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Abstract. In the first part of this paper we prove the following extension theorem.
Let P} be a g-dimensional punctured polycylinder, i.e. a product of disks and punc-
tured disks. Let W, be a compact complex manifold such that the bundle of holo-
morphic g-forms is positive in the sense of Grauert. Let f: P¥ — W, be a holomorphic
map whose Jacobian determinant does not vanish identically. Then f extends as a
rational map to the full polycylinder P,. In the second half of the paper we prove the
following generalization of the little Picard theorem to several complex variables:
Let V<P, be a hypersurface of degree d=n+ 3 whose singularities are locally normal
crossings. Then any holomorphic map f: C* — P, — V has identically vanishing Jaco-
bian determinant.

0. Introduction. The purpose of this paper is twofold. First, we prove an
extension theorem for holomorphic maps into a compact complex manifold W,
such that A% Ty, is positive in the sense of Grauert. Second, we discuss a general-
ization of the little Picard theorem in several complex variables. Thus, in the first
section we apply the Ahlfors-Chern-Kobayashi version of the Schwarz lemma to
show

THEOREM A. Let P} =(A*)x A% pe a punctured polycylinder, and let W, be a
compact complex manifold such that N\ T¥_ is positive in the sense of Grauert. Then
any nondegenerate map f: P¥ — W, extends to a rational map f': P,— W,. If
N\ T#, is very ample, then f” is actually holomorphic.

We say that a map is rational on P, if it has no essential singularities along any
of the branches z, =0, .. ., z,=0. From this we obtain

CoOROLLARY. Let A\ Ty, be positive in the sense of Grauert. Then any holo-
morphic map f: C*— W, is totally degenerate, i.e., the Jacobian determinant |J(f)|
vanishes identically.

The above theorem was first proved by Griffiths [3] in the equidimensional case
when A™ T3, = Ky is very ample(?). The more general case, for g#n, is based on
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the proof in [3] plus simple curvature arguments. It should be remarked that
Griffiths’ equidimensional theorem is the most important for the applications, for
example, to Picard-type problems in several complex variables.

In the second section we give a simplified proof of a fundamental Nevanlinna
estimate of Kodaira. Kodaira’s estimate deals with holomorphic mappings of the
n-ball of radius R in C™ into W,, where W, is a complex manifold of general type
(see §2 for definitions). A consequence of this estimate is that if /3 B,(R) > W, is
normalized so that f(0)=p, and |Jf(0)]=1, then there is an absolute constant
R..«(n, po) such that R=< R,.,. This is a generalization of the classical Schottky-
Landau theorem.

In the third section we apply the theorems of Griffiths and Kodaira to prove the
following generalization of the little Picard theorem:

THEOREM B. Let f: C* — P,—V be holomorphic, and suppose that V is a hyper-
surface of degree d=n+ 3 whose singularities are locally normal crossings. Then f is
totally degenerate.

Thus, if n=1, this says that f: C — P, —{0, 1, a, oo} is constant, a crude version
of Picard’s theorem. Two interesting special cases of the above theorem occur
when V is smooth and when V is the union of smooth hypersurfaces Vy,..., Vj
meeting transversely and such that no more than n components pass through any
point. For example, if the V; are hyperplanes, we conclude that any holomorphic
map of C" into P,—(V, U---U V,,3) must be totally degenerate. This gives a
partial answer to a problem of Chern, who asked the same question for n+2
hyperplanes(®). We should remark that the more obvious generalization of Picard’s
theorem, namely, that f: C* — P, — V be constant, is false in the generality of the
above theorem. In fact, we have the following instructive example of Peter Kiernan.

ExXAMPLE. Let F,<P, be the Fermat hypersurface of degree d defined by the
homogenous equation z& + - - - +z¢=0. Set p=greatest integer in n/2. Then there is a
nondegenerate holomorphic map f: C* — P,—F, for any d. To see this, con-
sider the affine equation for F, : 1+wi+ .- - +wi=0. We define f for n even by
Sy ooy o) =11, €101, Ras Eafbo, - - -5 My Epftp) Where the g are dth roots of —1.

What Kiernan’s example shows here is that for more refined versions of Picard’s
theorem one must do more than require ¥ to have high degree.

In the fourth section we prove a version of the big Picard theorem in several
complex variables under the assumption that ¥ be smooth and have high degree.
This is applied to give the following rigidity theorem:

PROPOSITION. Let V, and V, be nonsingular hypersurfaces of degree d=n+3
in P,. Then P,—V, and P,— V, are biholomorphic if and only if there is a projective
linear automorphism B which carries V, onto V. Moreover, the complex automorphism
group of P,—V, is finite.

(®) Chern’s conjecture has been answered by recent work of Mark Green.
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It is my pleasure to acknowledge the many helpful conversations with Phillip
Griffiths which made this work possible.

I. Intermediate volume forms and the Schwarz lemma. The aim of this section
is to formulate and prove an extension theorem for holomorphic mappings of a
g-dimensional punctured polycylinder into an n-dimensional complex manifold,
where g <n. The first step is to prove a generalization of the Ahlfors comparison
theorem for volume elements on the unit disk. The proof is a rephrasing of the one
found in [3]. Recall that if P,(R)=P(R) is the g-dimensional polycylinder
{z| |zl <R, i=1,..., g}, then there is a volume element invariant under all complex
automorphisms of P(R) given by

dzy N+ ANdzg ANdZy A--- A dZ,

[T-1 (R2=z?)?

Let v=i"*%dz; A --- Adz,AdZ, A - - - AdZ, be a pseudovolume element on P(R),
i.e., g>0 except on an analytic subset 2. Now the Ricci form of a volume element
v given locally by i®®*%dz, A --- AdzyAdZ, A --- AdZ, on an arbitrary complex
manifold W, is given by

?) Ric (v) = dd°log h = 2i9d log h.

(1) pp = iq2+qaqR2q

Thus Ric (v) is a real nonnegative (1, 1) form. If v is a pseudovolume element, we
will define the Ricci form on P(R)—2. We want to prove the following lemma:

LeMMA 1 (AHLFORS, CHERN, KOBAYASHI). Let v be a pseudovolume element on
P,(R) such that Ric (v) is positive definite and Ric (v)?=cov on P(R)—9. Then the
normalization constant a in (1) can be chosen such that v< uy on P(R).

Proof. (i) We first recall that with respect to ug, P is Einstein-Kdhler, i.e., there
is a constant ¢, such that

3) Ric (1)? = cp.

To see this, note that the group G of complex automorphisms generated by Mébius
transformations in each of the variables z; together with the maps z; — z; leaves
p invariant. Moreover, G is transitive on P, so that if (3) holds at one point x, € P,
then it holds for all x € P.

(ii) Write v=h,u, on P(p). Thus we have

o &Ll (P22
14 aqPZq

We must prove hy = c for some constant c. Note that it is sufficient to prove h,<¢
for p<R, since h, — hy as p — R. For p<R, h, is either identically zero or has a
positive interior maximum. This follows from the fact that g is continuous and
bounded on P(p), so that h,(w) — 0 as w — dP(p). There is nothing to prove in
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the first case, so we assume /4, has a positive maximum at x,. Note that g(x,)>0
if h,(x,)>0, so that x, € P(p) — 2. Thus we have

0 = dd°log h,(x,) = Ricv(x,)— Ric p,(x,),
or
Ric p,(x,) = Ricv(x,).

Using the fact that P is Einstein-Kdhler together with Ric v?= cyv, we obtain

cl/"'o(xp) 2 cov(x,,).

This shows that h,(x) S h,(x,) < c1/co=c, as desired.

To state the next result, we recall a few standard facts about curvature. Let A
be a hermitian metric in a complex vector bundle £ on V, and let 6(h) be the
curvature form. Thus 6 is a section of Hom (E, E) ® Ty ® T, where Ty is the
holomorphic tangent bundle of V. Now choose an orthonormal frame field {e,}
of E near x € V and let 62 be the curvature form of E relative to {e,}. Thus 6 is given
locally by

0= 68,dz A dz,
and we have 62;,=609,,. Hence
0 @) = > 02,887

defines a quadratic form, where £ € E, and n € Ty, (see [2, p. 201]). We say that
E is negative if 0(¢ ® n) is everywhere negative definite. Now let V, be n-
dimensional, and suppose henceforth that there is a metric v on A? Ty such that
6(v) is negative. Note that a volume form on V,, given locally by v=i%*gdz, A
<o ANdzgANdZy A - - - AdZ,, is naturally a metric on A? Ty =Ki¥. Thus we call such
a v on V, an intermediate volume form, or a g-volume.

