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ON RESIDUALLY FINITE KNOT GROUPS

BY

E. J.  MAYLAND, JR.O

Abstract. The residual finiteness of the class of groups of fibred knots, or those

knot groups with finitely generated and, therefore, free commutator subgroups, has

been known for some time. Using Baumslag's results on absolutely parafree groups,

this paper extends the result to twist knots (Whitehead doubles of the trivial knot)

and certain other classes of nonfibred knots whose minimal spanning surface has

complement with free fundamental group. As a by-product more explicit finite

representations, namely cyclic extensions of certain p-groups, are obtained for these

knot groups and the groups of fibred knots. Finally composites of two such knots also

have residually finite groups.

0. Introduction. A group is residually finite if the intersection of its normal sub-

groups of finite index is the identity. The residual finiteness of the groups of fibred

knots, or those knot groups with finitely generated and, therefore, free commutator

subgroups, has been known for some time [13, p. 63]. We include in §2 a modifica-

tion of the proof of this theorem which gives more explicit information on the

structure of a sufficient set of finite homomorphic images. This result is extended,

using Baumslag's theorems on parafree groups ([1] and [2]), to those knot groups

whose commutator subgroup is an ascending union of parafree subgroups and,

therefore, in particular to those knot groups whose commutator subgroup can be

built up from a free group by the careful iterated adjunction of a countable sequence

of roots. In §3 we give a brief account of Neuwirth's analysis of the structure of the

commutator subgroup of a knot group, enabling us to give in §4 some examples of

such residually finite knot groups including the groups of the so-called twist knots,

or Whitehead doubles of the trivial knot. We also show that any composite of such

knots has a residually finite group. Finally, we give a brief indication of how this

work might be continued.

We remark that P. Stebe has shown that hose knots have residually finite groups

by showing their groups are nc [16], that is for each two elements g± and g2 in the

group, either gx = g2 or else there is a normal subgroup N of finite index such that

Si^St. m°d N for each integer n.
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We define a cube-with-holes to be the closure of the complement of a regular

neighborhood of a finite graph in S3. By a theorem of Mal'cev (see [8, p. 415]), a

finitely generated residually finite group G is Hopfian, that is every endomorphism

from G onto itself is one-to-one. It follows that if G = tt1(M3) is also the funda-

mental group of the cube-with-holes M3 and if/: M3 -*> A/3 is a (continuous)

mapping such that/restricted to the boundary of M3 is the identity, then /induces

a monomorphism from -n^M3) to itself, and hence by a theorem of Waldhausen

[17]/is homotopic, relative to the boundary of M3, to a homeomorphism. (For

related material see [3] and [9].)

1. Definitions and notation. We will make use of the following group-theoretical

definitions and notations. A presentation for the group generated by Alt..., An

and related by R1(A(),..., Rm(A¡) will be denoted (Au...,An; R^A,),..., Rm(A¿>)>.

If the groups Hu ..., Hn and/or elements Bu...,Bm are all contained in a super-

group G, then by gp <//j,.. ., Hn, Bu ..., Bm} we mean the subgroup generated

by the H¡ and B¡.

The free product A * B of the groups A=(au . . ., a„; /?i(av),. . ., Rp(av)} and

B=<Jbu ...,£„,; S^bJ,..., Sq(bu)} is the group

A * B = <[au . . ., an, bu . . ., bm; R^a,),.. ., R„(av), S^b,,),. . ., SQ(bu)).

If in addition H=gp <C/1(ûv), ..., Us(av)} is a subgroup of A and

K = gp(v1(bß),...,vs(bu)y

is a subgroup of B such that H and K are of the same isomorphism type /, and

the mapping U¡(av) -> K¡(¿>„) induces an isomorphism <j> from H to A^, then

G = <a1?..., a„, ¿>!,..., ¿>m;

R^a,),..., SM ..., ÜiiajlViibJ]-1,..., Us{av)[Vs(bu)]-^

is called the generalized free product of /I and B with single amalgamated subgroup

(under </>), or the Schreier product of y( and B amalgamating /. If $x: J^ H and

<f>2:J^'K isomorphically, then we will abbreviate this notation by

G = (A*B; &(/) = UJ)>-

For a discussion of generalized free products, see [8], [10], or [11].

