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Abstract. In the first part of this paper we prove the following extension theorem.

Let P* be a g-dimensional punctured polycylinder, i.e. a product of disks and punc-

tured disks. Let Wn be a compact complex manifold such that the bundle of holo-

morphic ç-forms is positive in the sense of Grauert. Let/: P* -+ Wn be a holomorphic

map whose Jacobian determinant does not vanish identically. Then / extends as a

rational map to the full polycylinder P„. In the second half of the paper we prove the

following generalization of the little Picard theorem to several complex variables:

Let fcf, be a hypersurface of degree rfän + 3 whose singularities are locally normal

crossings. Then any holomorphic map/: C" -> Pn— Khas identically vanishing Jaco-

bian determinant.

0. Introduction. The purpose of this paper is twofold. First, we prove an

extension theorem for holomorphic maps into a compact complex manifold Wn

such that /\q T$n is positive in the sense of Grauert. Second, we discuss a general-

ization of the little Picard theorem in several complex variables. Thus, in the first

section we apply the Ahlfors-Chern-Kobayashi version of the Schwarz lemma to

show

Theorem A. Let P* = (A*)fc x A"'k be a punctured polycylinder, and let Wn be a

compact complex manifold such that /\q T§n is positive in the sense of Grauert. Then

any nondegenerate map f. P* -> Wn extends to a rational map f: Pq—> Wn. If

/\" T$n is very ample, thenf is actually holomorphic.

We say that a map is rational on Pq if it has no essential singularities along any

of the branches z1=0,..., z„ = 0. From this we obtain

Corollary. Let A" Tw„ be positive in the sense of Grauert. Then any holo-

morphic map f. C—»- Wn is totally degenerate, i.e., the Jacobian determinant \J(f)\

vanishes identically.

The above theorem was first proved by Griffiths [3] in the equidimensional case

when f\n Twn = Kw is very ample(2). The more general case, for q^n, is based on
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the proof in [3] plus simple curvature arguments. It should be remarked that

Griffiths' equidimensional theorem is the most important for the applications, for

example, to Picard-type problems in several complex variables.

In the second section we give a simplified proof of a fundamental Nevanlinna

estimate of Kodaira. Kodaira's estimate deals with holomorphic mappings of the

n-ball of radius R in Cn into Wn, where Wn is a complex manifold of general type

(see §2 for definitions). A consequence of this estimate is that if/: Bn(R) -> Wn is

normalized so that/(0)=/?0 and |J/(0)| = 1, then there is an absolute constant

Fmax(n, p0) such that R S /?max. This is a generalization of the classical Schottky-

Landau theorem.

In the third section we apply the theorems of Griffiths and Kodaira to prove the

following generalization of the little Picard theorem:

Theorem B. Let f: Cn -> Pn— V be holomorphic, and suppose that V is a hyper-

surface of degree d^n + 3 whose singularities are locally normal crossings. Then f is

totally degenerate.

Thus, if n=l, this says that/: C^Pi-{0, 1, a, oo} is constant, a crude version

of Picard's theorem. Two interesting special cases of the above theorem occur

when V is smooth and when V is the union of smooth hypersurfaces Vx.Vk

meeting transversely and such that no more than n components pass through any

point. For example, if the V¡ are hyperplanes, we conclude that any holomorphic

map of C* into Pn — (Vxu---KJ Vn+3) must be totally degenerate. This gives a

partial answer to a problem of Chern, who asked the same question for n + 2

hyperplanes(3). We should remark that the more obvious generalization of Picard's

theorem, namely, that/: C" —> Pn— V be constant, is false in the generality of the

above theorem. In fact, we have the following instructive example of Peter Kiernan.

Example. Let Fd^Pn be the Fermât hypersurface of degree d defined by the

homogenous equation z% + ■ ■ ■ + z% = 0. Set p = greatest integer in n/2. Then there is a

nondegenerate holomorphic map /: C" —> Pn — Fd for any d. To see this, con-

sider the affine equation for Fd : 1 + wx + • ■ ■ + w% = 0. We define/for n even by

f(nx,..., p.p) = (p1, ej/*!, p2, e2p.2,..., p.p, epp.p) where the et are dth roots of -1.

What Kiernan's example shows here is that for more refined versions of Picard's

theorem one must do more than require V to have high degree.

In the fourth section we prove a version of the big Picard theorem in several

complex variables under the assumption that V be smooth and have high degree.

This is applied to give the following rigidity theorem:

Proposition. Let Vx and V2 be nonsingular hypersurfaces of degree i/än + 3

in Pn. Then Pn— Vx and Pn— V2 are biholomorphic if and only if there is a projective

linear automorphism ß which carries Vx onto V2. Moreover, the complex automorphism

group of Pn— Vx is finite.

(3) Chern's conjecture has been answered by recent work of Mark Green.
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It is my pleasure to acknowledge the many helpful conversations with Phillip

Griffiths which made this work possible.

I. Intermediate volume forms and the Schwarz lemma. The aim of this section

is to formulate and prove an extension theorem for holomorphic mappings of a

^-dimensional punctured polycylinder into an n-dimensional complex manifold,

where can. The first step is to prove a generalization of the Ahlfors comparison

theorem for volume elements on the unit disk. The proof is a rephrasing of the one

found in [3]. Recall that if PQ(R)=P(R) is the ^-dimensional polycylinder

{z | |z,| <R, /= 1,.. .,q}, then there is a volume element invariant under all complex

automorphisms of P(R) given by

m ,.a2 + a-gg28 dzx A ■ ■ ■ A dzt A dzx A • ■ ■ A dzq
U) p.R-i      aK n?-i(*a-|z,|a)2 "

Let v = iq2 + Qgdz1 A • • • A dzq A dzx A ■ • ■ A dzq be a pseudovolume element on P(R),

i.e., g>0 except on an analytic subset S¿. Now the Ricci form of a volume element

v given locally by ig2 + Qhdz1A ■ ■ ■ kdzq hdz1 A • • ■ r\dzq on an arbitrary complex

manifold Wq is given by

(2) Ric (v) = ddc log h = 2i88 log n.

Thus Ric (v) is a real nonnegative (1, 1) form. If v is a pseudovolume element, we

will define the Ricci form on P(R)—S>. We want to prove the following lemma:

Lemma 1 (Ahlfors, Chern, Kobayashi). Let v be a pseudovolume element on

Pq(R) such that Ric (v) is positive definite and Ric (v)q g c0v on P(R) — i&. Then the

normalization constant a in (1) can be chosen such that v^p.R on P(R).

Proof, (i) We first recall that with respect to p.R, P is Einstein-Kähler, i.e., there

is a constant cx such that

(3) Ric (p.)" = cxlx.

To see this, note that the group G of complex automorphisms generated by Möbius

transformations in each of the variables z¡ together with the maps z¡ -s» z¡ leaves

p. invariant. Moreover, G is transitive on P, so that if (3) holds at one point x0 e P,

then it holds for all xeP.

(ii) Write v = hpp.p on P(p). Thus we have

h     gUUip2-\zA2)2
aqp2q

We must prove hR^c for some constant c. Note that it is sufficient to prove h0^c

for p < R, since hp -> hR as p -> R. For p < R, h0 is either identically zero or has a

positive interior maximum. This follows from the fact that g is continuous and

bounded on P(p), so that hp(w) -> 0 as w -> 8P(p). There is nothing to prove in
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the first case, so we assume hp has a positive maximum at xp. Note that g(xp)>0

if hp(xD) > 0, so that xp eP(p) — 2>. Thus we have

0 ^ ddc log hD(xp) = Ric ><(.*„)-Ric p.p(xp),

or

R\cp.p(xp) ^ RicK^o).

Using the fact that P is Einstein-Kähler together with Ric v" ä c0v, we obtain

ClP-p(xp) ^ c0v(x0).

This shows that hp(x)^hp(xp)^c1fc0 = c, as desired.

To state the next result, we recall a few standard facts about curvature. Let n

be a hermitian metric in a complex vector bundle F on V, and let #(n) be the

curvature form. Thus 6 is a section of Horn (F, F) <g) Fi? (g) F?, where Fv is the

holomorphic tangent bundle of V. Now choose an orthonormal frame field {ea}

of F near xeV and let 0£ be the curvature form of F relative to {ea}. Thus 0 is given

locally by

0 = 2 WiidZi A dz,

and we have 9°aij = 9°plj. Hence

6(i ® i) = 2 V W

defines a quadratic form, where £eEx and 77 e FF>Jt: (see [2, p. 201]). We say that

F is negative if 0(£ <g> 17) is everywhere negative definite. Now let Vn be n-

dimensional, and suppose henceforth that there is a metric v on /\" Tv such that

0(^) is negative. Note that a volume form on Vq, given locally by v = i"'2+'!gdz1A

■ ■ ■ A dzq A í/zí A ■ • ■ A dzq, is naturally a metric on /\Q TV = K$. Thus we call such

a v on Vn an intermediate volume form, or a q-volume.

In order to prove the Schwarz lemma for a (7-volume, we need a generalization

of the Ricci form. To give this, let ~ZV be the sphere bundle in /\" Tv defined by

the metric v, and let n: Sv -> Vbe the projection. Let | be the canonical section of

length one of the bundle tt* /\" Tv on Sv. The generalized Ricci form of v is a real,

positive definite section of tt*(Tv <8> FF) which is defined locally by

(4) Ric# 0) - - / 2 V^rfz, A dzy,

where ÖJ is the curvature form of /\" Tv relative to an orthonormal frame {e„)

near p e V.

Lemma 2. Let W<^ V be a complex submanifold. Hence vv restricts to give a

metric vw in /\" Tw. Then zZw^lZv and Ric# (vw) ä Ric# (vv) on ¿Zw.

Proof. /V Fw is a subbundle of /\"TV\W. The usual argument (see [2, pp.

196-201]) with the second fundamental form shows that curvature decreases in the
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subbundle : 9(vw)(C <g) r¡) ̂  6(vv)(Ç (g) r¡) where îe f\q TW-X and r¡ e TWx. This means

that

-i^ö(vVixij^l"dzi a <e> £ -i2 (Krr'KuPPdzt a ¿fy

as desired.

Remarks, (i) Note that if K is n-dimensional and An ^V is negative relative

to a volume element v, then both Ric (v) and Ric# (v) are positive. For example, the

unit disk with Poincaré volume

p. = (idz A dz)l(\-\z\2)2

has constant negative Gauss curvature —4, whereas Ric (p.) is positive. Thus nega-

tive curvature corresponds to positive Ricci form. Ric# should be thought of as

the generalization of Gauss curvature needed to generalize the Ahlfors lemma.

(ii) For q=\ the above lemma reduces to the statement that if W^V is a

submanifold, then the holomorphic sectional curvatures of W are no greater than

the sectional curvatures of V. The proof is also the same, except that we have done

things with a globally defined form which is positive.

The next lemma is a generalization of the statement that if V\s compact and has

negative sectional curvatures, then the sectional curvatures are bounded away from

zero.

Lemma 3. Let V be compact, and suppose that f\q Tv is negative relative to v.

If è, is the canonical section of length one on tt* /\q Tv, then Ric# (vy(Ç)^oO.

Proof. Note that Ric# (v)" is a positive section of tt*(/\" F¿* <g) /\" fy*). Evalu-

ating Ric# (v)Q on i gives a positive function on a compact manifold, from which

the result follows.

We can now reinterpret the condition Ric (v)q^c0v in Lemma 1. Note that both

Ric (v)q and v give metrics in K* (P' = P—2>), so that to verify the above inequality,

it is enough to verify it on sections i of Kj? which have length one relative to v.

Thus the Ricci condition is locally Ric (v)"(i)ä c0 for v(f)=l, or equivalently,

Ric# (v)"(£) S c0 where f is the canonical section of length one. This leads to the

following result.

Proposition 1. Let Vn be a compact complex manifold with a q-volume vv such

that /\q Tv is negative. Let f. Pq(R) -> