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KNOTS WHOSE BRANCHED CYCLIC COVERINGS

HAVE PERIODIC HOMOLOGY

BY

C. McA. GORDONS)

Abstract.    Let Mk be the A-fold branched cyclic covering of a (tame) knot of S1 in

S3. Our main result is that the following statements are equivalent:

(1) Hx(Mk) is periodic with period n, i.e. ■//i(Mlc)^//1(A/t + „) for all k,

(2) HiiM^mHdM»^) for all k,
(3) the first Alexander invariant of the knot, A1(í)=A1(í)/A2(/), divides /" —1.

1. Introduction. The complement C of the trefoil knot is a fibre bundle over

S1 with fibre Fa punctured torus, and group Z6 ([27], [20], [31]). So C^FxI/h

(i.e. Fx / with Fx 0 and Fx 1 identified via the homeomorphism (x, 0) (-=► (h(x), 1)),

whereA: F—»- Fis a homeomorphism of period 6. If C^ is the infinite cyclic covering,

and Ck the A:-fold cyclic covering, of C, then C=Fx R, and Ck~Fx I/hk. In par-

ticular, Ck^Ck + 6. Hence if Mk is the corresponding Wold branched cyclic cover-

ing, then, since the homology of Mk depends only on the homology of Ck, we see

that Hx(Mk) is periodic in k, with period 6. (See also [4], [5], [21].)

For any knot, however, Hx(Mk) is completely determined by the Alexander

matrix, and so it is clear that a knot need not be a fibred knot in order that Hx(Mk)

be periodic. For example, there exist many nontrivial knots with trivial Alexander

matrix [30], and since a fibred knot with Alexander polynomial A(r) and genus g

must satisfy deg A(r) = 2g [19], none of them are fibred. But they certainly exhibit

periodicity, since Hx(Mk) = 0 for all k. We are therefore led to the problem of

finding necessary and sufficient conditions on the Alexander matrix for Hx(Mk)

to be periodic. The main aim of the present paper is to solve this problem.

Main Theorem. Let K be a knot with first Alexander invariant Ax(?) (i.e. Xx(t)

=A1(r)/A2(/), where A¡(t) is the ith Alexander polynomial of A). Then the following

statements are equivalent :

(1) Hx(Mk)^Hx(Mk+n)for all k,

(2) Hx(Mk)?Hx(M(k,n))for all k,

(3) K(t)\(r-\).

It is perhaps at first sight somewhat surprising that the existence of periodicity

should depend only on the first Alexander invariant, since even the complete set
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of Alexander invariants (or equivalently, the complete set of Alexander poly-

nomials) does not in general determine Hx(Mk). (The stevedore's knot (6X), and the

knot 946, for example, have the same polynomial invariants, but in the first case,

Hi(M2)~Z9, whereas in the second, //1(M2) = Z3© Z3.) The following inter-

pretation, however, renders the result more plausible. We first show that a necessary

condition for periodicity is that A have an Alexander matrix of the form M—tl,

where M is unimodular. This means that the infinite cyclic covering C behaves

homologically as if the knot were fibred. Condition (3) is then equivalent to the

statement Mn = I, which is just the homological analogue of the condition that the

fibre homeomorphism be periodic with period n.

We also prove that the periods which can occur are precisely those integers

which are not prime powers, and we show how to find all possible periods for

knots of a given genus.

Finally, one of our lemmas enables us to prove in passing that a theorem of Fox

relating the torsion numbers of Hx(Mrk) to those of Hx(Mk) for knots of genus 1

[5] actually holds for all knots.

Theorems, lemmas, etc. will be referred to by the number of the section in which

they appear.

2. Definitions and background material. This section consists largely of a sum-

mary of the relevant standard material. General references for §§2.1-2.7 are [3],

[6], [16], and [25].

2.1. Let K^S3 be an oriented polyhedral knot, TV a regular neighborhood of A,

and write C=S3 — int N. The infinite cyclic covering of C, i.e. the covering asso-

ciated with the kernel of the abelianization homomorphism irx(C) —> Hx(C)^Z,

will be denoted by C Identifying JZ, the integral group ring of Z, with A, the ring

of Laurent polynomials in a single variable t with integral coefficients, Hx(C)

becomes a finitely-generated A-module. Similarly, HX(C; Q) is a finitely-generated

T-module, where F is the ring of Laurent polynomials in t with rational coefficients.