If G is a group, m an integer, g an element of G and <.v> the cyclic group generated

by x, then we say the group <G * <x>; xm=g) is obtained from G by adjoining an

with root of g.

Let C be a nonempty class of groups. We say a group G is residually C if for each

nonidentity element g contained in G there exists a group // in C and an onto

homomorphism t: G ~> H such that 1 ̂  r(g). Equivalently G is residually C if the

intersection of all those normal subgroups N for which G/N belongs to C is the

unit element of G. If the groups of the class C are characterized by a particular

property -n, we shall also say that G is residually -n. For example, we shall be con-
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cerned with groups that are residually finite, residually nilpotent, and residually of

order a power of a fixed prime p.

We will denote the commutator A~1B~1AB of elements A and B by

[A, B]. For a group G, the terms yfi of the lower central series of G are defined by

YjG = gp <[gi, g2, ■ ■ •> gñ I gi in G>, where [• • • [[gu g2], g3] ■ ■ gf] = [gu ..., g,]. We

may also denote y2G by G'. The lower central sequence of G is the sequence of

quotients Gjy2G, G/y3G,.... Also G is free nilpotent if G=F/y,F for some free

group F. G is absolutely parafree or parafree (in the variety of all groups) if G has

the same lower central sequence as a free group and G is residually nilpotent (see

[1] and [2]).

Finally for any group G, the subgroup Gpl is defined by Gpl = gp (g"' | g in G>

and, for a given prime/?, the subgroup G(i,j) by G(i,j) = yjG-Gpi.

2. The residual finiteness of certain classes of knot groups.

Theorem 2.1 (Neuwirth [13, p. 63]). Fibred knots have residually finite groups.

Proof. Let 1 ̂ w be an element of the group G of a fibred knot K, Y=y2G be the

commutator subgroup of G, and / be an element of G whose image generates the

homology quotient group G/ Y.

If w does not belong to y2G, then w is represented nontrivially in the residually

finite (cyclic) group G/y2G, implying there is a normal subgroup of finite index in

G not containing w.

Otherwise w belongs to Y=y2G which is free of rank twice the genus of K and

therefore residually nilpotent. It follows that w does not belong to some term y¡Y

of the lower central series of Y, and therefore has nontrivial image in Y\y¡ Y. If,

for a given prime p, y'=gp <ypl | y in Y), then, by a theorem of Gruenberg [5],

the intersection of the Ypl for i=l, 2,... is contained in y, Y. Hence w is not

contained in Y(i, j) = y¡ Y- Yp' for some i. But Y(i,j) is of finite index in Y by a

theorem of Mal'cev [7, Vol. II, p. 248]. See Figure 2.1.

Now Y(i,j) is verbal, hence fully invariant in Kand normal in G. Furthermore,

/ acts on Y by conjugation and thereby induces an automorphism on YjY(i,j).

Clearly, this automorphism has finite order, so we define ta to be the least power of

t which centralizes Y/Y(i,j).

In the group GjY(i,j) the coset ta- Y{i,j) belongs to the center since [t, ta]= 1

and t was chosen to commute with Y/Y(i,j). Hence certainly ta- Y(i,j) generates a

normal subgroup of G/Y(i,j) and, taking inverse images under the canonical

homomorphism, gp </", Y(i,j)} is a normal subgroup of G. But </a, Y(i,j)} is of

finite index a-1 Y: Y(i,j)\ and does not contain to. Therefore, G is residually finite,

completing the proof of the theorem.

We remark that Y/Y(i,j) is a Burnside group, that is, a free group of rank 2g

in the variety of all groups of nilpotence class at most j — 1 with exponent;?'. We

have thus shown that any element of F can be represented, considered as an element

of G, nontrivially in cyclic extensions of "free /^-groups". We will extend the
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class of knot groups whose nonidentity elements can be represented in groups

ismorphic to the groups G/ Y(i,j) of the previous theorem through the use of some

results of Gilbert Baumslag. The first result is part of the content of Proposition

2.1, p. 514 in [2].