In order to prove the Schwarz lemma for a g-volume, we need a generalization
of the Ricci form. To give this, let Z, be the sphere bundle in A? Ty defined by
the metric v, and let =: £, — V be the projection. Let ¢ be the canonical section of
length one of the bundle #* A? T}, on X,. The generalized Ricci form of v is a real,
positive definite section of #*(T, ® Ty) which is defined locally by

() Ric# (v) = —i Z 02,6°8dz, A\ dz,,

where 6% is the curvature form of A? Ty relative to an orthonormal frame {e,}
near pe V.

LEMMA 2. Let W<V be a complex submanifold. Hence vy restricts to give a
metric vy in \* Ty. Then Zy, =Xy and Ric# (vy) 2 Ric# (vy) on Zy,.

Proof. ATy is a subbundle of A?Ty|y. The usual argument (see [2, pp.
196-201]) with the second fundamental form shows that curvature decreases in the
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subbundle: 8(vy)(¢ ® 1) = 0(vy)(¢ ® n) where £ € A\ Ty, and 5 € Ty .. This means
that

—iz O(vw)si;6°€°dz, A dZ; 2 —iz O(vy)5i;8°E°dz; N dE;

as desired.

REMARKS. (i) Note that if V' is n-dimensional and A" Ty is negative relative
to a volume element », then both Ric (v) and Ric# (v) are positive. For example, the
unit disk with Poincaré volume

p = (idz A d2)|(1—|z|?)?

has constant negative Gauss curvature —4, whereas Ric (r) is positive. Thus nega-
tive curvature corresponds to positive Ricci form. Ric# should be thought of as
the generalization of Gauss curvature needed to generalize the Ahlfors lemma.

(ii) For g=1 the above lemma reduces to the statement that if W<V is a
submanifold, then the holomorphic sectional curvatures of W are no greater than
the sectional curvatures of V. The proof is also the same, except that we have done
things with a globally defined form which is positive.

The next lemma is a generalization of the statement that if ¥'is compact and has
negative sectional curvatures, then the sectional curvatures are bounded away from
zZero.

LEMMA 3. Let V be compact, and suppose that N\ Ty is negative relative to v.
If € is the canonical section of length one on w* A\ Ty, then Ric* (v)A(£)Zc>0.

Proof. Note that Ric# (v)? is a positive section of #*(A? T3 @ A T3¥). Evalu-
ating Ric# (v)? on ¢ gives a positive function on a compact manifold, from which
the result follows.

We can now reinterpret the condition Ric (v)?2 ¢ov in Lemma 1. Note that both
Ric (v)? and v give metrics in K% (P’'=P—9), so that to verify the above inequality,
it is enough to verify it on sections ¢ of KZF which have length one relative to v.
Thus the Ricci condition is locally Ric (v)%(€)=c¢, for v(€é)=1, or equivalently,
Ric# (v)1(£) = ¢, where ¢ is the canonical section of length one. This leads to the
following result.

PROPOSITION 1. Let V, be a compact complex manifold with a q-volume vy such
that N\° Ty is negative. Let f: P(R) — V, be a nondegenerate holomorphic map.
Then by a suitable choice of the normalization constant in (1), we obtain f*vy < pp.
Moreover, the choice of constant is independent of f.

Proof. Let 2 be the locus of J(f)=0 on P(R). Then f*v, is a pseudometric on
K2z, which is a metric on Kz (P’ =P—92). By Lemma 1, we must show Ric (f*v,)?
2 cof *vy on P’. By the above remarks, this is equivalent to showing Ric# (f*vy)%(¢)
= ¢, on Zp., where Zp is the circle bundle of K7 defined by the metric f*v,. Now
[ is locally a holomorphic difftomorphism of P’ onto f(P’) which gives an iso-
morphism fy: A% Tp. — A? Ty, preserving metrics. Here A? Ty, is equipped



278 J. A. CARLSON [June

with the metric v, gotten by restriction of »,. Therefore it is enough to prove
Ric# (v))¥(€)= ¢, on Z;p,. From Lemma 2 we get Ric# (v)(€) = Ric# (v,)(§) in
7*(Tjp, ® Tfip,). These are positive sections, hence Ric# (v,)?= Ric# (v,)4(¢) in
A Trpy @ N\ Tfp,. Now Lemma 3 gives Ric# (vy)%(€)=c, everywhere, hence
Ric# (v,)(€) Z ¢, as desired.

ReEMARKS. This argument specializes to give the usual result on distance-
decreasing for negative sectional curvatures when g=1. When g=n, it specializes
to Griffiths’ Schwarz lemma in [3). The proof in the general case is by interpolation.

To state the next result, suppose that ¥ is an n-dimensional complex manifold
with a metric vy in S* A? Ty, where S'E=S'(E) denotes the /th symmetric power
of the bundle E. Let f: W — V be a holomorphic map, where W is g-dimensional.
Then f*vy is a metric on S* A? Ty which has the local form

g@@*%zy A+ Adzg A dzy A--e A dZ)
This defines a volume form (f*v,)" which has the local form
iqz*'qgl”dzl Ao ANdzg Ndzy A+ A dZ,.

PROPOSITION 2. Let V, be a compact complex manifold such that S* N\° Ty is
negative relative to a metric vy. Let f: P(R) — V be nondegenerate and holomorphic.
Then the normalization constant in (1) can be chosen independently of f such that

(S*v)!' = ppe

Proof. We want to mimic the proof of Proposition 1. First note that v, defines
a Ricci form by the same formula (4) as before, except that the Ricci form is now
defined on »*(T¥ ® Tf), where =:X, — V is the projection from the sphere
bundle of S* A?Ty. By the same arguments which establish Lemmas 2 and 3, we

get

LeEMMA 2'. Let W<V be a complex submanifold. Hence v, restricts to give a
metric vy in S* \® Ty. Then 2<%, and Ric# (vy) Z Ric# (vy) on Zy,.

LeMMA 3. Let V be compact, and suppose that S* \® Ty is negative relative to v.
If ¢ is the canonical section of length one of n*S' A\ Ty, then [Ric (v)1(€)=¢>0.

Now let f*v,=g(i®°*%dz, A - - - AdZ,) so that (f*w,)'=i®*gllidz A - AdZ,.
To apply Lemma 1 to (f*v,)*" and thus to complete the proof, we must show

(a) Ric (f*vy)'" is positive definite,

(b) (Ric (f*»y)*")?Z co(f*vy)*".

Proof of (a). Note that (a) follows if Ric (v,)!" is positive definite on f(P’),
where v, =vy|statz, .. Let wy, ..., w, be local coordinates around x € f(P’), and
set v,=h(i?*dz, A - - - AdZ,). If ¢ and ¢’ are the canonical sections of the sphere
bundles Z(S* A? Typ+) and Z(A? Ty ), then we have

Ric (v,)(£) = dd® log h = I-dd® log B = I. Ric* (7}")(£).
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By Lemma 2, Ric#(v;) is positive definite, from which we conclude that
Ric# (f*vy)' is positive definite.

Proof of (b). We claim that (b) follows from

(©) [(Ricf*v) T2 ey f*vy.
Note that (c) holds because of Lemma 3’. Expressing (b) and (c) in local coordinates
we have

) (dd° log g™y 2 i%+ic,giidz, A --- A dz,
() [(dd<log g)%) = c,g[i®*%dz, A--- A dZ,).

Let dd°log g=i3 g,dz; AdZ,, so that (dd°log g)i=det (g,)(i®**%dz, A - - - A dZ,).
Hence (b’) and (c’) can be written as

(b") (1/1)% det (gi5) =z cog™,
(c”) (det (gi)) 2 c18.

Since Ric# (v) is positive, we know that (g;;) is a positive definite matrix. It is now
clear that (b") follows from (c") with co=(1//)%;.

To state the next result, we recall that a complex vector bundle E is negative in
the sense of Grauert if the zero section can be blown down to a point (see [5]). This
is equivalent to the existence of a plurisubharmonic function on E which is strictly
plurisubharmonic on the complement of the zero section. A complex vector bundle
E is positive in the sense of Grauert if its dual is negative in the sense of Grauert.
We recall that if E is Graueri-positive then S'E has positive curvature for / suffi-
ciently large. We can now state the following:

IV

PROPOSITION 3. Let V, be a compact complex manifold such that N\*Ty¥ is
positive in the sense of Grauert. Let f: P¥ — V be a nondegenerate holomorphic map
defined on the punctured polycylinder (A*)* x A1"¥, Then f extends to a rational(*)
map f: P,— V.