2.2. Let A be a ring and A an A-module. Then there is an exact sequence of

A-modules

8 r¡
F2 —>Fx^>A —► 0,

where Fx, F2 are free A-modules with bases {xj}, {rt}, say. A matrix M = (mu),

mtj e R, is a presentation matrix for A as an A-module if, for some such exact

sequence, M represents 8 with respect to the bases {x¡}, {rt}, i.e.

S('í) = 2 mtjXj   f°r eacn i-
i

In the special case R=J, the ring of integers, we say M presents A as an abelian

group.

If A is a finitely-generated A-module, and A is Noetherian, then A has a finite

presentation matrix.
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Two matrices M, M' with entries in A are equivalent (over A), written M ~E M',

if and only if they present isomorphic A-modules. This equivalence can be charac-

terised in terms of the elementary matrix operations.

2.3. Let M be a (finite) presentation matrix for A. By adjoining rows of zeros if

necessary, we may suppose that M is mxn with m^n. Then the ¡"th elementary

ideal of A, E{(A), í¡g 1, is the ideal in A generated by the (n — i+ l)th order minors

of M, with the convention that E¡(A) = R if i>n.

2.4. If A is a principal ideal domain, then E¡(A) is a principal ideal, (&¡(A)) say,

where &¡(A) is uniquely determined up to association (multiplication by a unit of A).

Moreover, by the structure theorem for finitely-generated modules over a

principal ideal domain, A is isomorphic to a direct sum

*/(Ai)0A/(A2)0.--©A/(An),

where At+1[At, 1 ¿i^n. It is then clear that

Ei(A) = (Ai(A)) = (\i---\n),       lúi ún,

= 0), i > n.

Again A¡ = A¡(^) is uniquely determined up to association; any member of the

associate class will be called the ith invariant factor of A. (We define \¡(A)=l,

i>n.)

2.5. Returning to the knot situation, a presentation matrix for HX(C) as a

A-module will be called an Alexander matrix for the knot A. Now A is not a

principal ideal domain, and so the elementary ideals E¡ of HX(C) are not necessarily

principal. However, A is a unique factorization domain, and hence, for each i,

there is a unique minimal principal ideal containing F¡, namely the ideal generated

by the h.c.f. of the (n-i+l)th order minors of any Alexander matrix. This h.c.f.

is determined only up to association (i.e. multiplication by ±tr, r e Z), but there

is a unique representative of the associate class with no negative powers of t, and

with positive constant term. This representative, A¡(r), is called the ith Alexander

polynomial of the knot A. We write A1(/) = A(/), and call it simply the Alexander

polynomial of A.

2.6. Now Hx(C; Q) is a finitely-generated T-module, and F is a principal ideal

domain, so the discussion in §2.4 applies. We can therefore define A¡(r), the ith

Alexander invariant of A, to be the unique rth invariant factor of Hx(C; Q) with

no negative powers of t, positive constant term, and whose coefficients are integers

with h.c.f. 1.

2.7. We thus regard A¡(r) and A¡(r) as elements of the polynomial ring J[t]. Note

also that each A¡(?) and each A¡(r) is primitive, i.e. the h.c.f. of its coefficients is 1.

For A¡(í), this follows by definition, and for A¡(/), it is a consequence of the well-

known fact that A¡(1)= ± 1.
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If M(t) presents Hy(C) as a A-module, then M(t) (regarding the entries now as

elements of F) also presents HX(C; Q) as a L-module (see [25]). It follows that if

ET is the /th elementary ideal of Hx(C; Q), then E[ = (Ai(f)). But

Er = (\(t)---\n{t)),       lúi ún,

= (O, i > n,

and so A¡(t) and A¡(r). • • An(r) are associate in F. It is clear that they must therefore

be associate in Q[t], and hence, since each is primitive, associate in J[t]. Since each

has positive constant term, we finally have

A,(r) = U0--K(t),       \úiún,

= 1, i > n.

Since A¡(1)= + 1, we also see that A¡(1)= + 1.

2.8. If A(0)=1, then ([23], [1]) Hx(C)%®f=1 Z, where « = deg A(t). The auto-

morphism t: Hx(C) -» Hx(C) is then described by an nxn unimodular integral

matrix M, and M—tlis an Alexander matrix for A. (If n = 0, i.e. if A(/)=l, then

A has trivial Alexander matrix (1).)

