques used for 5.2 that a Dini type theorem holds for these topologies.
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Theorem 6.2. (a) If fa e C(X) and fa \ 0, thenfa i> 0.

(b) Iffn e C(X) andfn \ 0, thenfn il» 0.

Conversely,

Theorem 6.3. ßx is the finest locally convex topology y on C(X) such thatfn\ 0

implies fn 1> 0.

Proof. Let <?/ = {A<=C(X) : A is absolutely convex, absorbent and, for all

sequences/n\ 0, one has/, e A eventually}. It follows from [19, p. 10] that °U is

a base at 0 for a locally convex topology y on C(X).

It readily follows from the definitions that C(X)\ = Ma. By 4.5, ySsßi and, by

6.2(b), ßi^y. Hence the proof.

Hence ßx generalizes Dini's Theorem for sequences in the best possible way.

For nets we must turn to ß. It is clear that if ß is Mackey, for example, if Ma = Mz,

then the proof of 6.3 can be repeated for ß, and ß is the finest locally convex topology

on C(X) generalizing Dini's Theorem for nets. More generally we have

Theorem 6.4. Let °ll be the collection of all absolutely convex sets W^C(X) such

that (a) fúh-¿g, f, g e W imply he W, and (h) if'/„ \ 0, then faeW eventually.

Then °U is a base at Ofor a locally convex topology y for which C + is a normal cone.

Moreover, y = ß.

Proof. Again by [19, p. 10], $/ does indeed define a locally convex topology on

C(X) since the sets in ÚU are absorbent by (b). From 6.1 and 6.2, ßuy. To obtain

ygß we first note that (a) makes C+ a normal cone for y. Hence by [21, p. 219], y

is the topology of uniform convergence on the y-equicontinuous subsets of C(X)\+.

But, as is apparent, C(X)!l = Ml and if F<=Mt+ is y-equicontinuous, then the w*-

closure H of K is u>*-compact [19, p. 61], H^MZ+ and hence K°=>H°eß by 5.2.

Thus, y^ß.

Theorems 6.3 and 6.4 allow us to relate our work to the recent work of Fremlin,

Garling and Haydon [11], and in turn, to use their work to improve our 6.4. These

authors introduce topologies Tz and F„ on C(X) which yield Mz and M„ as re-

spective dual spaces. The topology Tc is shown to have as base at 0 all absolutely

convex sets U such that/n\ 0 implies that/, 6 U eventually. Hence Ta=ßx by

6.3. The topology Tz is shown to be (1) locally solid [11, Proposition 3] and (2) to

have as base at 0 all absolutely convex {/such that/a \ 0 implies/, e {/eventually.

Hence from 6.4, ß = Tz. But (2) means that Tz (and hence ß) is the finest locally

convex topology extending Dini's Theorem to decreasing nets of functions. Hence,

in the sense of Dini's Theorem, ß is the exact analogue of ßx.

1. Completeness. Let us call X a kf space if bounded functions / continuous

on each compact subset K of X, must be continuous on X. Clearly a fc-space, that

is, one in which a set C is closed iff C n K is closed for all compact F, is a k, space ;

among /c-spaces are found the locally compact and first countable spaces [18,

p. 231].
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The completeness of C(X)ßo is fairly straightforward.

Theorem 7.1. C(X)ßo is complete iff X is a k¡ space.

Proof. For the ß0-Cauchy net {/,} in C(X), letf(x) = \im fa(x) for each xe X.

Supposing that |/(x„)| a«2, we see that H={(\¡rí)oXn : n= 1, 2,...} is ß0-equi-

continuous (by 5.1) and hence there is an a0 such that |</„— fa-, <f>}\ á 1 for all a,

a'^a0 and <f> e H. It follows that n-¿ 1 + \fao(xn)\ln, a contradiction. Hence / is

bounded.

To see that/is continuous, we note that given a compact F in X, the net {/,} is

uniformly Cauchy on F, and hence on X.

Finally/, £^./, for given W(kt, a¡) e ß0 there is an a0 such that a, a'äa0 implies

/«-/«' £ »%, «.)• Since /e %.f and 0%, a() is » closed, ./-/e PFfo, a,) for all

ctïïa0.

Conversely, by the Tietze Extension Theorem there is for each compact set K

in X a function fK agreeing with/on F and ||/x|| ^ ||/||. The net {fK} under the

natural ordering on K is ß0-Cauchy. Hence, fe C(X).

I wish to thank Robert F. Wheeler for pointing out the converse of 7.1 and to

note that this result was discovered independently in [16] where it is also shown that

C(X)ßo is complete iff it is quasi-complete. This latter result is also true for C(X)e

and C(X)Sl due to a result of Raikov [29].

Theorem 7.2. C(X)( is complete iffC(X)( is quasi-complete, where ¿j=ß0, ß or ßx-

Proof. This follows immediately from 4.1 and Raikov [29].

Further results on the completeness of C(X)ß or C(X)ßl have been difficult to

obtain.

Theorem 7.3. If X is a kf space, then C(X)ß and C(X)01 are sequentially complete.

Proof. The pointwise limit/of the ß- (ßi-)Cauchy sequence {/,} is bounded and

continuous as above. By [19, p. 10] ß (ßx) has a base of ß-closed (ßi-closed) ab-

solutely convex sets W, which are in turn weakly closed (i.e., a(C, Mz), a(C, Ma)

closed) by [19, p. 34]. If/„-/m e IF for m,n^N it follows from 1.3, the dominated

convergence theorem and 4.4, that/,— fe IF for n^N. Hence the proof.

From [19, p. 107] a locally convex space complete under some locally convex

topology is complete under any finer topology of the same dual pair. Consequently,

Theorem 7.4. If X is a krspace and Mt = Mz (Mt = Ma), then C(X)e (C(X)ßl) is

complete.

Both 7.2 and 7.3 appear independently in [11] in terms of Tz=ß, Ta = ßx. More-

over, using the result of Varadarajan [39, Theorem 13] that Mz+ is metrizable for

metric X, it is shown in [11, Theorem 7] that C(X)ß is complete for such an X, and

furthermore that the completeness of C(X)ßl is equivalent to any one of (a) Mz = Ma,

(b) ß = ßi, or, most interestingly, (c) A'has no discrete set of measurable cardinality.
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It is also conjectured in [11] that C(X)ß is complete for any Âr-space X. Finally,

Wheeler [26] in his study of ß-simple spaces (those X for which ß0 = ß = ßx) gives

an example of a ß-simple space for which C(X)„ is neither complete nor sequentially

complete.

8. Sequential continuity on C(X). In [34] consideration was given to the

ß-sequentially continuous linear functionals on C(X). In this section we investigate

this matter further and identify such linear functionals.

Let y represent any one of the topologies ß0, ß or ß3 and let <%y = {W<= C(X) : W

is absolutely convex and if/, 1> 0 then fne W eventually}. By [30, p. 10], <?¿y is a

base for a locally convex topology on C(X). For y = ß0, ß or ßx we denote these

topologies by ß^, ß+ and ßx ■ This follows the notation of Webb [40] who along

with Dudley [9] has considered topologies so defined more generally.

Theorem 8.1. (a) ßx=ßx+.

(b)ßuß\eßi.
(C)  ßoaß+^ft.

Proof, (a) Clearly ßx^ßt and hence Ma = C(X)'ßl<=C(X)'ß + . On the other hand,

if <f> e C(X)ßi+ and /„ \ 0, then /„ -> 0 in the topology ßx and hence in ßx . Con-

sequently, </>(/,) -*■ 0 and hence <f> e Ma.

Vy4.5,ßx=ßt.

(b) CIearly,/3+á/Sí=j81.

(c) Agßin,ßS^ßx+=ßx.

Theorem 8.2. Ma = C(X)'ßS = C(X)'ß + = C(X)'8i.

Proof. We have C(X)'e¿<=M„ from 8.1. If <p e Ma, then <t>(f) = }xfdp. where p.

is a regular countably additive measure on Baire sets. If/, % 0, then, by 4.7, {/,}

is bounded and hence, by the dominated convergence theorem and 2.1, <j>(fn) -*■ 0.

Hence Ma = C(X)'ß*. The proof for the remaining case is the same.