Proof. (i) Because ATy is Grauert-positive, S* A? Ty has positive curvature
for some />0 (see [5], [2]). By choosing / even larger, we may assume that S* A? T
is very ample (see [2]). This means that ¥ is immersed into a Grassmannian
Gr (m, N) by the global sections of S* A?Ty. To be explicit, we choose a basis
wj, . . ., wy for the vector space I" of global sections. Evaluation of a section on the
fiber gives the exact sequence

0>F—>VxI'—> S AN‘TF -0,

which defines a map y: V— Gr (m, N) by sending x to the subspace F, of I'.
We now fix a metric in S' ATy by vy =w; A@;+ - - - +wy A dy.

(i) To extend f: P} — V, to a rational map f: P, — V,, it is sufficient to extend
each of the holomorphic sections f*w; of S' A?T#% to a rational section of

(*) Rational means that f has no essential singularities along z, =0,..., z,=0.
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S' A\ T#. This is because the w; give local coordinates on V. We will show that
f*w; has at most a pole of order /—1 along z,=0, i=1,..., k. Write f*w,
=g(i®*dzy A - - - AdzZ,). If g, has an essential singularity or a pole of order >N
along some z;=0, then there is a ¢>0 such that, in the punctured polycylinder
P*(3) of radius %, we have |g;| >c¢/(z;- - -z;)". For if not, the Riemann extension
theorem yields g, =h/(z,- - - z,)", where h; is holomorphic on P(3), a contradiction.
Suppose that we can prove

® [ 0 n @t < oo,
Then we have

w0 > [ (o n @
P‘
f”z rdry f”z e dry

2N 2N/T
rINI , eV

=0 &

=f |&|?tdzy A--- A dZ, > lim ¢’
P.
Hence

const .
o > const+ -lim (2~ 2Nk,

@—2NJI)* oo

from which we conclude 2—2N//>0, or N<I.
(iii) It remains to show (x). First, we show that

[ renayrs nz)" [ g
Now f*v,=>I, f*(w; A @) so that
[rvy = (12 Ig,llz)(i"z“"a'z1 A A dZ)

Using the fact that the function y — ¥ is concave(®), we get

1 lg.|?" < 1 i lgi|2" < (lz |g‘|2)1"’
N = N4 =N

which gives (1/N)(f*(w; A &))" S (1/N)(f*v,)*", and hence the claim.

Now let «: P— P* be the universal covering map. The Poincaré volume u on P
is invariant under covering transformations, so it descends to give a volume form
wpe on P*. Therefore, (f*v,)"" < up. on P* is equivalent to («*f*v,)* < up on P.
The latter statement follows from the Schwarz lemma applied to the function f o «.

(® If E is a measure space such that u(E)=1, and ¢ is concave, then Jensen’s inequality
says [ ¥ o fdu=y(f; fdu) (see [10, p. 61]).
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Now the volume of the concentric polycylinder P(3) is finite in the Poincaré
volume, which implies that up.(P*(%)) <oo. Therefore we conclude that

J’P‘<1/2) (f*(wi A a')i))l" = N(—Jt-/)m fp~(1/2) (f*Vv)w

]

N /‘LP‘ < w;
N P*(1/2)

as desired.

RemMARK. Note that if /=1, i.e. if A\? T is very ample, then fextends as a holo-
morphic mapping. For g=n this is Griffiths’ extension theorem for canonical
algebraic varieties [3]). The proof also establishes Griffiths’ theorem when K is
positive.

Before giving the applications of this theorem, we must recall the notion of
smooth compactifications of algebraic varieties (see [2]). Let U be a smooth pro-
jective Zariski open set, i.e. U=V — W, where V and W are projective varieties. A
smooth compactification of U is a nonsingular projective variety U’ such that
Uc U’ is a dense open set and U'— U= D is a union of nonsingular divisors D,
with normal crossings. Thus a local analytic equation for D in U’ is zy, ..., z,=0.
This has the useful consequence that if P is a polycylinder in U’, then UN P
=(U’'—D) N P is just a punctured polycylinder (A*)* x A"~* Recall that U’ is
obtained from V by quadratic transformations. Thus there is a rational holo-
morphic map U’ %, V which is biholomorphic on U. Smooth compactifications
are not unique. Given two compactifications U’, U”, there is always a third one
U” with rational holomorphic maps =,: U" — U’ and m,: U" - U". If f: X > Y
is a rational map between algebraic varieties, then there is a subvariety BS X
along which fis indeterminate. However, we can always find a smooth compactifi-
cation X' of X— B such that #: X' — X pulls f back to an everywhere defined
function, i.e. a rational holomorphic function.

As an example, we note that P, is a smooth compactification of C,, where
D=P,_, is the hyperplane at infinity. Let z,, z;, z, be homogeneous coordinates
on P, such that D={z,=0}. Then z,/z, is holomorphic on C2=P,— D and has a
pole along D. However, z,/z, is indeterminate at [0, 0, 1] (homogeneous coor-
dinates). To remedy this, we blow up [0, 0, 1] to obtain a rational variety P; and a
holomorphic map 7: P; — P,. If &=7"1[0, 0, 1] is the exceptional set, then = is
biholomorphic on P;—&. Now z,/z, extends from P;—¢& to P, as an everywhere
defined rational function f: P; — P;.

An immediate corollary of Proposition 3 and the above remarks is the following
extension theorem.

IA

COROLLARY 1. Let U, be a g-dimensional Zariski open set as above, and
f: U,— V, a nondegenerate holomorphic map. If \* T¥ is positive in the sense of
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Grauert, then f extends as a holomorphic map f': U; — V,, for a suitable smooth
compactification Uj.

This, in turn, gives the following degeneracy theorem:

COROLLARY 2. Let V, be an n-dimensional complex manifold such that )\° T¥
is positive in the sense of Grauert. Then any holomorphic map f: C?* — V, is totally
degenerate.

Proof. By Corollary 1, f extends to a holomorphic map f’: P, — V,. We know
that for />0, S' AT is very ample. Therefore we can find a global section
w e ['(S' A\?T¥) such that f*w e I'(Kp;) is nonzero. But I'(Kp.)~T'(Kp )={0}, a
contradiction.

REMARKS. (1) The extension theorem is also valid when A? T} is very ample
and f: U, — V, has rank = p (dim U,=m).

(2) If ATy is positive in the sense of Grauert, then the Schottky-Landau
theorem holds. This says that if f: P,(R) — V, is normalized so that f(0)=p and
|J(f)(0)] =1(5), then there is a constant R, independent of f'such that R< R,,.
The proof follows from the Schwarz lemma in exactly the same way as for the
equidimensional Schottky-Landau theorem in [3].

I1. The basic Kodaira estimate. We will give a modified proof of a Schottky-
Landau theorem due to Kodaira [8]. To state the theorem, we recall that an alge-
braic manifold is of general type if

lim inf m="dim H°(V, K™) > 0

where n=dim V and K is the canonical bundle.

THEOREM (KODAIRA). Let B(R)={ze€ C"| > |z|>*<R}, and let f: B(R) — V be
holomorphic and nondegenerate. Suppose f is normalized such that f(0)=p and
|[J(N)O)| =1 (). If Vis of general type, then there is a constant Ry, independent of
fsuch that R=< R y.

In particular, this implies that there is no nondegenerate map f: C* — V, where
V is of general type. The usefulness of Kodaira’s theorem is that the numerical
criterion of general type is usually much easier to compute than curvature con-
ditions. The main point in the proof given below is that balls are used instead of
polycylinders.

Conventions. We begin by establishing some conditions regarding curvature
and volume forms. This will be done to avoid complicated and irrelevant constants

(®) |J(f)0)] is defined by measuring f((8/0z,) A - - - A (8/8z,)) with the metric v in AT,
for example.

(™) |J(f)(0)] can be defined relative to coordinates on a fixed polycylindrical neighborhood
U of f(0).
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in the final theorems. First, we let d°=(—1)'/?(0—2)/4= (). This is defined so that
Jiz1=1 d° log |z]?=1. Let |[z|2=|z,]2+ - +]|zx|% and define n=d°log |z|,
Y=dn=dd° log |z|. If we let =y A"~ 1, then the sphere of radius r in C™ has
volume 1 relative to o: [, o=1. If L is a line bundle given by transition functions
fus, then sections of L are locally defined functions s, such that s, = fis5,. If {a,} is a
collection of positive C* functions satisfying a,=|f.s|%a,, then the length of a
section is measured by |s|2=|s,|?/a,. The first Chern class of L is defined by ¢;(L)
=dd°log a,. With these definitions one verifies that an ample bundle has positive defi-
nite first Chern class. By this, we mean that if dd°log a,=((— 1)Y2/4x) > g&dz; A dz;,
then the hermitian matrix (g%) is positive definite. For example, one easily checks
that the hyperplane bundle on P, is positive according to this definition(®).

