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THE CONNECTEDNESS OF THE COLLECTION

OF ARC CLUSTER SETS

BY

PETER LAPPANF)

Abstract. Let/be a continuous complex-valued function defined on the unit disk

and let p be a boundary point of the disk. A very natural topology on the collection

of all arc cluster sets of/at the point p has been investigated by Belna and Lappan [1 ]

who proved that this collection is a compact set under certain suitable conditions. It

is proved here that this collection is an arcwise connected set under the topology in

question, but is not in general locally arcwise connected or even locally connected.

It is also shown by example that it is generally not possible to map the real line onto

the collection of arc cluster sets at p in a continuous manner.

1. Let D denote the open unit disk, let F denote the unit circle, and for p e F,

let Z(p) denote the collection of all Jordan arcs in D u {/>} with one endpoint in D

and the other at p. If Q is a subset of D and if/is a complex-valued function defined

on D, we define the cluster set off at p relative to Q by

CQ(fp)= H C\(f(QnN(r,p))),
r>0

where N(r,p) = {z e D : \z—p\ <r) and the closure is taken relative to the Riemann

sphere W. Thus each arc / e %(p) determines a nonempty closed set Ct(f p). Let

®Ap) = {Ct(f,p) '■ t e 'î(p)} be called the collection of all arc cluster sets of f at p.

Thus ©/(/>) is a set for which each element Ct(f p) is itself a closed subset of W.

If/ is a continuous function it is well known that Ct(fp) is a connected subset of

W for each / e %(p).

Let z and z1 be two points of the Riemann sphere W and let d(z, z1) denote the

chordal distance between z and it. If A is a subset of W, let

d(z,A) = inf {d(z, a); a e A}

denote the distance between the point z and the set A. If A and B are subsets of W,

define the M-distance between A and B by

M (A, B) = max {sup {d(a, B) : a e A}, sup {d(b, A) : b e B}}.

The M-distance defines a Hausdorff topology on the set of all closed subsets of W

[2], and hence defines a Hausdorff topology on £/(/?) for each p eF and each

complex-valued function /
_
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Lappan [3] has proved that if/is a continuous function in D then, for each

p 6 T, &{(p) is either a singleton or else has continuum many elements. Belna and

Lappan [1] have proved that if/is a continuous function in D and iïp e C is not

an ambiguous point in the sense of Bagemihl then Qf(p) is a compact set in the

Af-topology. In particular, this means that if/is continuous then (£f(p) is compact

for all but a countable set of points p e F. In this paper we will consider connected-

ness properties for the set ©/(/>)> where/is a continuous function.

2. We begin by defining a concept especially designed for the proofs to follow.

Definition. If p e F and if t e %(p), a set E is said to be a tree with trunk t if

E=t U Un = i sn, where the sets sn satisfy all of the following conditions:

(1) For each n, either sn = 0 or else sn is a Jordan arc in D having its initial endpoint

pn on t, but no other point oft lies in sn. (The Jordan arc sn need not include its other

endpoint, although, of course, it may include this endpoint.)

(2) sn n sk = 0 for k^n, and sn n {p} = 0 for each n.

(3) For each n, there exists a real number rn with 0 < rn < 1 and limn_m rn=\ such

that sn^{z e D : \z\> rn}.

(4) EnF={p}.

We remark that the arc t itself is a tree under this definition.

We shall have occasion to refer to what we call a double tree. Let p e F and let

r0 and tx be elements ofZ(p) such that t0 n tx n D = 0. It is no loss of generality

to assume that both t0 and tx have initial points on the circle {z : \z\ =i}, and that

all other points of t0 u tx are contained in {z : \z\ >\}, Let s{ be a subarc of the

circle {z : |z| — £} joining the endpoints of t0 and tx such that t0 u tx u s[ is the

boundary of a bounded region A. For each n> 1, let s'n be a subarc of the circle

{z : |z| =«/(«+1)} which meets both t0 and tx and also disconnects the region A

in such a way that the component of A — s'n having/? as a boundary point does not

contain s'n-x. Fetpn be the endpoint of s'n on t0, \etqn he the endpoint of s'n on tx,

let un be the portion of t0 between pn and pn+1, and let vn be the portion of tx

between qn and qn+x, where un includes the point pn but not the point pn+x and vn

includes the point qn but not the point qn+1. Setting sn = s'n u vn, we have that