Corollary 8.3. (a) ß=ß+ iffß=ß,.

(h) If X is a T-space, then ß0 = ßo iffßo = ßi-

(c) 7/ß0+ =ß, then ß0+ =ßx.

Corollary 8.4. If X is a T-space and Mt = Ma, then ß0 = ßo =ß = ß+ =ßi and

ß0-continuity is equivalent to ßx-sequential continuity for linear mappings. If Mz = Ma,

then ß=ß+ =ßx and the same conclusion holds for ß.

We do not have necessary and sufficient conditions in order that ß+=ß±.

Wheeler [46] has shown that ß0+ =ß+ ^ß for k¡ spaces and that ßo =ß+ =ßi for

F-spaces X (see §9). Regarding 8.3(c) note that, for X=[\, Q), ßj" =ßx is the sup

norm topology, while, by 4.8, ß<ßi since X is not compact.

Webb [40] calls a locally convex space F sequentially barrelled if any w*-null

sequence in F' is equicontinuous. Recall that ß and ßx are never barrelled in the
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interesting cases. Moran [25] calls the space X metacompact if every open cover

has an open point finite refinement: we have

Theorem 8.5. (a) C(X)ßl is sequentially barrelled.

(b) The same is true of C(X)ß if X is metacompact and normal.

Proof, (a) That C(X)ßl is sequentially barrelled follows from 4.5.

(b) Suppose <pn e Mz and <f>n ^ 0. By 1.3 and 4.3, (f>n(f) = ¡xfdp.n. According to

[25, 6.4], if {ZJ is a decreasing net of zero sets in X, then |/¿„|(Za) \ 0 uniformly

in n.

Let H={<j)n : n=\,2,...}. According to 3.1 it suffices to show that given

Qe 1 and r>0 there is a V eßQ such that V n Fr<=F/°. Let 3¡ be as preceding 5.2,

F/c = {.t : L-'l/4r«<£(*)} where ¿z = sup {\\<pn\\ : n=\, 2,...} and Zç=X\Ft. Then

Zc\ 9 and hence there is a £0 such that £^£0 implies |/x„|(Z:)< l/8r for all n.

Hence

f (1 - W d\p.n\ Ú f     (1 - Co) d\p.n\ + f    (1 - £0) d\p.n\ è ir.

If g e Br n {/ : ||/£0|| g \/2a}, then we easily obtain g e H°. Hence the proof.

Unfortunately [25, 6.4] requires the additional hypothesis of normality on X.

The Dieudonné plank and measures f¿n = 8(„+i,n) —S(n>£J) provide a counterexample.

We also note that if C(X)ß is sequentially barrelled, then X must be sequentially

closed in ßX.

Turning to ß0, we have

Theorem 8.6. If X is locally compact, metacompact and normal, or metrically

topologically complete, then C(X)ßo is sequentially barrelled.

Proof. In the first case the result follows from 2.3 and 8.5(b). In the second we

observe that a sequence of tight measures is supported on a complete separable

subspace F, and the Prohorov Theorem [2] then implies that the sequence is a

tight set of measures on Fand hence on Jfand, hence, by 5.1(a), ß0-equicontinuous.

The w*-sequentially barrelled property is closely related to H>*-completeness of

the dual space. From 8.1(a), 8.5 and [25, 6.3], one has Aleksandrov's well-known

result (8.7(a)).

Theorem 8.7. (a) M„ is w*-sequentially complete.

(b) If X is metacompact and normal, then Mz is w*'-sequentially complete.

An alternate proof of the latter part of 8.6 can be drawn from [26]. As is well

known X is G0 in ßA'when A'is a complete metric space. By [21, p. 148], Mt = Mz.

From [26, Corollary 4.4], A'is a F-space. By 5.8(a), ß0 = ß and the conclusion follows

from 8.5(b).

9. Integral representation. In revising this section I want to thank Robert F.

Wheeler for a number of conversations and helpful observations. The principal
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aim of this paper was to obtain a theory of integral representation of linear func-

tionals on C(X) within the context of locally convex spaces. In particular, one is

interested in the finest locally converse topology for which a given representation

holds. In our viewpoint, a secondary goal should be a theory which allows the

statement of results which unify the theory for both locally compact and for

metrizable spaces. Our first result does hold for o--compact locally compact spaces

or complete separable metric spaces.