Proof of the basic estimates. We begin by defining a volume form on V. Let L
be the hyperplane line bundle on V determined by some projective imbedding. If
V is of general type, then there is a section s € H°(V, K™ ® L*) for some m>0(*?).
Let a be the metric on L defined above. Thus a is a positive C® section of L & L.
Now s ® § is a real nonnegative C* section of K ® K ® L* ® L*, so that
as ® § is a nonnegative section of K ® K. Therefore it has a globally defined
mth root

Q= (as® 5" e (K, ® Ky),

which is the volume element we want. If s is defined locally by s,, then the (n, n)
form Q is defined locally by Q,=ai™|s.|*™.

Now suppose that f: B(R) — V is holomorphic and nondegenerate. We will also
suppose that f(0)=p ¢ (s), where (s)={x € V| s(x)=0}. Let ¢ be the comparison
function defined by f*Q=(—1)"2¢édz, AdZ, A - - - Adz, AdZ,. Thus

£ = (@™ o )lse o ST
Since f is normalized so that f(0)=p and |J(f)(0)]=1, we can multiply Q by a
constant independent of f so that £(0)=1. The idea of Kodaira’s result is to apply
the proof of Jensen’s theorem to £ We define two order functions by

)= e, T =[ e
B[r] Y B(r]
where B=((—1)Y?/4=) >*., dz; AdZ;, Blr]={z€ C" | ||z]| <r} and r < R. The order
function T(r) has the natural interpretation as the volume of the image f(B[r]).

(®) This is different from the d° used in §1.

(®) If L is very ample, take a basis s°,..., s¥ for the global sections, and define a,=|s%|?
+ .-+ +|s¥|2. Since L is very ample, a has the form 1+ |z,|2+ |z,|2+ higher order terms. Here
the z; are coordinates centered at an arbitrary point x. Then dd° log a, is positive definite at x
(see [2]).

(1°) We recall Kodaira’s proof: Since L=[X], where X is a nonsingular hyperplane section
of ¥V, we have the exact sequence 0 —~ H(V, K™ ® L*) — H°(V, K™) — H°(X, K%)---. Now
dim H°(V, K™= O(m" whereas dim H°(X, K¥)=0(m""?), so that dim H(V, K™ ® L*)>0
for sufficiently large m.
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Unfortunately, T#(r) is required for technical reasons. Counting functions are
defined by

OB IS (OB WO

Z[t1

where Z[t]1=f"1((s)) N Blt],

t
OB S AR RO

R[]

where R[t]=(J) N B[t] and (J) is the divisor of J(f)=0. The normalization
conditions are simply that neither Z=/f~1((s)) nor (J) pass through the origin so
that both n(¢) and n,(¢) converge. The functions n(¢) and »,(¢) should be thought
of as the area of Z[t], R[t], respectively. Hence n(t) and n,(¢) are zero for small
values of ¢, so the improper integrals N(¢) and N,(¢) converge. We can now state

PROPOSITION 1. Under the assumptions of Theorem 1 we have T(r)=r?" and
T#(r)= lor?", where I, is an absolute constant depending only on n=dim V.

PROPOSITION 2. Under the assumptions of Theorem 1 we have

nkl/n
m

’ dt 1 1 dr#
J;) T#(r)tz,,—_1+n—-1 N(r)+N1(r) § nlog [’m 7]"}'11.

Here k is a positive constant such that c¢,(L)" = k(n!/(4m)")Q, and I, is an absolute
constant depending only on n.

The Schottky-Landau theorem will follow easily from Propositions 1 and 2.

Preliminaries to the proof of both propositions. Consider I(¢) = [ 5, dd° log ¢ A"~ 1.
Let T, (Z[t]) and T.(R[t]) be e-tubes around Z[t], R[t], respectively. Since
ddclog £ is C™ on the region BY[t]=B[t]—T.(Z[t])— T.(R[t]), Stokes’ theorem
gives

ddclogé A gn-t = dclog ¢ A w-l—f dolog & A

B2t) Sit1 oT(ZItD

1)
-f dolog € A o1,
oT (R[]

Recall the residue formula for an analytic function f:
im|  delog|f]2 A g =f gt
£20Jara(h) %)

where T(f) is an e-tube around the divisor (f). Moreover, if g is a function which
does not vanish on (f), we easily find that

2 lim d°logg A "t =0.

820 Jars(n)
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Now
d®log ¢ = (1/m)d° log (a ° f)+(1/m) d° log |s, o f|2+d° log [J(f)|*.

Using this, together with the residue formula, we find that
@) lim| ddclogen gt = delogé A g1l ¢"-1—f ey

e=0JB01t) SIt) mJam RIt]
On the other hand, since dd°log |h|2=0 if h is a nonvanishing holomorphic
function, we find that

ddclog & A ynt = = ddtlog (agef) A gt
B2t m J o

1

== *c (L) A Yt
ALY

)

Taking the limit in (4) and combining the result with (3), we obtain
® 5| rra@ares [ g pei=| dcogea g
mJpm MmJzm RIE) st

For convenience, we introduce K(¢)= f s S ¥e1(L) A"~ 1. Since ¢ has a singularity
at the origin, we should show that K(¢) converges. This will be answered by the
following lemma of Lelong (see [9, pp. 72-73]).

LeMMA. Let 0 be a closed positive current of type (1, 1). Then

. 1
O [ enwtemn] oapremn| eap
Blry]-Blrg) ri Blry) ra Blrs]

(i) If 0 is C™ at the origin, then the integral [, . 0Ay"~* converges and

ot OAgr—1=(r>"=2)" [, OAB L.
(iii) If 6 is C* at the origin, then [, O Ay~ Sconst-r? for r<r,.

Since our notation is somewhat different from Lelong’s we recall the proof.
Since B[r]is contractible, there is a current « such that de= 6. An easy computation
shows that "~ 1| S[r]=(r"~2)~18"~1, Then Stokes’ theorem gives

f 0 Ayt =f o« A ¢"“1—f a A yYrl
Blr1]- Blra) stryl Siral

1 1
— -1 -1
- ren-2 a A Bn T Ton-2 a A [gn .
1 Sl ra Stra]

Another application of Stokes’ theorem gives (i). If 8 is C® at the origin, then for
r=r, sufficiently small, we have

1 - -
rzn—zf aApt= Fon-2 6 A Bt
Srl

()

onst cons
<< J g = rzT_:-vol (B[r]) < const-r2,
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Using (*) in (i) to compute the limit as r, — 0, we get (ii). The estimate (x) applied

to (ii) gives (iii). Q.E.D.
Returning to the proof, we write (5) as

1 1 c n-1
L K() o n(e)+me) =Lmd log & A .

We now integrate this from ¢ to r with respect to dt/t to get
) KOSl [0 G [ m§ =[] atoge n g
3 S(t1

Since dt/t=d log |z||, Fubini’s theorem gives

@) f dt d°log &€ A ¢1 =f dlog |z| A d°log &€ A Y2,
£ B[t] - Ble]

t Jsm
If « and B are 1-forms and ¢ is an (n—1,n—1) form, then daeAd°BA¢
= —d°« A dB A ¢. Therefore
dlog |z| A d°log £ A Yyt =dlog é A d°log |z| A ¢t
= d(log £ A d°log |z]| A $*7Y).

In the last step we have used the fact that 4"=0. Hence another application of
Stokes’ theorem to (7) reduces (6) to

IJ" dt IJ" dt J" dt J’ f
— | K@)=+=| n(t)—+]| n(t)— = lo — log ¢o.
m), ()~ me()t el()t o g o . g éo

Now K(1)={p, f*e:(L) A"~ < const- 12 by (iii) in the lemma above, so that the
improper integral [ K(r)(dt/t) converges. Moreover, [, log £o is just the mean
value of log ¢ on S[e]. Because of our normalization, log £(0)=0, so that
lim,_¢ [, log é5=0

Taking the limit as e — 0, the expression above becomes

1 (7 dt 1
8 —fKt—+—Nt+Nt=f log éo.
®) m), KOTHLZNO+N@ = | log
Proof of Proposition 1. The idea is to reinterpret [, log o using concavity of

the logarithm and polar coordinates. We give the proof for T# the proof for T
being essentially the same. First, log £ =n log £'/*. Then concavity of the logarithm
gives

f log é0 < nlog gling,

S(r]

SIr]

The formula for polar coordinates tells us that

((n2_111)')J (2n-14y w ging = ( ane = ((2’7:.) ) N glingn,

J Brr)
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where 2#"/(n—1)! is the volume of the unit sphere in C™ and ®=((—1)2/2)"dz,
AdZy A - - - Adz, A dZ, is the standard euclidean volume form on C™~ R?". Differ-
entiating the above identity, we get

2n—1 l d 1/n@Qn 1/n
( n )"2"—1‘1" B[r]g B —L[rlf -

Applying these remarks to (8), we get

n—-1 #
© L[ k0Ll vo+No s nioe | (22) = |
Now the left-hand side of (9) is nonnegative, which implies that

-1 1 dT# 1
n ) re1gr z L

Integrating the inequality dT#/dr=(n/2"~Y)r**-! from 0 to r gives T#r)
2(n/(2n—1)2"~1)r2" which we write as T#(r) = [,r2".