2.9. Recall the notation of §2.1, and let Ck, k ^ 1, be the covering of C associated

with the kernel of the composition

ttx(C)->Hx(C) s Z^Zk.

Then Ck is an oriented manifold with boundary 8Ck~Sx x S1, and the k-fold

branched cyclic covering of K, Mk, is defined to be the closed, oriented manifold

obtained by sewing back the regular neighborhood N via the homeomorphism

8N-> 8Ck which identifies each meridian loop in 8N=8C with the lift in 8Ck of

its kth power. (See [4], [24], [31].)

2.10. Lemma. For any knot A, and for any integers k,r (3:1), there exists an

epimorphism </> : Hx(Mrk) -> Hy(Mk).

The referee has pointed out that this is an immediate consequence of the fact

that the projection Mrk -> Mk induces an epimorphism nx(MTk) -*■ Trx(Mk), which

in turn can be proved by an argument similar to that given in [9, p. 331]. At any

rate, Lemma 2.10 seems to be well known, and is usually attributed to R. H. Fox.

2.11. Although the Alexander invariants do not completely determine Hx(Mk),

they do give some information. (See [10], [28], [7], [18], but beware of errors in

the last two references.) We denote the first Betti number of Mk by ßx(Mk), and

adopt the convention that the order of an infinite group is 0.

Proposition (Goeritz, Fox). Let K be a knot with Alexander polynomial A(t)

and ith Alexander invariant \¡(t). Then

(i) order Hx(Mk)= |n> = i A(p')l> where P is a primitive kth root of unity,

(ii) ßx(Mk) = 2¡ P-i(k), where p-^k) is the number of distinct kth roots of unity

which are roots of A¡(í).
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2.12. Suppose that A has an Alexander matrix M(t) = M—tI. Then if Tk is the

kxk matrix

¡0    1    0 ■   •   • 0\

0   0    1  •   •   ■ 0

...       .1

\l    0   0  ■   ■   ■ 0/

M(Tk) presents Hx(Mk) as an abelian group ([10], [18], [4], [7], [29]) and, by a

sequence of elementary matrix operations entirely analogous to those in [24] (see

also [29]), it can be shown that M(Tk) ~' Mk — I, i.e. M" — /presents H,(Mk) as

an abelian group.

This can also be seen as follows. From the exact sequence

Hx(C) *—^ Hx(C)-> Hx(Ck)-> Z-► 0

(see [25]), and the fact that Hx(Ck)^Hx(Mk)® Z ([2], [7]), we get the exact

sequence

Hx(C) ^—> Hx(C)-► Hx(Mk)-► 0.

Now if M = (mij) is nxn, then Hx(C) is generated (as a A-module) by {xx,..., xn},

say, with relations

tx¡ — 2 rrtijXj,        1 £ f á «•
i

It is then clear that, as an abelian group, Hx(C) is freely generated by {xlt ■. ■, xn}.

Since tk— 1: HX(C)-+ HX(C) is represented with respect to this basis by Mk — I,

it follows that Mk — /presents Hx(Mk) as an abelian group.

2.13. Again suppose that A has an Alexander matrix of the form M—tl, and let

\x(t) be its first Alexander invariant. Then it is well known that A^r) is also the

minimum polynomial of M (see, for example, [14, p. 397] or [17, p. 20]). Essential

use will be made of this fact in the proof of the Main Theorem.

2.14. Let <t>m(t) be the mth cyclotomic polynomial, i.e. the monic polynomial

whose roots are the primitive wth roots of 1. Then, in fact, <f>m(t) ej[t], and, since

it is monic, it is primitive. It is also irreducible, and hence if/(/) eJ[t], and some

root of f(t) is a primitive wth root of 1, it follows that <t>m(t)\f(t) in J[t]. (See

[14, p. 206].) The degree of </>m(t) is </>(wt), the number of integers k such that

ISkfSm and (k, m)=l. It is also easy to show (using, for example, the identities

in [14, pp. 206-207]) that <px(l) = 0, <pA1)=P if> is Prime and r>0, and ¿n(l)= 1 if

n has at least two distinct prime factors.
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Now if A(/) is an Alexander invariant of some knot, then A(l)= ± 1 (see §2.7),

and so the above remarks show that A(/) can be written uniquely as

(2.14.1) A(0 = 0(0 f] (K0))\
i = l

where >p(t) eJ[t] and no root of </<(/) is a root of unity, each m¡ has at least two

distinct prime factors, the m^s are all distinct, and cr¡>0.