E=t0 u/jU lj"=i s'n —*o u U™=i sn is a tree with trunk r0. However, if we set

s"n=s'n u un, we have that the same point set F can be expressed as E=tx u U"=i s'ñ,

so that F may also be considered as a tree with trunk tx. We will refer to this point

set F as the double tree on t0 and tx-

Each tree F with trunk t in X(p) determines a cluster set CE(f p) for a given

function/ To simplify notation, we will use CE in place of CE(fp) whenever no

ambiguity will result.

Lemma 1. If p e F, t e 'H(p), if E is a tree with trunk t, and iff is a continuous

function in D, then CE e &f(p).

Proof. Let E=t u lj™=1 sn, where the nonempty sets sn are listed in the order

in which their initial points pn appear on t0. Let p.n denote the portion of t0 between
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pn andpn+1, where p.n includes the pointpn but not the pointpn+x. Then sn u /x„ is

a lordan arc (possibly not including either of its endpoints). There exists a Jordan

arc tn which has its initial point at;?,,, its terminal point at/?n+1, and approximates

sn u p.n in such a manner that both

(5) sup {d(z, sn\J p.n) : ze <n} + sup {d(z, tn) : z e sn u p.n} < l/n

and

(6) sup {d(f(z),f(sn u p.n)) : zetn} + sup{d(f(z),f(tn)) : z esn u p.n} < l/n.

Furthermore, the arcs tn can be chosen to satisfy (5) and (6) and such that tn n tn+1

={Pn+i} and tnr\tj = 0 for j^n + 2. Setting t = IJ "«, x tn u {/?}, we have that

t e T(p) and Q(f, p) = CEe ©,(/>).

Lemma 2. Fe/ p e T, í ë £(/>), û«î/ let E and E' be two trees with the same trunks t

such that E'^E. Let f be a continuous function in D such that CE'^CE. Given r,

0<r< 1, there exists a tree E" with trunk t satisfying E''c £"'a E and M (CE'', CE")

= rM(CE', CE).

Proof. We first note that CE'<=CE, and if £'c£'c£, then CE'^CE'^CE.

Let r be given, 0<r<l, and let G = {z e D : d(f(z), CE')<rM(CE', CE)}. If

E' = t u U"=i s'n and E=t u U™=i sn, then we may suppose thatíñc^n for each «,

since the points of F can be redistributed among the arcs sn, if necessary, and the

arcs s'n can be re-indexed as necessary without changing either tree as a point set.

There exists a component G' of G and an integer A^ such that s'n^G' for «ä/V.

For n^N, let i^ be the component of sn n G' containing s'n, and for n<N set

< = <. Then, setting E" = t u U"=i C we have F'<= F"c:F and also M (CE', CE")

= rM(CE', CE), so that F" is the desired tree.

Lemma 3. Let f be a continuous function in D, let p e F, let t e %(p), and let E be a

tree with trunk t. For each |>0 there exists a finite number of trees En, n = 0, 1,

2,..., m(£), each with trunk t such that

t = F0 c Ex <= F2 c . . . c £m({) = £

and M(CEn, CEn+1)<Çfor 0á«<w(|).

Proof. Let £>0 be given and let/ be a positive integer such that/>l/f. Set

E0 = t. If M(CE0, CE)^l/j, then set £=£j and we are finished. If M(CE0, CE)

> 1// then by a repeated application of Lemma 2 we can construct a sequence {FJ

of trees, each with trunk t, such that Fn<=£'n+1 and Af(CFn, CEn+ x)=i/j for each«,

where we continue the construction as far as possible. Since CEn is a subset of the

Riemann sphere W, we have that CEn+1 contains a point of IF a distance l//from

the set CEn. Since W is compact, the construction of the trees E„ must terminate

after a finite number of steps.

This completes the proof of the lemma.
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Lemma 4. Let f be a continuous function in D, let p e F, let t e %(p) and let E be a

tree with trunk t. There exists a countable collection of trees {En : n = 0, 1, 2,...}

each with trunk t, with E0 = t and Ex = E and such that there exists a sequence

{an} of real numbers dense in the interval [0, 1 ] with aQ = 0 and üx = \ and such

that

(7) if an<am then En is a subset of Em;

(8) for each f >0 there exist integers j>0, k> 1 such that M(CE0, CEj)<t; and

M(CEk,CEx)<î;and

(9) for each real number x, 0 < x < 1, and each | > 0 there exist integers q and s

such that aq<x<as and M(CEq, CES)<|.

Proof. By Lemma 3, we can choose a finite collection <&x of trees, each with

trunk t, such that ©1={F1-y : OSjSmx} with t = E1-0, E=Ex<mi, and for each/

0Sj<mx, both EXff^EXj+x and Af(CF1>y, CElii+x) = -j are satisfied, where the

equality holds for all/with the possible exception ofj=mx~ 1. By repeated applica-

tion of Lemma 3, we can find a sequence {©„} of finite collections of trees each with

trunk / satisfying ®n<=@»+1, <3n = {Fn>, : 0éjémn}, En,0 = t, En,mn = E, EnJ

^Enj+x, and M(CEn,„ CEn,i+x)è l/(«+1) for each n and each/, 0Sj<mn,

where the equality holds for all n and/with the possible exceptions of those n and/

for which EnJ+1 6©»_.j,

We now construct the sequence {an}. Let a0 = 0, ax = 1, and choose a2, a3,..., ami

to be the points an+x=n¡mx. For 2^/^m1; assign a, to the tree EXtt-x. Proceeding

inductively, we assume that to each tree in ©n we have assigned a unique number a,

with the property that each interval in [0, 1] of length l/n contains at least one of

the numbers a0,ax,..., amn, and that the order of size of the numbers a,.corresponds

to the order under set inclusion of the corresponding trees of ©„. We can then

assign to each of the(mn + 1— mn) trees in @n+1 —©na number a¡, where the number

a¡ is assigned in such a way that the order of size of the numbers a¡, OS jé mn+x,

corresponds to the order under set inclusion of the corresponding trees in @n+i,

and such that if/: new numbers are assigned to an interval /determined by adjacent

numbers corresponding to trees in ©„, then the new numbers will divide the interval

/ into (k+1) intervals of equal length. By this construction, the set {an : n = 0, 1,

2,...} is a dense subset of the interval [0, 1]. We may now list the trees in [J ©„ as

F0, Ex, E2,... in such a way that (7), (8), and (9) are satisfied.

3. We are now in a position to state and prove some results concerning the

connectedness of &f(p).

Theorem 1. Let f be a continuous function in D, let p e F, let t e %(p), and let E

be a tree with trunk t. There exists a continuous function -nEfrom [0, 1] into Qf(p)

such that nE(0) = Q(f, p) and tte(1) = CE.

Proof. Let {an} and {Fn} be as described in Lemma 4. Define TrE(x) = (~)anix CEn
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for each x e [0, 1], and let E(x) = r)anix En. For 0<x< 1 and £>0, by (7) and (9)

there exist numbers aQ and as such that aQ<x<as, EQr=E(x)c:Es, CEq<^CE(x)

^CES, and M(CE„, CES)<£. It follows that CE(x) = nE(x) so that tte(x) e (£,(/>)

by Lemma 1 and tte is continuous on the open interval (0, 1). By using (8) in place

of (9), we obtain in a similar manner that nE is continuous at x = 0 and at x= 1.

Thus tte is the desired function.

Theorem 2. Iff is a continuous function in D and if p e F, then &/(p) is arcwise

connected in the M-topology.

Proof. We will show that for each pair of arcs tx, t2 e %(p) there is a continuous

function tt from [0, 1] into ©/(/>) such that Tr(0) = Ch(f,p) and 7r(l) = CÍ2(/ p).

If Ch(f p) = Ch(f, p), then we can define -n(x) = Ch(f p) for 0 S x S 1 and we are

finished.