Proof of Proposition 2. The idea is to reinterpret the term (g K(¢)dt/t in (9)
using the order function T# It is here that the assumption that L be positive is
critical. We first remark that if G is a positive semidefinite hermitian matrix, then
det G¥" <trace G/n. This follows from the theorem on the geometric and arith-
metic means, (Ay,..., A)*=(A;+---+A,)/n applied to the eigenvalues of G.
Now recall that if 8 is a positive C* (1, 1) form, we have the relation between the
projective and euclidean trace (see [9, pp. 72-73])

(10) 0 Ayt = ,z—l-zf 0 A B,
B(r]

B(r]
Now let 0=f*c,(L)=((—1)"%/4n) > g.dz,. AdZ, where the hermitian matrix

G=(gx) is positive definite. An easy computation gives 6 A 8"~ ! =(trace G)B".
Substituting into (10), we get

S*eu(L) A g7t

B[]

2—,};—2 f (trace G)B*
(l 1) t B[t]

n

2 tT_zf (det G)/"B",
B[t]

Now V is compact and c¢,(L)" is an everywhere positive (n, n) form, so there is a
constant k>0 such that ¢,(L)"=(nlk/(4m)")Q2. Pulling this back to B[t], we get
Sf*e (L) z (n'k/(4m)")f*Q, or (det G)B™ = k&B™. Therefore det G= k¢ and

(det G)l/n > kllnfl/n.
Substituting this into (11) gives

f*cl(L) A ¢n 1 ; 2n ZJ gl/nﬁn

B[t}
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Recalling the definitions of K and T#, the estimate (9) becomes

kim\ (7 dt 1 1 dT#
(12) (nT) fo T#(t) 71 5, N0+ Ni(r) < nlog [rT-l “dT] +h

where /; =log (2"~1/n) 2 0. Note that for 1 <1,

f £tngr < const-vol (B[t]) < const- 12",
BIt]

so that the integral [ T#(r) dt/t>*~* converges. This ends the proof of Proposi-
tion 2.

Proof of the Schottky-Landau theorem. Before giving the formal proof, we will
give a heuristic argument. First, the basic estimate gives

#
1 dT] I,.

klln r dt
THt) o= < nlog [pn—_l—d;‘ +

(13)

0

Suppose that T# is extremely nice, let us say T#(r)=re*2". By Proposition 1, we
know «=0. Substituting into (8) we obtain

klln *T
J 1941 dr < log [(a+2m) <] +1y,
m J,
hence
(14) const-1**2 < const-log ¢+ const.

The left-hand side of this equation grows much faster than the right-hand side,
so it is valid only for r £ R,y for some Ry, <. A crude version of the Schottky-
Landau theorem can be obtained by a slight refinement of this argument.

PROPOSITION. If V is of general type and f: B(R) — W is nondegenerate, then
R< 0.

Proof. We recall a standard calculus lemma of value distribution theory (see
[11, p. 54]).

LeEMMA. Let ¢ be a continuously differentiable, positive, increasing function on
[ro, ©], where ro = 1. Then ' <y* for any B>1 on J=[r,, 0] — I, where I is an open
set such that |, dlog x <co.

One easily checks that T#(r) satisfies the hypotheses of the lemma(*?). The
inequality (13) yields

T #2
Af T#(t) tz‘,{t_l < log [fznf’l)] +/, onlJ,
0

(**) For example, dT#|dr=const-r?"-1 Ism &g, Since £Y" is continuous, Stokes’ theorem
shows [, ¢ is a continuous function of r, so that dT#/dr is continuous.
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where A=k'"/m. Introduce S(r)= [ T#(r) dt/t*"~* and write the above equation
as
AS(r) < log T#(r)+log (T#(r)/r>"~Y)+1, onJ,.

Now dS/dr=T#r)/r?" 1, and the lemma gives dS/dr < S? on J,. Therefore we get
AS(r) < log T#Hr)+2log S(r)+1, onJ,NJ,.
We rewrite this as
AS(r) £ 2n—1)log r+log (dS/dr)y+2log S(r)+1,
and apply dS/dr<S2 on J, once more to get
AS(r) = 2n—1)logr+4log S(r)+1, onJiNJ,.
Dividing by S(r) we get

logr 4logS(r) I

Fr)-*_———S(r) S-(_r) onJ, NJ,.

A= (2n-1)
Now T#r)zIor?", so S(r)=(ly/2)r2. Moreover, the complement of any set of
finite logarithmic measure contains a sequence {r;} such that r; — co. Therefore
we find that
22n—1)logr; 4log S(r;)) 21,

7 TS0y hrE

(15) 0<A<

Using ’Hopital’s rule to compute lim (log S(r,)/S(r,)), we see that the right-hand
side of (15) tends to zero as r; — oo, thus the inequality is valid only for r =< R,
<. Q.E.D.

Proof of the precise Schottky-Landau theorem. The problem with the above
“proof” is that the choice of J, and J, is not a priori independent of the order
function T#, which certainly depends on f. The precise Schottky-Landau theorem
is proved by a more precise analysis of the integrated order function S(r)
=[7 T#(t) dt[t>*~* (see [8]). For convenience, we write Q(r)=(r2"~1)"1dT#/dr.
Then (13) becomes

(16) AS(r) £ nlog BQ(r)

where B=e'1=2""1/n,

The first step in the proof is to obtain a tentative bound for R,,,, by assuming
*) Q(r) = r3*-18(r)s
Assuming (*), inequality (16) becomes

S(r) £ (n/4A)(log B+(2n—1)log r+4log S(r)).
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Dividing by S(r) and simplifying constants we get

logr 4log S(r))

1< ”( L +n=1) g5+ 50y

= 4\S()
Using S(r) 2 (lo/2)r? and log x £e~1x for x>0, the first two terms are dominated
by (21;/lo)r=2, 2Q2n—1)e~1/ly)r =1, respectively. Writing (4 log S)/S=(8 log S?)/S
<8e~1/SY2<8(2) 2e~1/I}?r, and assuming r =1, the above estimate becomes

1\p-1 12,-1
1<£{211+2(2n De +8(2) e }1

=4\ Iy P e

We write this as 1=<rq(k, n, po)r~! where r, is a constant depending only on n, k,
and the point p,. Note that we have chosen ro=1. We conclude that if Q(r)
Sr2n-18(r)4, then r<r,.

Now assume that r>r,. By what we have just shown, we know that one of the
following must hold:

(a) T#(r)<r®"=Q(r),

(b) r2*=182(r) < T#(r).
Suppose that (a) holds on an interval I. Using Q(r)=(r?"~1) ~*dT#/dr we find that
dr <dT#|T#2. Suppose (b) holds on an interval J. Using dS/dr=T#(r)/r?"~* we find
dr<dS[S2. Since both T and S are nondecreasing, this implies that on the interval
(ro, Rmax) We have dr <dT#/T#?+dS[S?. Integrating this inequality we obtain

T T 1 T 1
r—ro=1\ dt <f d(——)+J~ d(——),
0 J;o To T# To Sr
1 1. It 251

TS Ty Y Sty = T T T

Since ro=1, this yields Rp.<ro+3/l,. Thus we have obtained a bound on R,

depending only on n, k, and p,.

ITI. A degeneracy theorem for holomorphic maps /: C* — P,— D. In this sec-
tion we discuss an n-dimensional generalization of Picard’s theorem. The first
result is the following:

THEOREM 1. Let DS P, be a nonsingular divisor of degree d=n+3. Then any
holomorphic mapping f: C* — P, — D is totally degenerate, i.e. |J(f)|=0.

In dimension one this says that any entire function f: C — P; —{four points} is
constant, a crude version of Picard’s theorem. Another way of stating Theorem 1
is that any nondegenerate holomorphic map f: C* — P, must intersect D if D is
smooth and has high enough degree.

Proof of the theorem. We construct a cyclic branched cover W, of P, satisfying

(a) W, =, P, is branched exactly along D.

(b) W, is a nonsingular hypersurface of degree d in P, ;.
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If fi(zo, - - -5 z,)=01s a homogeneous equation for D, one easily verifies that such
a W, is given by F(zq, ..., Zp41)=2%,1—fu(20,. .., 2z,). Note that W,— D=W,
— 7~ 1(D) because the cover is cyclic. Because of condition (a), »: W,— D — P,— D
is a covering map(*2), so f'lifts to a map f': C* - W,— D= W,.