Theorem 9.1. If X is either a-compact locally compact or a complete separable

metric space, then

(a) ß0 = ß=ß1.

(b) C(X)ß is a complete locally convex Hausdorff topological vector space.

(c) cf> e C(X)'ß iff there is a unique compact regular Borel measure p. on X such that

Kñ^Sxfdp.
(d) ß is the finest locally convex topology of the dual pair (C, Mt) = (C, Mz)

= (C, Ma).

These assertions follow immediately from the remark preceding 5.7, along with

1.3, 2.1, 4.3, 5.4, 4.4, 4.7, and 7.1. Recalling that continuity for linear maps in any

one of these topologies is determined on the bounded sets Br, r>0, we note from

[34] (or the proof of 2.6) that ß is given by a norm on the sets Br when X is <x-

compact, locally compact. We do not know if this remains true for separable

metric spaces but do note that this condition (for ß0) implies that X must be the

closure of a countable union of compacta, and, conversely, if ^has this property,

then there is a norm on C(X) yielding a topology on C(X) coarser than ß0 on

each Br.

The result of Conway [6] combined with the recent conclusions in [11] allow an

extension of 9.1 which does not involve any dependence on our results for ßx.

Theorem 9.2. If X is a locally compact paracompact space or a complete metric

space, then 9.1 remains true with the omission of the topology ßx and the dual pair

(C, Ma).

Proof. By 5.4, Xis a F-space and as noted in the proof of 8.6, Mt=Mz. Hence

by 5.8(a), ß = ß0. The analogue of (d) follows, in the respective cases, from [6] and

[11, Theorem 4]; (b) follows from 7.1; and (c) from 1.3 and 4.3.

All further results we have been able to obtain linking integral representation

with locally convex topologies y for which C(X)y is a strong Mackey space (or,

somewhat weaker, for which 9.1(d) holds) ultimately involve conditions which

imply that Ma = Mz, or equivalently, ß = ßx (and then make use of 5.7). Such spaces

X are called measure compact and have been studied most notably by Moran

([23], [24], [25]) and more recently by Mosiman and Wheeler [26]. Varadarajan

[39, p. 175] has some earlier results, notably that a Lindelöf space is measure com-

pact. Some very interesting and important related results are due to Granirer [14].
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The outstanding point of all these studies is that the equality Mz = Ma involves

both topological and cardinality assumptions on X. Our aim in the remainder of

this section is to incorporate the main conclusion of Moran [25] within our results,

and to do the same with a prominent theorem due to Katetov for which we provide

an alternate proof based on the work of Granirer [14]. We will otherwise only state

what can be readily drawn from these works and then conjecture further.

We first summarize the matter of unique integral representation and the proper-

ties of the representing measure; the theorem is but a summary of the work in [20]

and [21].

Theorem 9.3. (a) <f> is a positive ß-continuous linear functional on C(X) iff there

is a nonnegative closed regular Borel measure p. on X such that

(i)<p(f) = $xfdp.forallfeC(X),

(ii) p-(Ga) -> 0 for every net of closed sets Ga decreasing to the null set,

(iii) p.(0) = sup {p-(U) : U^O, U a cozero set} for any open set O. Moreover, p. is

unique.

(b) If X is metacompact, then the measure p. above has a closed Lindelöf subspace

as a support, and p-(0) = sup {p-(Z) : Z<=0} for any open set O.

(c) If X is normal and p. and y are closed regular Borel measures on X such that

jxfdp- = }xfdvfor allfe C(X), then p. = v.

Proof, (a) This relies essentially on Kirk [20]. From 4.3, 1.2 and 1.3 we obtain

a measure p. e Mz satisfying (i). The measure p. is then a net additive content

[20, p. 333] on X; (ii) and (iii) then follow from [20, 1.9, 1.13 and 1.14]. The unique-

ness of p. then follows from [20, 1.15].

(b) This is due to Moran [25, 5.1, 5.3].