We shall require this later, but for the moment let us pause to note the following

elementary consequences.

Theorem. For any knot A, the first Betti number of Mk satisfies

(0 ßx(Mk) = 0 (mod 2) for all k,

(ii) ßx(Mk) = 0 (mod 4) if k is odd,

(iii) ßx(Mk) = 0 ifk=pr, p prime.

Proof. Let A(0 be some Alexander invariant of A, and let p.(k) he the number of

distinct kth roots of unity which are roots of A(0- Then, after Proposition 2.11 (ii),

it will be sufficient to prove the statements corresponding to (i), (ii) and (iii) for p.(k).

Now all the roots of a cyclotomic polynomial are distinct, and no two distinct

cyclotomic polynomials have a common root. Hence (see-(2.14.1)) p-(k) = J_ ̂ (w¡),

the sum taken over those i such that mt\k. If k=pr, p prime, the only divisors of A:

are ps, O^s^r, and so (iii) follows immediately.

Also, since j> is multiplicative (in the number theoretic sense that if (nx, n2)=l

then <p(nxn2) = <j>(nx)<f>(n2)), it is easy to show that if the prime factors of a typical

m¡ are px,.. .,pt, then YVi = i (Pj-\)\'f>(mi)- Since no mt is a power of 2, it follows

that 4>(md is always even, and so we get (i). Finally, if k is odd, each m¡ which

divides k must be odd. Such an m¡ then has at least two distinct odd prime factors,

and so (p(m¡) = 0 (mod 4). This proves (ii).

Remark. Comparison of (i) and (ii) is interesting in connection with a theorem

of Plans [21] which states that if k is odd, Hx(Mk) is always a direct double. (See

also [11].)

Finally, let us note that since {a""1: a is a primitive wth root of unity} = {a: a is a

primitive mth root of unity}, <f>m(t)= ±tMrn)<pm(t ~1). But if m>l, <¿m(l)^0, and so

we must have ^m(0 = /*<m)W1)-

3. An algebraic lemma and a theorem of Fox.

3.1. Lemma. Let R be a principal ideal domain, and suppose A, B are finitely-

generated R-modules such that there exists an epimorphism <f>: A -*■ B.

Then XT(B)\Xr(A) for all r.

Proof. Suppose \r(A)=/=l, l5=rg«, and Xr(A)=l, r>n. Then it is well known

that n = m(A), the minimal number of generators of A. Let us also write, for x e A,

xA = {xa: a e A}. Then clearly Ár(xA) = Ár(A)¡C-.r(A), x), where (\(A), x) is the h.c.f.

of K(A) and x. Therefore, m(xA) = n - the number of Ar(^l), 1 ú r Ú n, which divide x.
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Now the existence of an epimorphism <f>: A-> B implies that m(B)^m(A), and

hence, m(xB) = n — the number of Xr(B), 1 ¿rg«, which divide x.

But the existence of <j> also implies more generally that m(xB)Sm(xA), for all

x e A. It follows that, for all x e R,

(3.1.1) The number of Ar(ß), l^rá«, which divide .vèthe number of Xr(A),

lúr^n, which divide x.

Let XS+1(A) be the first Xr(A)^0. Then we certainly have Xr(B)\Xr(A) for 1 árgí.

Now take x = Xs + l(A) in (3.1.1). Since Xr+1(A)\Xr(A) for all r, this gives the number

of Ar(A), lárg«, which divide Xs + 1(A)^n — s.

Since Xr+1(B)\Xr(B) for all r, this implies that XS+1(B)\XS+1(A). Now repeat the

argument, successively taking x = Xs+2(A),..., Xn(A) in (3.1.1), and finally note that

Xr(A) = Xr(B)=l if r>n.

Lemma 3.1 seems to be fairly well known, and other proofs (using presentation

matrices, for example) can be given. The above proof was shown to me by J. H.

Conway, whom I thank.

In §4.1 we shall require the following fact about finitely-generated abelian groups.

We state it here as an immediate consequence of the preceding lemma.

Corollary. Let A, B be finitely-generated abelian groups such that there exist

epimorphisms <j>: A -» B and ip: B -> A. Then A = B.

Remark. Lemma 3.1 also shows that Corollary 3.1 is true for finitely-

generated A-modules, where A is any principal ideal domain. In fact, the result

holds for finitely-generated modules over any commutative ring with an

identity [26].