W,—D —— W,

/1

,// lﬂ l‘ﬂ‘

// f
c+ — P,—-D — P,

The idea is now to apply Griffiths’ theorem on canonical algebraic varieties (see
[3]), which implies that any holomorphic map f: C* — W, is totally degenerate
if Ky, is very ample. Thus it remains to show that the cyclic cover constructed
above has very ample canonical bundle.

To see this recall that a line bundle L on a variety V is very ample if its global
sections give an immersion of V into Py. The immersion g, is constructed by taking
a basis 5%, ..., s¥ for the global sections of L and sending x — [s°, ..., s¥], where
[we, ..., wy] are homogeneous coordinates on Py. Moreover, if W<V is a sub-
manifold of V, then the global sections of L on V restrict to global sections of L
on W, so that if L is very ample on V, it is very ample on any subvariety W. By
explicit computation, we see that any positive multiple of the hyperplane bundle
[H] on P, is very ample, and hence very ample when restricted to any sub-
variety of P,,;. Now we can explicitly compute Ky, from the adjunction formula
Kw=Kp,,, @ [W]|w, where [W] is the line bundle determined by the divisor W.
Recall that Kp,,, =[H] "*?. Moreover, W is linearly equivalent to [H]%. To see
this, just observe that g=f,/z% exhibits the linear equivalence. We conclude that
Ky=[H]4~"*?|y, so that Ky is very ample if d>n+2. Q.E.D.

To state the next theorem, we let D=V, be a possibly singular divisor. D is
said to have good singularities if for each point x € D there are local analytic
coordinates z,,...,z, on V, centered at x such that a local equation for D is
zy ... z,=0. Thus the singularities of D are locally normal crossings. For example,
a union of nonsingular hypersurfaces meeting transversely with no more than n
components passing through any point is such a divisor. An interesting special case
is the union of hyperplanes in general position. Other examples are surfaces in P,
with a nonsingular double curve, etc.

THEOREM 1'. Let DS P, be a divisor of degree d=n+3 having good singularities.
Let f: B(R) — P,— D be a nondegenerate holomorphic map normalized so that
f(0)=p, € P,— D and |J(f)(0)|=1. Then there is an absolute constant Rp..(n, po)
such that R= Rya.(n, po).

(*?) In fact, = (P,— D)~ Z,. The covering transformations are given by [z,..., Zn+1]
— [2o,. .., PZn+1], where p=exp (27i/d). Hence W, — D is the universal cover of P,— D.
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As an immediate consequence we have

COROLLARY 1. Let D= P, be a divisor of degree d=n+ 3 with good singularities.
Then any holomorphic map f: C* — P,— D is totally degenerate.

The proof is somewhat more complicated than in the previous case, although the
idea is the same. We begin by defining a cyclic branched cover W, Z, P, which is
branched exactly along D. Just as before, W, is defined by z¢,, —fy(zo, . . ., 2,) =0.
The technical problem is that W, has singularities lying over the singularities of D.
By means of explicit quadratic transformations we desingularize W, to obtain an
algebraic manifold W, *, P,. Because the singularities of W, lie in the singular
locus of D, W, —='~YD)— W,—=~*D). Moreover, =': W, —='~*(D) - P,— D
is a covering map, so we get a lifting f': C* — W, —='~(D)< W,. If we can show
that W, is of general type, Kodaira’s theorem will apply to give Theorem 1.

W, —n YD) ~ W, —«'" (D) —> W,

'/ﬂ
oo |

¢t— P,-D = P,—D—— P,

12

The theorem is therefore proved modulo the lemma:

LemMA 1. Let D< P, be a divisor with good singularities such that deg (D)= n+ 3.
Let W, be a desingularization of the standard d-fold cyclic cover W, of P, branched
exactly along D. Then W, is of general type.

To give the proof of the lemma, we review the notion of rational differential
forms and the residue operator [4]. Next we discuss the resolution of singularities.
Then we will be able to calculate the so-called adjoint conditions which the singu-
larities of W, impose upon the rational differential forms in the ambient projective
space, frem which the lemma will follow.

(A) The residue operator. Let V, ., be an (n+ 1)-dimensional complex manifold,
and W<V, ,, a nonsingular divisor. Given a rational (n+ 1)-form w with a first
order pole along W, we want to define a holomorphic n-form R(w) on W. We first
solve the problem locally. The global result will follow by taking sections of the
appropriate sheaves. Thus we set V,,,=P,,;, the (n+1)-dimensional poly-
cylinder. On P, ., w=(hdzy A --- Adz,,,)/f, where fis a local defining equation
for W. Since W is nonsingular, we may assume by shrinking P, that one of the
partial derivatives, say of/0z, ., ,, is nowhere zero on W. Then we have

( of )_ldf= (if_)“(?idzlJr.--+aa—£dz,.)+dzn+1,

0Zn 11 0Zp 41 0z,
hence
hdzy N---Ndz, df

w=——————/\7.

f[02,41
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Define

hdzy A--- A dz,
floznsr  °

i.e. we integrate out the logarithmic term df/f. One easily checks (see [4]) that the
definition is independent of the choice of local defining equation, etc. The result of
this is the Poincaré residue sequence

R(w) =

0—> Ky —> Ky, ® [W] -2 Ky —> 0.

The exact cohomology sequence globalizes this to give

HO(K,) —> H(K, ® [W]) B> HO(Ky).

(B) Rational differential forms. A rational differential form on P, with a first
order pole along D is just a section of Kp,,, ® [D]=Kp,, (D). If C**1cP, ., is
an affine piece of P, given by z,#0, then a section w € I'(Kp_, (D)) is given by

n+1

w=(Pdz;y N--- A dz;,,1)]Q

where Q is the affine equation for D and P is a polynomial of degree d—(n+2).

(C) Resolution of singularities. Suppose that Z< V is a nonsingular subvariety
of codimension = 2. Then there are a variety V' and a holomorphic map p: V' — V
such that

@) p: V'—p~YZ) — V—Z is biholomorphic,

(b) p~H(Z)=P(N(2)).

Here N(Z) is the normal bundle of Z and P(N(Z)) is the variety in ¥ obtained by
replacing each fiber N, by the associated projective space P(N,). Note that V' is
nonsingular and P(N(Z)) is a divisor. If W< Vis a singular subvariety of V, we set
W'=closure of p~Y(W—Z). Notice that p~X(W)=W’' U &, where £=P(N(Z))
is the so-called exceptional set. We call p~}(W) the total transform of W and W’
the proper transform. We say that V', W’ are obtained by blowing up V, W,
respectively, along Z. The aim is to resolve the singularities of ¥ by a sequence of
such transformations.

In order to perform the necessary computations, we need an explicit local
description of the map p. Therefore, let P, be a polycylindrical neighborhood of a
point x € V such that P, N Z is defined by z,=0, ..., z,=0 where k=codim Z.
Then p~(P,)=P, is defined as a subvariety of P, x P, _, as follows. Let wy, ..., w,
be homogeneous coordinates on P,_;. Then P,={(zy,..., zp, w1, ..., W) | Wiz,
=w,z;, 1 2i,j<k}. Now P,xP,_, is covered by open sets P,x U,, where U,
=P,_1—{w,=0}. Coordinate functions on U, are & =w;/w,, 1<j<k, j#« Thus
coordinates on P, are given by {z,, £,..., & ..., €% zyr1, ..., Z.}(*®). The map

(*3) Here ~ denotes omission.
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p: P, — P, is induced by the projection P, x P,_, — P,. Therefore, p is given
locally by

Pa(zou gt]z-’ REY éﬁ’ Zi 41 - Zn) = (Zagga sy Zagy ey Zafz, Ztls-- s Zn)'

Since this notation is somewhat disgusting and cumbersome, we usually write

pa(")la B "]n) = (7]a7]1a cees Mas oo Nallies Mie+15 -+ = nk)'

ExampLE. Consider the variety defined by f=z?+2%2=0 in P;. We perform a
quadratic transformation (blowing up) centered along {z; =0} N {z,=0}. One of
the projection maps is given by p(n1, 72, 73) = (91, 71172, 1s). The total transform is
fop=n}+n3ng=n%(1+72). The smooth variety 1+7%%=0 is the proper transform,
and 72=0 is the exceptional set.