Proposition 2.2 (Baumslag). Let Ax<A2< ■ ■ ■ <An< ■ ■ ■ <A = (J™= x Anbe an

ascending series of absolutely parafree groups of the same finite rank r. If

m¡= \Ai + 1IAt-y2Ai + 1\ < oo for each i= 1, 2,. . ., then A is residually a finite p-group

for each prime p dividing at most finitely many m{. In particular, for such p, A/A(i, j)

= Fr/Fr(i,j)for a free group Fr of rank r and the intersection of all the A{i,j) is the

identity.

Corollary 2.3. Let G be a knot group and Y=y2G. If Y1<Y2<-<Yn

< ■ ■ ■ < Y= (J "= ! Yn is an ascending series of absolutely parafree subgroups of Y

of the same finite rank such that mi=\Yi+1/Yi-y2Yi + 1\ <oo, for i=l, 2,..., and if

there exists a prime p dividing at most finitely many m¡, then G is residually finite.

Theorem 2.4 (Baumslag, [1, p. 313]). Let H be finitely generated and parafree of

rank r, let <x> be the infinite cyclic group on x, and let q be a positive integer which

is not divisible by a prime p. If h generates its own centralizer in H and if

h=g" modulo y2H, where g is not a proper power modulo y2H, then

G = <//*<*>; h = x")

is parafree of rank r.

Corollary 2.5. Let G be a knot group and  Y=y2G. If Yx< Y2< ■ ■ ■ < Yn

< ■ ■ ■ < Y= (J ™= ! Yn is an ascending series of subgroups of Y such that  Yx is
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absolutely parafree of finite rank and each Yn,for n = 2, 3,. .., comes from Fn_i by

adjoining a pnth root of some element hn-x in Yn-x (where hn-1 = (gn„1)k*-i modulo

y2^n-i! (Pn, fcn-i)= 1 i and gn-! is not a proper power modulo y2Yrt_1). Then if

there exists a prime p which divides at most finitely many of the primes pn, G is

residually finite.

Proof. By the previous theorem the Yn are absolutely parafree. Evidently

I Yn+1/Yn-y2Yn+1\ =/>n> so by Corollary 2.3, G is residually finite.

3. Constructing the commutator subgroup of a knot group. Given a knot K it is

possible to construct a presentation for the commutator subgroup, tt'^S3 — K), by

constructing the corresponding covering space of S3 — K. (For more details of this

analysis, due to Neuwirth, see [13, Chapter IV].) Briefly, let S be an oriented sur-

face of minimal genus spanned by K. To form the manifold "S3 split along S", we

first extend a triangulation of S to a triangulation of S3. Then M is made from a

collection of disjoint (closed) 3-simplices which are in one-to-one correspondence

with the 3-simplices of our triangulation of S3 by identifying two 3-simplices along

a (closed) face if the corresponding 3-simplices are incident along the corresponding

faces in S3, and if this face is not in S. M is now a complex containing two copies

of S in its boundary, which we arbitrarily order as the "lower" copy XS and the

"higher" copy 2S. The natural covering map <f> from M onto S is performed identi-

cally on the interior of M and by identifying the remaining pairs of faces in the

boundary of M which correspond to simplices of S.

To form the covering space (A/00, O), we take countably many copies M¡

(i = 0, 1, —I, 2, —2,...) of M and join them alternately to the "higher" and

"lower" end of a chain, starting at M0. In each case the attachment consists of

identifying the "higher" copy 2S¡ of S in the boundary of some M¡ with the

"lower" copy ¿Sl+i of S in the boundary of the next higher indexed copy of M.

We then remove from all stages those 1-simplices mapped onto K by the associated

covering maps <f>¡. The covering map <P is defined as the natural map induced by the

restrictions of the <tj¡ to the complements of the ^^(K). That this covering corre-

sponds to the commutator subgroup follows since exactly those elements of

tt^S3 — K) which have 0 linking number [15] with K and, therefore, 0 algebraic

intersection with S will lift to loops in the covering space.

Let Mn denote the «-fold "covering" of S3 — K obtained at the nth stage of this

construction (i.e. the n-length chain of copies of M with those 1-simplices which

correspond to K removed).