3.2. Lemma 3.1 is really a digression to enable us to generalize to all knots a

result proved by Fox [5, Theorem 4] for knots of genus 1. If Mk is the k-fo\d

branched cyclic covering of some knot, then Hx(Mk)^ZH © Zt2@- ■ -, where

Ti+i|T¡ f°r all /', and t,= 1, i^n, for some n. (We do not, of course, exclude the

possibility t¡ = 0.) Let us write tí = tí(Mu).

Theorem. Let A be any knot, and k, r any integers (ä 1). Then t^M^t^M^)

for all i.

Proof. Lemmas 2.10 and 3.1.

4. Periodicity.

4.1. Theorem, (i) Hx(Mk + n)^Hx(Mk)forallkifandonlyifHx(MiKn))^Hx(Mk)

for all k.

(ii) Hx(Mk+n; Q)^Hx(Mk; Q)forallkifandonlyifHx(M(k,n>; Q)~Hx(Mk; Q)
for all k.

Proof. Since the "if" statements are obvious, we confine our attention to the

converses.

(i) Given k, there exist integers r, s, both >0, such that rk = (k, ri) + sn. Then
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Hi(M~rk) = Hi(M~{k,n)+sn) = Hi(Mlk,n)). But by Lemma 2.10 there exist epimorph-

isms Hx(Mrk)^Hx(Mk),Hx(Mk)^Hx(M(k,n)). So, by Corollary 3.1, Hx(Mk)

~Hx(M(k,n)).

(ii) As in (i), the hypothesis implies that ßx(Mrk) = ßx(M(kiU)). Again, because of

the epimorphisms mentioned above (or, alternatively, by Proposition 2.11(ii)), we

have ßx(Mrk)^ß1(Mk)^ßx(M,Kn)). Hence ft(A/fc)=ft(M(,,n)), and the result

follows.

4.2. In this section we show that Hy(Mk; Q) is always periodic, and that the

period depends only on A(/).

Up to sign, A(0 can be written uniquely as 0(0^(0» where <D(0, T(/) ej[t],

all the roots of 0(0 are roots of unity, and no root of *F(0 is a root of unity (see

§2.14). The complete description of periodicity of Hx(Mk; Q) is then contained in

Theorem 4.1(ii) and the following:

Theorem. Hx(Mk; Q)=Hx(M<k_n)', Q) for all k if and only if all the roots of $>(t)

are nth roots of unity.

Proof. Suppose all the roots of <S(?) are nth roots of unity. Then if X(t) is one of

the Alexander invariants of A, A(/)| A(/), and so if A(0 is factorized as in (2.14.1),

we see that each m(\n. Hence, for any k, m¡\k if and only if m¡}(k, n). It follows that

if p(k) is the number of distinct kth roots of unity which are roots of X(t), we have

p.(k) = p.((k, n)) (see the proof of Theorem 2.14). Then, by Proposition 2.11(a),

ßAMk) = ßx(Mik,n)).

Conversely, suppose that ßi(Mk) = ßx(M(k_n)) for all k, and let A(0 be a typical

Alexander invariant as before. Then /¿(&) = 2 <f>(mi) over those i such that mt\k, and

p((k, n)) = 2 <f>(mi) over those i such that m¡\(k, n). But every i which occurs in the

second sum must also occur in the first, and so since ßi(Mk) = ßx(M(kin)) for all k

we must have that m¡\k if and only if m¡\(k, n), for all k. In particular, taking

k = m¡ shows that w¡|(w¡, ri), and therefore m¡\n. This holds for each mh and for

each Alexander invariant X(t), and hence all the roots of 0(0 are «th roots of unity.

4.3. After Theorem 4.1(i), it suffices, to prove the Main Theorem, to establish

the equivalence of (1) and (3). One half is fairly easy:

Theorem. Let Kbe a knot withfirst Alexander invariant Xx(t). Then ifXx(t)\(tn—l),

Hx(Mk)^Hx(Mk+n)forallk.

Proof. Since Ai(i)|A1(0 for all i, the hypothesis implies that A(0|(f"- l)m, for

some m, and so A(0)=1. If A(/)=l, then Hx(Mk) = 0 for all k. So suppose A(/)^l,

and let M—tlhe an Alexander matrix for A (see §2.8). By §2.13, A1(M) = 0, and so

Mn = I. Hence Mk-I=Mk + n-I, which implies, by §2.12, that Hx(Mk)^Hx(Mk + n).