(D) Calculation of the adjoint conditions. The problem nowis tofinda W'cP, ,,
which desingularizes W, and from this to calculate Ky.. The residue operator gives
sections of Ky from sections of Kp, , (W’), so what we really need is a description
of the global sections of Kp; . (W’). If w is a global section of Kp,, (W), then
p*w has a pole along the total transform W’ U &. Therefore we must impose
restrictions on sections of Kp_, (W) such that p*w has a simple pole on W’ but is
holomorphic elsewhere. These are the so-called adjoint conditions on W. If we
look at the problem locally, what we really want is a description of the subsheaf
p«Kp, . (W)= Kp, , ,(W). Then every global section of p,Kp; , . (W’) pulls back to a
global section of Kp_, (W), and this will give us what we need. The calculation of

the adjoint conditions is thus reduced to an essentially local problem. Our im-
mediate goal is to prove

LEMMA 2. For W as in Theorem 1', p.Kp,, (W')=Kp,, (W), ie. no adjoint
conditions are imposed.

The proof of the lemma is somewhat tedious, so we give an example to illustrate
how the computations go. )

ExXAMPLE. Let W< P,,, be a hypersurface of degree d which is nonsingular
except at the point x. Suppose that a local analytic equation for W at x is f=zf+
-+« +zk, ,=0. A rational (n+1)-form is given locally by

w = (hdzy A+ A dzp,)[(ZE+ - +2550).

Consider the quadratic transformation centered at x(**). p: P, ., — P, is given
locally by n+1 projections

P10 s M) = (1, MM2s - - o5 Mins 1)

Pre1Ms o 5 Mt 1) = Mok 10 -+ o5 Dot 17 Tnt -

(**) Le., we blow up x and replace it by a P,.
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The total transform of W near x is given in pieces, for example by fop,
=ni+nins+ - +nink 1 =ni(1+75+n%.1). The proper transform is f*=14n}§
+ -+ +n%,,, which is nonsingular. Moreover, we find that

Po = hopnidn, A~ A dnnyy _ hopni=*dn A~ A dnpyy
fom v

Therefore, if n= k, the piece of the resolution given by p, imposes no adjoint con-
ditions on w. By symmetry, we see that the other pieces of the resolution give the
same result. We conclude that W can be resolved in one step by p: P, — P,
and that no adjoint conditions are imposed, i.. p«Kp,, (W)=Kp,, (W). Let w

be the globally defined rational (n+ 1)-form on P, given by

o= (Pdzy A--- A dz,,,)]0

on a standard affine open C**'< P, ,. Thus Q is an affine equation for W and P
is a polynomial of degree d—(n+2). The p*w is a globally defined rational (n+ 1)-
form on P, , with W’ as simple polar locus. Since W' is nonsingular, the residue
operation applied to p*w gives a holomorphic n-form on W’. Because of the explicit
form of the residue operation given in (A), we see that the divisor of R(p*w) on
W'—& is just the divisor Po p=0.

Proof of Lemma 2. We first consider the case where W *, P, is branched over
D such that at most two branches of D meet at any point. Thus a local analytic
equation for W is f=z%,,—z,z,, We blow up along the locus {z;=0}
N {z,4+1=0}(*®). Since p~(P,,1)S P, .1 X Py, the projection is given in two pieces:

pA(nl, EREEY 7]n+1) = ("]n«}- 1M1 -+ 5 Mn+ 1)9
pB(nh cees Mny 1) = (7]1, N2s + - «s MM+ 1)‘
A rational (n+1)-form on P, , with simple pole on W is represented on P,,, by

w=(hdz, A - -+ Adz,,,)/f. Now the total transform of f by p, is fops=n2,.
— (7t 1m1)m2 and the proper transform is f4=n%:1—%.m,. The pullback of w is

hopimerdn N A dnusy _ hopadn A A diyy
Sopa Vi

Therefore p% has the proper transform f4 as simple polar locus. Doing the same
calculation for pg, we find fB=7¢~"19%,,—7, and

*
Daw =

pﬁw =(h °p3d")1 Ao A d"ln+1)/st

so that p¥ has a pole only along W’. Note that f® is smooth whereas f“ is still
singular. However, the ramification of f2 has dropped by one. Therefore we

(*®) The point is that we blow up along an algebraic subvariety of codimension 2 in P, ,,.
To determine the effect of this globally defined transformation, it is enough to see what happens
locally at each point.
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conclude that the process can be repeated d times to obtain a sequence of quadratic
transformations

D1 D2 Ps3 Da
P, i<— QP 1 <— QoPpryy<—- - <— QuPpyy
W D1 w, P2 w, Ps Pa W,

such that at each stage a rational (n+1)-form on Q.P,,, with W, as simple polar
locus pulls back to give a rational differential form on Q,,,P,,, with a pole only
along W, ,. In fact, the above diagram is given locally by

B B
d d-1
IRl =212 I 1= ZyZy < Zpp1—Z1Zp <— 1 =212y
A| A| A
d-1,d d-2,d-1
21 "Zngy17Z2  Z1 TZn+17 22 Zn+1— 22

At each stage of the resolution, the computation of the adjoint conditions is the
same as above. Moreover, each transform on the second row is a nonsingular
piece, whereas the last piece on the first row is nonsingular, so the process ter-
minates with a variety W, having no singularities lying above {z; =0} N {z,, =0}
in the original W. Applying the same process to the finite number of components
in the singular locus yields Lemma 2 in the special case.

Proof of Lemma 2 in general. Suppose that V, is obtained from P,,, by a
succession of quadratic transforms with nonsingular centers. Let W,< V, be the
proper transform of W, where W is our standard cyclic cover. Let 2, be a non-
singular variety of codimension 2 in ¥, such that for x € X,, W, has the local
equation f=z{1z§e- - -zf1zin+r —z, . - - -z,. Thus Wis given by such local equations,
where /=0. Define the weight of W, along %, by

p(Wo,Zo) = min(k—1 a;+az+---+a,+a,,1).
Note that if p(W,, Zo)=1, then W, is nonsingular along Z,. Suppose we can prove
that the map p: V; — ¥V, obtained by blowing up along Z, satisfies

@) p(Wy, Z)<p(W,, Z,), where Wy, 2, are the proper transforms of W, Z,
respectively.

(b) W, is given by local equations as above.

(©) p(Q"*Y(W))=Q " *Y(W,), i.e. p: Vi — V, imposes no adjoint conditions.

Then iteration of this process progressively decreases the weight of the singu-
larities of the transforms W; and no adjoint conditions are imposed at any stage.
Applying this to the irreducible components of the singular locus of W establishes
the lemma, since the weights all go to zero after a finite number of steps.

To prove the above claim, we consider the local equation f=z}1z5z2- - - zf1zin 1
—2z;,1° -z, Blowing up along X, we get locally

foPa = nusr(nimdz - mfmindt —mpre ) = Masn S
Sfops = ma(nimge - pimint T —mipa s ome) = Mg f".
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Notice that the proper transforms have the correct form and that in each case, the
weight drops by one. If w=(hdzy A --- Adz,,)/f is a rational (n+1)-form, we
find that

Phw = (hopadny A~ A dnyi))f%

pho = (hopgdny A~ A dnay /S,

so that no adjoint conditions are imposed. This completes the proof of Lemma 2.
Proof of Theorem 1'. We can now show that the desingularization W' of the
standard cyclic cover W is of general type. For this we use the lemma:

LEMMA. Let g be the map determined by the global sections of Ky.. Suppose that
8x has no base points(*®) and that dim (im gx)=dim W'. Then W' is of general type.

Proof. Since g; has no base points, we have a holomorphic map gx: W' — W,
S Py. Here W, is an irreducible, though generally singular variety of dimension
n=dim W. By construction, if H is a hyperplane section of W, the gz*(H) is a
divisor belonging to Ky.. Now let 7: W, — P, be a generic linear projection. If H,
is a hyperplane in P,, then =~ }(H,) is a hyperplane section of W,. Now

dim HO(P,, [Ho]") = (”Zk) — O(k").

Therefore, since independent sections of [H,]* pull back to independent sections of
K. by (7m0 gg)~ 1, we see that W' is of general type.

To show that g, has no base points, we must show that there is a section ¢ € I'(Ky,)
such that ¢(x)#0, where x € W is arbitrary. We first let x be a simple point of W',
Now the singularities of W' are of codimension two, so that we can find a homo-
geneous polynomial P, of degree d—(n+2) such that Py(x)#0. Let

wo = (Podzy A -+ A dz,1)]Q

be the corresponding rational differential form. Since no adjoint conditions are
imposed, R(m*w,) gives a holomorphic n-form on W’ which does not vanish at x.
(Recall that outside the exceptional set &, the divisor of R(7*w,) is just #~1(P,=0).)
Therefore g, has no base points lying above simple points of W. Now suppose that
x € W is a singular point. We can perform the same construction, but in general
R(7*wy) may vanish on =~ !(x). In our case, however, this does not happen.
Referring to the calculation of the adjoint conditions, we see that

m(hdzy Ao A dzp)[f = (homdzy Ao A dzyy )l

where f™ is the proper transform of the local defining equation f. Therefore, no
new zeros are introduced by #*. Hence R(7*w,)#0 on =~ 1(x), and so g is without
base points.