In order to follow this construction group-theoretically, we present the funda-

mental group of S, which is free of rank twice the genus of K, by

^îiS) — <£i> £2» • ■ •> f29; — >>

and denote the fundamental groups of M¡ and Mn by Xt and Xn, respectively. In

A/( we let jAj. and 2ht. denote the inclusion-induced monomorphisms mapping
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respectively the fundamental groups of the lower and higher copies of S in the

boundary of Mt into Xt. (See [13, Lemma 4.4.2].)

If we now attach Mt and Mt + 1 by identifying the appropriate copy of S in their

respective boundaries, then, by the van Kampen theorem, the resulting manifold

will have fundamental group a generalized free product of Xi and Xi+1 with

amalgamated subgroup -n-^S). The amalgamating relations set 2h¡.(S) equal to

ihi+1.(S), or they have the form

2«i'(fl)   =   l«!+l'(ll)

(3-D :
2"c(Í29)   =   lhi+l'($2g).

In particular, there is a natural imbedding of X¡ and Xi + 1 in the resulting group, as

factors of the generalized free product. Similarly each X" is imbedded as a factor in

Xn + 1 and the group tt[(S3 — K) is the direct limit of the Xn under these imbeddings.

Identifying Xn with its image in tt\(S3 — K) we have

(3.2) X0 = X1 < X2 <■■■ <Xn <■■■< n'^S3-^ s  U Xn.
n = l

We remark that the groups X¿ are also imbedded in Tr[(S3 — K), so that tt'i{S3 — K)

may be presented by

7r[(S3-K) s <•'.., x_u X0, Xu...; ¡MQ = !«* + !.(£)>

for; = l,...,2gand /' = 0, 1, -1,2,....

Then the group ir^S3 - K)/™'^3 — K) is isomorphic to the group of covering

translations of M°°, which is free cyclic and generated by the shift operator which

sends each M¡ to Mi + 1. If we choose an element / of n^S3 — K) whose image

generates this quotient group and so that the action of / on the commutator sub-

group induced by conjugation is the same as the action induced by the shift

operator (see [13]), then abbreviating the fact that conjugation by / sends X¡

"identically" onto Xi + 1 by writing t'1-X¡-t=Xi + 1, we can present ^(S3 — K) as

^(S3-K) £ </,. .., X.u X0, X,,...; A-(f,-) = A + i-Cfy), r1-^-/ = Xi + 1)

fory = 1,..., 2g, and i = 0, 1, -1, 2.

In the next section we will give some examples of knots for which the groups Xn

in (3.2) are absolutely parafree but not free, and for which Xn + 1 can be obtained

from Xn by adjoining finitely many roots which satisfy the hypotheses of Theorem

2.4.

4. Examples. In this section we will consider only those knots which have a

minimal spanning surface whose complement has free fundamental group.

We consider first the so-called twist-knots [18], which may be constructed (see

Figure 4.1) from a Whitehead link in a solid torus by cutting the torus open along

a meridianal disk, twisting one end through p full twists, and re-identifying the
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Figure 4.1. Formation of p-twist knots.

disks. Then the image of the Whitehead link is called a p-twist knot. By convention

p is positive if the resulting projection of the knot is alternating.

Of course for p = 0 the resulting knot is trivial, while for p=l and p= — 1 we

have respectively the four-knot and the trefoil. Another representation of twist

knots is given in Figure 4.2. Evidently twist knots bound surfaces of genus one, such

n^S5 -S) = <A, B;-> ■

,A>i(S)) = < thtf¿, ¿¿Qi -> = < APE, B;->
¿¿nAJS)) = < 2h^2), 2h^2); -> = <AP, A~lB; - >

Figure 4.2. The surface spanned by a twist knot and associated groups.

thatif7T1(S)=<f1, &Î ->andrr1(S3-S) = (A,B; ->, then

1htf1) = A°-B,       Mtù =4°,

Ma) = B, 2h(Ç2) = A-1-B.
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Therefore, the amalgamating relations between Xt and Xi + 1 will be (see (3.1))

(4.1) A? = A?+1-Bi + 1,       Arl-Bt~B(+1.