Remark. The above proof is similar to the argument in [18, Corollary 5.3.3].

Note, however, that in the latter, for the proof to be valid, the hypothesis ". . . all

the roots of the Alexander polynomial are rth roots of unity" should be replaced

by ". . . the Alexander polynomial divides V— 1."
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4.4. To complete the proof of the Main Theorem, we have to show that (1)

implies (3). As a first step towards this, we now prove that if some root of A(0 is

not a root of unity, then Hx(Mk) is not periodic. In fact we prove slightly more:

Theorem. If A is a knot with Alexander polynomial A(t), and some root of A(t)

is not a root of unity, then for any integer N there exists k such that Hx(Mk) is finite

and order Hx(Mk) > N.

Proof. Write A(t) = c FI"= i (ar — 0> where c is an integer. Then, if p is a primitive

kth root of unity,

YlA(P>) = CkYl(Yl(ar-P>))
1=1 1 = 1  \r=l I

= Ck IÎ (n («T-PO)  = Ck fl (ak- 1).
r=l  \/»l / r=l

Now it is a well-known theorem of Kronecker (see, for example, [22, p. 118]),

that if all the roots of a monic polynomial ej[t] have unit modulus, then they are

roots of unity. Hence either \c\ >1, or \c\ = 1 and some ar has |ar| ^ 1. But if \c\ = 1,

then n?=i ar= ±A(0) is a (nonzero) integer, and therefore, if there exists an ar with

|cer| #1, there exists an ar with |<*r| > 1. (In fact, of course, A(t) is always symmetric,

so the roots occur in inverse pairs but it is not necessary, for the present argument,

to assume this.) Now if [o¡| < 1, [oc^ — 1 j -»-1 as &-»- co, and if \a\ > 1, \ak— 1| -> oo

as k -> co. Also, if |c| > 1, \ck\ -> co as k -*■ co. We can therefore always separate

out the roots of unit modulus and write

flAiy)    =f(k)f\\ak-l\,
1=1 r=l

where O^m^n, \ar\ = 1, r= 1,..., m, and f(k) -> oo as k -> oo. Note that if m = 0

(i.e. if no root of A(0 has unit modulus) then in fact we have proved that

order Hx(Mk) -> co    as k ~> oo.

If m S: 1, let us write ar = exp (2trixr), r = 1,..., m. So ak = exp (2irikxT). Then it is a

theorem of Dirichlet [13, p. 170] that, given £>0, there exist infinitely many

integers k' such that each of k'xx, ■ ■ ■, k'xm is distance < e from an integer. Also,

since A(l)= ± 1 #0, no xr is an integer, so if we let er be the least distance of xr

from an integer, and define e = min {«i/2,..., eJ2}, we have £>0. Dirichlet's

theorem then gives infinitely many k' such that each k'xr is within e of an integer,

and hence the distance of (k' + l)xr from an integer is >e. Write k = k'+l. Then,

for r=l,.. .,m, \ak — 11 = |exp (2irikxr) — 1 ] > |exp (2ttíe) — 11 = a, say, where a>0.

Now f(k) -> co as k -> oo, and so, given any integer N, there exists k0 such that

f(k)>N/am if k>k0. Also, by the above, there exists k>k0 such that YJT=i I«?—1|

>am. Then, for such a A:, |n?=i A(p;)l >^r. as required.
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Remark. The precise behaviour of order Hx(Mk) as k -> oo is likely to be rather

difficult to determine in general, since if A(0 has a root a of unit modulus, this

contributes a factor \ak—1\ = |exp (2-n-ikx)—1|, say, which gets arbitrarily small

infinitely often (by taking w= 1 in Dirichlet's theorem). We therefore ask

Question. If no root ofA(Oisaroot of unity, andA(/)^ l,does |n?=i A(//)| ^G0

as k -»■ oo ?

A related question is whether |n?=i A(pJ)| can ever be 1 for k> 1 (if some root

of A(0 is not a root of unity), i.e. whether Mk can ever be a homology sphere for

k> 1. For knots of genus 1, this is answered negatively in [5, Theorem 3], but in

general, it is easy to see that homology spheres can occur. For example, if A(0 is

any Alexander polynomial whose roots are not all roots of unity, then A(tk) is also

an Alexander polynomial ([24], [15]) whose roots are not all roots of unity. But

order Hx(Mk)= \TTj-i A(V")I = \W-t A0)l = *•
It is also easy to construct other examples, such as l—t2 + t3 — ti + t6, and

l-r2-/3-?4 + r6, which have order//1(M2)=|A(-1)| = 1.