(*6) By this we mean that g, is everywhere defined. If for all x € W’ there is a section
¢ € I'(Ky-) such that ¢(X)#0, then gx has no base points.
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To see that dim (im gx)=dim W’, we pick a simple point x € W, and select
forms of degree d—(n+2), P, ..., P,, such that Py(x)#0 and the divisors (P;=0)
meet transversely at x for i=1,..., n. We can do this because [H]¢~®*2 is very
ample. Now let ;= R(7*w;), where w; is the rational differential determined by P;.
Among the coordinate functions of gx are ¢,/¢,, . . ., $,/bo. The fact that the di-
visors (P;=0) meet transversely at x shows that the ¢;/¢, give local coordinates
there. Therefore the Jacobian of g, has maximal rank at x, proving the claim. This
completes the proof of Theorem 1'.

REMARKS. (1) One can compute the dimension of H°(W’, Kj}.) explicitly to
show that W is of general type. The proof is not hard and is essentially contained
in the calculation of the adjoint conditions.

(2) The fact that we can find a polynomial P of degree d—(n+2) avoiding the
singularities of W shows that there is a holomorphic n-form ¢ on W’ which does
not meet &. Therefore the canonical bundle Ky restricted to any component of &
is trivial. This shows that & is collapsed by all the pluricanonical maps ggm.

IV. Miscellaneous remarks and examples.

(1) The classical little Picard theorem can be obtained by the above techniques.
To see this, let W be a five-sheeted branched cover of P, branched with ramifica-
tion index 4 at 0, 1, and co. Such a Riemann surface is guaranteed by the Riemann
existence theorem(*?). Alternatively, one may desingularize the algebraic curve
determined by the affine equation z®>=x(x—1). If p is the total ramification index
of W, the Hurwitz formula gives p=2(g(W)—n+1), where n is the number of
sheets. Hence we find g(W)=2. From Riemann surface theory we know that Ky
is very ample. Now let /: C — P, —{0, 1, co}. We lift to f': C — W, and apply the
slightly strengthened version of Griffiths’ canonical algebraic varieties theorem to
conclude that f”, and hence f, is constant.

We remark that this method fails to show that f: C* — P,—{n+2 hyperplanes
in general position} is totally degenerate.

(2) As another example, we prove the classical theorem that any holomorphic
f: C— & —x is constant, where & is an elliptic curve and x € & is an arbitrary
point. Let & _™ _ & be a two-sheeted unramified cover of &. By the Hurwitz formula,
&, is an elliptic curve. Now let W "2 &, be a two-sheeted branched cover of &;
branched at {y;, yo}=7"1(x)(*®). Now the Hurwitz formula p=2(g'—ng+n—1)

(*7) This says that a Riemann surface can be constructed by knowing how the sheets
interchange around the branch points. To be explicit, let A, ..., A; generate a transitive
permutation group on {1, ..., n}. Suppose that 4;-A,- - - A,=1. Then there is a Riemann sur-
face W which is an n-sheeted branched cover of P,, branched at points xj, ..., x,. The effect
of going around x; is described by A;.

(*8) In general, if V is a complex manifold, D< V a smooth divisor, there is a k-sheeted
cyclic cover of V¥ branched along D if and only if ¢;([D]) is divisible, i.e. there is an integral
cohomology class 8 such that k8= c,([D]). (See J. Wavrick, Deformations of branched coverings
of complex manifolds, Amer. J. Math. 90 (1968), 929.
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shows that g’ =g(W)=2. By lifting f from & — x to &, —{y,, y.} and then to W, and
then applying Griffiths’ theorem to W, we see that f must be constant.

REMARK. Using the same trick for “multiplying the Chern class of D”’ we may
show that if 4 is an abelian variety and D is a smooth divisor such that the inter-
section number (D") >0, then any holomorphic map f: C*— A— D is totally
degenerate.

(3) We can prove the following generalization of the big Picard theorem:

PROPOSITION. Let V be a nonsingular hypersurface of degree d=n+3 in P,. Let
f be a nondegenerate holomorphic map f: A* x A"~ — P, — V. Then f extends to a
holomorphic map f: A™ — P,.

Proof. Let W be the usual canonical algebraic variety which is a d-sheeted
cyclic cover of P, branched along V. Consider the diagram

A*xA”‘l——fl—> W—V———>W

D - -

A* x An-1 ———f——> P,—V—P,
where p(zy, ..., z,)=(2%, 25, .. ., z,) and f; is a lifting of f. By Griffiths’ theorem,
f1 extends to a holomorphic map f;: A* — W. This implies (by commutativity of
the diagram) that f'is locally bounded. Thus fextends to by the Riemann extension
theorem.

REeMARK. The classical big Picard theorem can also be proved by these methods.
In the argument above we let W be the five-sheeted cyclic cover constructed in (1).
Since K§ is very ample, we know that the lifting of f: A* — P, —{0, 1, o0} to
f': A* — W extends as a rational map. Now for one complex variable, there are
no points of indeterminacy, so f’ is holomorphic. The argument now proceeds as
before.

The above theorem has several useful corollaries.

COROLLARY 1. Let f: A — P,—V be holomorphic, where A is an open algebraic
variety and V is smooth and of degree dzn+ 3. Then f extends to a holomorphic map
f: A— P,, for any smooth compactification A.

Proof. Immediate, using the above proposition. Any smooth compactification
works because the local extensions are holomorphic, so we do not have to worry
about points of indeterminacy.

COROLLARY 2. Let V,, V, be two smooth hypersurfaces of degree d=n+3 in
P,. Then P,—V, is biholomorphic to P,—V, if and only if there is a projective linear
automorphism of P, which carries V, onto V.
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Proof. Let f: P,—V,— P,—V, and g: P,—V,— P,—V, be maps exhibiting
the isomorphism. Thus fo g=id and go f=id. By Corollary 1, f extends to a
holomorphic map f: P, — P,, and we obviously have f(V;)= V,. We have a similar
extension g of g. Now g o f restricts to the identity map on the open set P,— V,
so gof=idp,. The same reasoning shows that fo g=idp, hence f is a biholo-
morphic map of P, into itself. Now the only holomorphic automorphisms of P,
are the projective linear automorphisms, which completes the proof.

COROLLARY 3. The automorphism group of P,—V is finite.

Proof. Any automorphism 8 of P, — V lifts to an automorphism of W— V, where
W is the standard d-fold cyclic cover of P, branched along V. The same argument
as in the proof of Corollary 2 shows that B8 extends to an automorphism B of W.
Now the automorphism group of a canonical algebraic variety is always finite (see
[7D.

(4) We close by noting that there are many particular cases in which very strong
degeneracy theorems can be obtained by essentially one-variable techniques. For
example, let |H(d)| be the linear system of hypersurfaces of degree d on P,. Pick
fo, /1 € |H(d)| to be independent. Then the set of hypersurfaces {Af, +uf;} forms a
pencil. We set f(a)=f,+«af; and f(co)=f,. Notice that all the f(«) intersect along
the base locus B=f(0) N f(c0). Now the pencil & gives a holomorphic map
72 P, —{f(0), f(1), f(e0)} = P, —{0, 1, 00} by sending x — [fo(x), fi(x)]. If g:C
— P, —{f(0), f(1), f(e0)} is holomorphic, we conclude by Picard’s theorem applied
to 7 o g that the image of g lies in some fiber f(«). By applying this argument to all
complex lines through the origin in C™, we see that the image of g: C™ — P,
—{f(0), f(1), f(o0)} lies in a fiber.

Using this observation, we see that by using several pencils in general position
we can require im (g) to lie in the transverse intersection of several fibers. In this
way we can progressively decrease the dimension of im (g) and in all cases im (g)
lies in an algebraic subvariety. We can also drop the dimension of im (g) by
increasing the degree of the pencil. For example, let Z be a pencil of generically
nonsingular cubic curves in P,. There will be a certain number of singular fibers
C(ey), ..., C(e). If k<3 we add more nonsingular fibers to get k=3. Now let
f:C—P;—(C(ey) - -C(e)). Then im(f) lies in C(e)—C(e;), where a=gq;,
i=1,..., k. In other words, f maps into an elliptic curve minus at least one point,
and hence is constant.

REMARKS. (1) The above examples are not essentially deep, since they use only
one complex variable techniques. However, they lead one to ask whether there are
conditions on a divisor D<P, such that for f: C*~' — P,— D, im (f) lies in a
divisor, preferably a divisor in the complete linear system determined by D.

(2) The above examples show how the requirement of general position makes
things harder. In fact, if we look at a configuration of more than three lines in P,,
then either they are in general position or they contain three elements of a pencil.
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