We remark that if p= ± 1, then both ^h* and 2«* map ttx(S) onto ^(M), or

equivalently that the four-knot and the trefoil are both fibred knots [13]. For this

reason we will now restrict our attention to twist knots for which \p\ > 1.

To simplify the ensuing calculations we will re-index each group Xn so that it

contains n copies of the group X with consecutive indices /'= 1, 2,..., n. Then by

(4.1) and §3 we may present the groups Xn for a p-twist knot by

X2 = <A1,B1,A2,B2;A1 = A2:-B2,Ar1-B1 = S2>,

(4.2) X" = <A1,B1,...,An,Bn;A? = A?+1-Bi + 1, A^B, = 5i+1>

for i = 1, 2,..., n — 1.

Furthermore, we will delete the extraneous generators B¡ from the above

presentations, using the relations Bi=Af"-Ap^1 for i = 2, 3, ...,n, and then

B1=A2P-A°1 + 1. We then have

X2 = iAx,A2; ->,
(4.3)

Xn = <A, - - -, An; Af = Ap-yAr-P2-Apl£y.

We are now in a position to prove the main theorem, namely

Theorem 4.4. Twist knots have residually finite groups.

Proof. We will show first that if the fundamental group Xn of the manifold Mn

occurring in the construction of the covering space corresponding to the com-

mutator subgroup (see §3) is parafree, and if Mn + 1 comes from Mn by attaching

a higher-indexed copy of M to the " higher " copy of S in the boundary of M, then

Xn+1 is parafree. Furthermore \Xn + 1:Xn-y2Xn + 1\ =p.

We require the fact that A°_-Añpi-Ap + 1 is primitive in the group Xn/y2Xn. To

see this we label the relators by

Riny.A-o-Ai^-A^-Aitl

and observe that

(4.5) RÇd-iA^.Al-iYAnSAZ'a   mod X\

We now define N to be the normal closure of the group generated by

Apl-A~pl-Apl+1 and y2Xn in Xn. It suffices to show that the resulting quotient

group is free cyclic.

If, in the original relation Alp + 1-Añ-i = í mod N, we define t1 = Añ2-An_1 and

substitute An_1 = A2-t1, we obtain

(4.6) An-t{" = 1    and    An„1 = tfp + 1    mod N.

Equivalently, An and An.r generate a cyclic subgroup of Xn/N. Now by (4.5)

and (4.6) we have (for some integer «j) R(n)st¡íP + 1-Añ-2 mod/V. As before,
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(«i-p-f-1, p)= 1, so that ?! and An-2 (and hence also An, An_u and An_2) generate

a cyclic subgroup of Xn¡N. We continue this process, eventually concluding that

gp (An,..., Ax) 1S cyclic modulo N, and therefore, thatAPl-Añfí-A°l+1 is primitive

in Xn/y2X\

Now let p=Px-p2.pv be a prime factorization of p. We form the sequence

of groups
Xn = G0 < Gj < ■ •• < G„

by adjoining to G¡ (for /' = 0, I,..., v— I) a root ri+1 of order/?¡ + 1 of the element g,

in G¡. We will have g0 = Apn-A~p1-Apn + 1, and gi = ri for ;'=1, 2,.. .,v-l.

We have already shown that g0 = A°,-A~f1-APl + 1 is primitive in G0/y2G0. There-

fore, g0 is not congruent to a proper power modulo y2G0. It follows, since by a

theorem of G. Baumslag [2] any two-generator subgroup of an absolutely parafree

group is free, that g0 generates its own centralizer in G0. Hence by Theorem 2.4,

Gx is parafree.

G, = <X" * </-!>'; A'-A^-A'*1 = rft>.

Certainly rY is primitive in GJy2Gu so G2 is parafree by the same argument, with

presentation (deleting rl = r%*)

Ga = <*»* <V2>; Ai-Aïîx'AZ*1 = rp2^y.

Continuing in this manner we conclude that Gv is parafree with presentation

(deleting rv_1=r% and then substituting An+1 for rv)

Gv = <^*<4l*,)$<4b4r.v.4£" = 4K?."•>■
Thus JTn + 1 = Gv is parafree. Also |Arn + 7Arn-y2À", + 1| =p.

jA.UjtS)) = < i*;^); ^^j); - > = < A» ■ B, Bm; - > (no[shown)

jfaiS)) = < 2A;(^), 2h^2); - >=</[», 4"1 ■ ßm; - >—   -**

Figure 4.3. The surface spanned by the knot K(n, m) and associated groups.
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The case that Xn is parafree and Mn + 1 comes from Mn by attaching a lower-

indexed copy of M to the "lower" copy of S in the boundary of Mn is similar.

Since X1 and X2 are absolutely free (see (4.3)) we have by induction that each X"

in the representation (3.2) for n'^S3 — K) as a direct limit of subgroups is parafree.

Thus 7T1(5'3 — K) is residually finite by Corollary 2.3. This completes the proof of

Theorem 4.4.

Suppose that the class of knots K(n, m) (for integers n and m, with n-m#0) is

defined by Figure 4.3. Here

»Mí») = A"B,        a/^IO = A\

xh^2) = Bm, 2A,(fa) = A-'-Bm,

so the amalgamating relations between X{ and Xi + 1 will be

An _    An D A-l,Dm  _    Dm
Ai   — ''itl "i+li -™f       Di    —  °i+l-

Under this notation a twist knot with n twists is a K(n, 1) knot. As a corollary of

the proof of Theorem 4.4 we present

Corollary 4.7. The knots K(n, m) have residually finite groups.

Proof. Following the proof of Theorem 4.4 we show that Aû^-B™ is primitive

in Xu/y2Xu by dividing out the group it generates and showing that the resulting

presentation collapses to a free cyclic group. Similarly, we define Yu = <Xu * <.BU + 1};

A~1-B^ = B^+1> and show that A\-B~lx is primitive in Yujy2Yu. It then follows

that the groups Xu and Yu are parafree by induction on u and that the knots

K(n, m) have residually finite groups.

For a last example we define a knot Kto be the composite or product of two knots

Kx and K2 (written K=K1 # K2) if there is a 2-sphere Tand an arc ß contained in T

such that (i) Tn K={x,y} for points x=£y, (ii) ß is an arc from x to y, (iii)

((Int T) n K) u ß is a knot of the same type as Ku and (iv) ((Ext T)n K)u ßisa

knot of the same type as K2. By a theorem of Schubert [14] it follows that the

minimal surface S(K) for K can be composed from the minimal surfaces .S*(A^)

and S{K2) by identifying an arc in the boundary of each. By the van Kampen

theorem 7t1(S(K)) = tt1{S(K1)) * ^(S^)). Similarly X(K) = X(K1) * X(K2). Suppose

now that K1 and K2 both have commutator subgroups, which are unions of their

respective parafree subgroups Xn(K¡), such that Xn + 1(K¡) can be obtained from

Xn(K¿) by the adjunction of finitely many roots. Then starting with the assumption

that Xn(K) = Xn(K1) * Xn(K2) is parafree, we could adjoin roots to elements

involving only generators for ^"(A"^ to obtain that A'n + 1(Ar1) * Xn(K2) is parafree,

and then adjoin roots of elements involving only generators for Xn(K2) to obtain

that Xn + l(K1) * Xn + 1(K2) is parafree. Following the proof of Theorem 4.4 we

could conclude that K1 § K2 has a residually finite group. We have proved
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Proposition 4.8. If Kt and K2 are knots each of whose commutator subgroup is

an ascending union of parafree subgroups Xn such that Xn + 1 can be obtained from

Xn by the adjunction of finitely many roots, then the knot Kx § K2 has a residually

finite group.

5. Remarks. There are many other knots whose groups can be shown to be

residually finite by this method. However, checking that the various elements of

which we take roots are actually primitive at each stage is very tedious. The next

step in this study would be a lemma stating that if X2 can be built up from X1 by

adjoining roots of primitive elements in X1/y2X1, then Xn + 1 can be built up from

Xn by adjoining roots of elements primitive in Xn/y2Xn.

Many knots K have a minimal spanning surface with complement having a

free fundamental group, but having amalgamating relations (3.1) which do not

immediately allow the construction of X2 from X1 by adjoining roots. Perhaps

the groups Xn for such knots can be shown to be parafree by some other

method.
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