If Ch(f p) + C(2(/ p) and iiix n t2 = {p}, then we may assume that tx and t2 both

originate on the circle {z : |z| = -j}. Let F be the double tree on tx and t2 and con-

sider F first as a tree with trunk t.x, By Theorem 1 there exists a continuous function

tte from [0, 1] into &f(p) such that tte(0) = Ch(f p) and tt£(1) = CF. Now let E' = E,

where F' is considered as a tree with trunk i2. Again, by Theorem 1, there exists a

continuous function -n> from [0, 1] into Qf(p) such that TrE,(0) = Ct2(fip) and

ir£'(l) = CE'. The function 7r(x), defined such that tt(x) = tte(2x) for Oáxá^ and

tt(x) = ttb,(2 — 2x) for +^jc^1, is a continuous function from [0, 1] into &f(p)

with Tr(0) = Ch(f,p) and Tr(l) = Ct2(f,p), so that tt is the desired function in

this case.

Finally, if ;1ni2nfl#0 then there exists an arc t3 e X(p) such that tx n t3

= {p} = t2 O /3. By the argument just completed there exist continuous functions

ttx and tt2 from [0, 1] into (Zf(p) such that ^(0) = Ch(f, p), nl{\) = cjjtp), tt2(0)

= Q3(f,p), and ^t¡(F) = Cl2(f,p). We obtain the desired function ?r by taking

tt(x) = ttx(2x) for 0^x^^, and 7t(x) = 7t2(2x—1) for $SxSF This completes the

proof of the theorem.

Remark. The proof of Theorem 2 involves a reasonably smooth shift of trees

with a fixed trunk with one "discontinuity" by considering the same point set as

different trees with different trunks. The elements of X(p) corresponding to these

two trees are not at all close together in any intuitive sense. It would seem reason-

able that an arc in &f(p), i.e. the continuous function -n in Theorem 2, would

describe a smooth shift in elements of %(p), without a "discontinuity" of the sort

mentioned. A proof of Theorem 2 involving such a smooth shift, without any

"discontinuity" of the type mentioned, would be highly desirable.

Theorem 2 shows that ©/(/?) is an arcwise connected set, and hence a connected

set whenever / is continuous. However, it is not true that (£/(/?) need be locally

connected, much less locally arcwise connected, where/is continuous.

Theorem 3. There exists a function f continuous in Dfor which <£/■(!) is not locally

connected.
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Proof. Let An be the chord of D given by

An = {zeD : arg(z-l) = Tr/2+1/«},

let zn = ( 1 \ri)em and let w„ = eiln, n=\, 2, 3,.... Define/on the set {z : arg (z — 1 )ä-n)

by/(z) = 0 there. For all odd n, define/(z) = z„ for z e An, while for all even n define

f(z) = wn for z e An. For these z satisfying tt/2 +1/(« + 1)< arg (z—l)<7r/2-|-l/rt,

define /(z) = ton + (l -t)an+1 for arg (z- 1) = tt/2+ l/(n+ l) + f/«(«+l), 0<<<1,

n=l, 2,..., where an and an+1 are the values assumed by/(z) on An and An+X,

respectively. Finally, for z such that 77/2+ 1 <arg (z—1)<it, define

/(z) = 07(^-2))(77-arg(z-l)).

The function/is now defined as continuous in D.

The value 0 is an asymptotic value of/at 1 so {0} e &f(l). If | is given such that

0<^<-j, then there exist points zni and z„2, «j and n2 both odd, such that

0<d(0, zni)<£, 0<d(0, z„2)<Ç. But the points zni and z„2 are located in different

components of {z : \z\ < £} n CD(/ 1). It follows that S/(l) is not locally connected.

4. In light of Theorem 2, it would be interesting to be able to list elements of

&i(p) in a systematic (i.e., continuous) manner. The following result shows that

this is not possible.

Theorem 4. There exists a continuous function f in D for which there is no con-

tinuous function from the real line onto G/(l).

Proof. Let F denote the Cantor ternary set on [0, 1], let {/„} be the open intervals

removed from [0, 1] to obtain P, let yn be the midpoint of /„. For each 9, —tt/2 < 9

< tt/2, let L(9) be the chord

L(9) = {zeD: arg(z-l) = tt+6}.

For each n=\, 2, 3,..., let

An = {z e D:\z-X\S \\n, arg (z-l)-w e /„},

Bn = {ze D : |z-l| ä \\(n- 1), arg (z-I)-tt e /„}, and

Cn = {ze D : \¡n< \z-\\ < \j(n- 1), arg (z-l)-Tr e In}.

(Interpret Bx = 0 and Cx={z e D : \z— \\ > 1, arg (z-1) e Ix}.) For each x e P,

let Sx be the line segment from x to the point -j + i and let K={J {Sx : x e P}.

We begin to define a continuous function/on the unit disk by setting/(z) = 0

for z e L(9), 9<0, setting/(z) = 1 for z e L(9), 9§ 1, and setting/(z) = 9 for z eL(9),

9 e P. Then/is defined at each z except for those z on some L(9), 9 e [J I„. For

9 e In and z 6 L(9), we have z e An u Bn u Cn. If z e Bn, set f(z) = 9 and if z e L(yn)

n ,4n, set/(z) = 4 + '. Let xn>1 and xn,2 be the right- and left-hand endpoints of /„.

If 9e(xn,x,yn) and z e L(6) n An, and if ö = /.vn>1 + (l -t)yn, 0</<l, set f(z)

= tXn,i + (l—t)(i + i), while if 9e(yn,xn,2) and zeL(9)C\An, and if ö = 5xn>2

+ (1 —5)yn, C<5<1, setf(z) = sxn_2 + (\-s)(\-T-i). Finally if 9 e In, and zeL(9)

nCn, let a=L(9)n{z: |z-l| = l/«} and b=L(9)n{z: |z-l| = l/(n-l)} and
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letting z = ta + (l-t)b, 0<r<l, define f(z) = tf(a) + (l -t)f(b). (For zeCx, take

a=L(9) = {z : \z—1| = 1} and set f(z) =f(a).) The function/is now defined on all

of D and continuous there, CD(f l) = Fand for each x eP we have {x} êG,(1).

Suppose that rr isa continuous function for the real line onto ß;(l). For each

xeP, let tx be an element of tt~1(x). Since the set P1={tx : xeP} is uncountable,

there exists a point t1 which is a limit point of the set F1. Let {/„} be a monotone

sequence of points in F1 converging to r1. For each s there must exist a point t„

between tn and tn+x such that l + ieir(t^) by the continuity of it. But tt(í1) =

lim,,^» 7r(rn) is a subset of F, while 7r(r1) = limn^0D Tr(t^) is a continuum containing

i + i. It follows that the continuity of the function tt is untenable, so the theorem is

proved.

Theorem 4 may be interpreted as saying that the topological space 6y(l) is not a

Peano continuum.

Remark. Neither of the examples constructed in the proofs of Theorems 3 and 4

are meromorphic functions. It would be interesting if meromorphic functions

satisfying these theorems could be found. The construction of meromorphic

functions with the desired properties appears to the author to be very difficult.

5. In what has preceded, we have dealt only with the local situation at a single

point p. We now make a brief consideration of the global situation.

Let/be a function mapping D conformally onto D — S, where S is the spiral

{z = reie : r=9¡(9 + Tr), 9^-rr}. There exists a point p0 e F such that for each

teT(p0) we have Ct(fp0)=F, while for each point p e F — {p0} the cluster set

CD(fp) is a singleton set. It follows that U {©/(/>) : p e F} is not a connected set,

so that the most obvious attempt at an analogue to Theorem 2 in a global setting is

not valid.

However, if we broaden the family of cluster sets under consideration we can

find a valid global version of Theorem 2. Let X be the family of all Jordan arcs

z(t), 0St< 1, in D for which \z(t)\ —> 1 as r —> 1. Then % includes arcs other than

those with an endpoint on F. If/is a continuous function in D and teX, let

Ct(f)=    f)    Cl(/(0n{z:r<|z|<l})
0<r<l

and let (£*(/) = {Ct(f) : t e X}. Then Theorem 2 is valid with 2; and (£*(/) used in

place of X(p) and (£/(/>), respectively. To prove this we need only modify the

definition of a tree by allowing the trunk to be in X rather than X(p) and by

eliminating condition (4) from the definition. It is then easy to modify all of the

proofs of the lemmas and Theorems 1 and 2 to obtain the result. It should be noted

that Theorems 3 and 4 remain valid with X and ©*(/) in place of X(p) and E/(/>),

respectively, because it is easy to modify each of the functions constructed so that

<S-f(l)=©*(/) for each function.
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