4.5. Theorem 4.4 shows that if Hx(Mk) is periodic, then all the roots of A(0

are roots of unity. The converse is not true, as we shall see later, but we do have the

following:

Theorem. If all the roots of A(t) are nth roots of unity, then

(i) Hx(Mk; Q)^Hx(M(k,n); Q) for all k,

(ii) order Hx(Mk) = order Hx(Mik¡n)) for all k,

(iii) ifHx(Mk) is finite, then Hx(Mk)^ Hx(Mik,n)).

((i) is just a special case of Theorem 4.2, which is included here for completeness.)

The proof of (ii) will require the following lemma, in which <f>m(t) as usual

denotes the mth cyclotomic polynomial.

Lemma. Let P be a primitive kth root of unity, and a a primitive (k, m)th root

of unity. Then
k (k.m)

Y\<pm(ñ = nw
1=1      i=i

Proof. Let ax,..., ai(m) be the primitive mth roots of unity, so that we have

<Pm(t) = ríi=mi ('-«i)- Then (as in the proof of Theorem 4.4)

k (Km)

n«po = ri(i-«ic)-
1=1      i=i

(Actually, we have introduced a factor (- l)*<m><»= + i>j but, since <j>(m) is even if

mâ3, this makes no difference unless m= 1 or 2 and k is even, and in this case, the

product is zero anyway.) Similarly,

(.k.m) <Km)

n^>o = n(i-«(?,m))-
i ml i = 1

Now since at is a primitive mth root of unity, ak is a primitive dth root of unity,

where d=mj(k, m), and so nfi"i (' — a¡) must be some power of <f>d(t); comparing
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degrees, we see that this power must be <p(m)¡<p(d) [8]. The same argument with

(k, m) instead of k, and the fact that ((k, m), m) = (k, m), then show that

n ('-«<) = n e-^"0).
i=l i=l

which gives the desired result on putting f = 1.

Proof of Theorem 4.5. The hypothesis implies that A(0 is a product of cyclo-

tomic polynomials <¡>m(t), where m\n. For each such m, we then have ((k, ri), m)

= (k, m), and so, by Lemma 4.5,

k (k,m) (k.n)

1 = 1 3=1 1=1

where p, a, r are primitive kth, (k, m)th, (k, ri)th roots of unity, respectively, (ii) now

follows from Proposition 2.11(i).

To prove (iii), recall that by Lemma 2.10 there exists an epimorphism <¡>: Hx(Mk)

-> Hx(M(k¡n)), and then note that if Hx(Mk) is finite, <j> must be an isomorphism,

because of (ii).

4.6. Before proving the converse of Theorem 4.3, let us discuss the following

example, which shows that Theorem 4.5 is the best possible in the sense that all

the roots of A(0 being roots of unity is not in general enough to guarantee

periodicity.

Take any knot with Alexander matrix M(t) = ((l-t+t2)2) ([15], [12]). Then all

the roots of Xx(t)=A(t) are 6th roots of unity, but Xx(t)\(t6-l). Now (l-t + t2)2

= l-2t+3t2-2t3 + ti, and so clearly M(t) ~A M-tl, where

0 1

0 0

0 0

-1 2    -3

M =

By explicit computation of MB and induction on r, it can be shown that

M 6r _

Therefore

M6r-I =
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which shows that

Hx(Mer) £ Z®Z@Z6r® Z2r,

and so Hx(Mk) is not periodic.

4.7. The converse of Theorem 4.3 is proved by showing that if Xx(t)\(tn—l), and

Theorem 4.4 does not apply, then we have a situation not unlike that of §4.6.

Theorem. Let K be a knot with first Alexander invariant Xx(t), where all the roots

°fK(t) ere nth roots of unity, but A1(r)f(/n— 1). Then the order of the torsion subgroup

of Hx(Mrn) -*■ oo as r -> co.

Proof. The  hypothesis  implies  that  for  some  mgl,   Ai(0|(f" — l)m + 1,  but

Ai(OtOB-Dm.

Let M—tlhe an Alexander matrix for A(see §2.8), and write N=Mn — I. Then,

by §2.13, Nm + 1 = 0,Nm¥=0.

A presentation matrix for Hx(Mrn) as an abelian group is

Mrn-i = (N+iy-i = 2 (¿W = 2 \)Ni lir = m-

But certainly 2P=i QiV'/O (multiplication by N"1'1 gives rNm, which is ^0), and

so the order of the torsion subgroup of Hx(Mrn) is some positive multiple of the

h.c.f. of the entries of 2f=i (l)N'. It is not hard to show, however, that for fixed m,

h(r) = hef {([), (I),..., (m)} -^ co as r -> co, and since h(r) must divide each entry

°f 2r= i GW» this completes the proof.

4.8. Proof of Main Theorem. Theorem 4.1(i) shows that (1) and (2) are equiva-

lent, and Theorem 4.3 shows that (3) implies (1). To prove that (1) implies (3), we

first note that by Theorems 4.4 and 4.7, (1) implies that Xx(t)\(tn' — 1), for some «'.

Then all the roots of A(0 are n'th roots of unity, and so it follows from Theorem

4.2 that in fact all the roots of A(/) must be nth roots of unity. It only remains to

note that, since A1(0|(i"'— 0, A^O has no repeated roots, and so we conclude that

Ai(OI(iB-l).
4.9. If Hx(Mk)^Hx(Mk+n) for all k, and there does not exist ri with 0<ri <n

such that Hx(Mk)^ Hx(Mk+n.) for all k, we say that the proper period of H±(Mk) is n.

In [21] it is shown that for knots of genus 1, the only possible proper period of

Hx(Mk) (other than 1) is 6. Moreover, 6 does occur as a proper period for a knot

of genus 1, namely the trefoil.

Theorem. There exists a knot Kfor which Hx(Mk) has proper period n if and only

ifn=l, or n has at least 2 distinct prime factors.

Proof, If n=pr, p prime, r>0, then Xx(t)\(tn-l) (see §2.14) and so for no knot

can Hx(Mk) have period n.

To prove the converse, first note that any knot with A(0= 1 [30] gives period 1

(Hx(Mk) = 0 for all k) and so we are left to consider the case where n has at least 2

distinct prime factors. By §2.14 and [15] or [12], there exists a knot with Alexander

matrix (<t>„(t)). Then Hx(Mk) has period «, and to see that the proper period must
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be n, it is enough to note that since the roots of </>„(0 are the primitive nth roots of

unity, <pn{t)\(tn'-l)ifO<n'<n.

4.10. The following theorem states precisely which proper periods can occur for

knots of a given genus.

Theorem. There exists a knot A of genus g for which Hx(Mk) has proper period n

if and only if n=\, or n = lcm {mf. i= 1,..., r}, where the m^s are all distinct, each

has at least 2 distinct prime factors, and 2¡ = 1 0(m¡) 5j 2g.

Proof. First we dispose of the case n = 1 by observing that for any g there exists

a knot of genus g with A(r ) = 1. For example, since any untwisted doubled knot [30]

has genus 1 and A(i)= 1, we can simply take the connected sum of any g untwisted

doubled knots.

If A is a knot for which Hx(Mk) has proper period > 1, then Xx(t) = Yl¡=x ̂ m,(0>

where the m¡'s are distinct, and each has at least 2 distinct prime factors. The least n

such that Xx(t)\(tn— 1) is then n = lcm {m¿: i= 1,..., r}, and hence this is the proper

period. Since 2g^deg A(0=£deg A1(0 = 2i = i <p(mx)> one half of the theorem

follows.

Conversely, given such a set {m{: i=l,..., r}, there exists a knot A of genus

i 2i = i <p(mi) with Alexander matrix (n¡ = i <Pm,(t)) [L2]. Taking the connected sum

of A with g — \ 2¡ = i <l>(mi) untwisted doubled knots then gives a knot of genus g for

which Hx(Mk) has proper period n = lcm {m¡: i=l,..., r}.

4.11. For a given genus g, it is possible from Theorem 4.10 (in theory at any rate)

to determine all proper periods. For example, since it is easy to check that </>(6) = 2,

<p(l0) = <f>(l2) = 4, <p(l4) = <p(l8) = 6, <p(l5) = <f>(20) = f(24) = <f>(30) = %, and cf>(m)^l0
for any other m with at least 2 distinct prime factors, we get the following table for

the first few values of g:

genus                  proper periods
-

1 1,6;

2 the above, and 10, 12;

3 the above, and 14, 18, 30;

4 the above, and 15, 20, 24, 42, 60.
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