(c) If A is closed choose B^X\A, B closed such that \p.\((X\A)\B)<EJ2 and

\v\((X\A)\B) < e/2. Using normality, \v(A) — p.(A)\ < e and it follows that p. = v on

all Borel sets.

We turn now to the matter of measure compactness and the equality ß = r(C, Mz)

where t(C, Mz) is the strong Mackey topology of the duality (C, Mz). The cardinal

of a set D is said to be of measure zero if any measure defined on 2D has a countable

subset of D for its support. Equivalently, p. e Ma+(D) implies p. e Mt+(D) when D

has the discrete topology. If d is a continuous pseudo-metric (CPM) on X and

Dc X and there is an a such that, for any x, y e D, x# j> one has d(x, y) ^ a, then

D is called ¿/-discrete. If every ¿/-discrete subset of X, for any CPM d, has cardinal

of measure zero, then Xis called a F-space. Granirer [14] has accomplished some

exquisite characterizations of F-spaces, and points out that it is consistent with

Zermelo-Fraenkel set theory to assume that every X is a F-space. The discrete

reals form a F-space if the continuum hypothesis holds. Granirer [14, p. 8] also

notes that Gödel's constructibility axiom along with Zermelo-Fraenkel set theory

implies that every cardinal is of measure 0. Finally, Granirer [14] lets DM£
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= {p.e M¿ : there is a F-subset S of X such that p.(E) = p.(X) for every Baire set

E=>S}, and DMa = DM¿ -DMa+ ; X is a F-space iff Ma=DMa.

The next theorem is due to Katetov. The proof is our own and avoids a key

difficulty of his proof by an appeal to the work of Granirer.

Theorem 9.4. A paracompact D-space is measure compact, whence ß = T(C, Mz).

Proof. Let v e Mf, v^O. We can show that Ma = Mz by showing that the sup-

port of v is nonempty [25, p. 509].

If support v is empty, then for each xe X there is a cozero set Ux containing x

such that p.(Ux) = 0. LetaU = {Ux : xe X} and let "V be a locally finite refinement of

fy. Let sé be a partition of unity, A=V¿Ve-r-fv : f=f finite} subordinate to "V

[18, p. 171].
The collection of functions in sé is uniformly bounded and equicontinuous in

C(X) since 'f is locally finite. There is a net va e Mt+ of measures of the form

2f=i axox, such that va -> v, a(Ma, C). Since v^O, we can suppose that ||i>a|| ̂ 8>0

for all a and some S. According to Granirer [14, Theorem 2] there is an c£0 such that

l<2vW*"»¿-v>|<8/"2 for all finite r'^T. But dv*r-fv, "> = 0, In^/vS 1

on Xand hence |<1, vao}\ = \\vtta\\ <8/2, a contradiction.

Since a discrete set D has cardinal of measure zero iff Mz(D) = Ma(D), it follows

readily from Varadarajan [39, p. 177] that a paracompact, measure compact

space must be a F-space.

The topological restrictions of 9.4 can be decreased if the cardinality restrictions

are increased, as Moran [25, 4.3] has shown. While a paracompact space is normal

and metacompact, the converse is false due to an example of Michael discussed in

[25, §7].

Theorem 9.5. If X is normal, metacompact and every closed discrete subset of X

has semireducible cardinal [25, p. 510], then X is measure compact and ß=T(C, Mz).

Regarding the equality ß=T(C, Mz), our enthusiasm for the above results is

tempered by the fact that ß = t(C, Mz) for the discrete reals (9.2) and that the above

cardinality assumptions cannot be shown to hold therein without the continuum

hypothesis. If one seeks only topological conditions for the equality ß = T(C, Mz),

one then encounters the example of Moran [25, §7] of a nonnormal measure com-

pact space, dependent on the continuum hypothesis. Moran [25, §7] also takes

note of a measure compact space which is not metacompact. While we conjecture

that metacompactness and normality imply that ß = T(C, Mz), this topological

condition cannot be necessary. Our overall conjecture is that ß = r(C, Mz) iff

Mz = DMa. We have been able to show that Mz = DMa for paracompact X, and

note then that Mz = DMa for the discrete reals. Most recently, Wheeler [41] has

attempted this kind of attack using instead the space of measures of separable

support of Dudley.
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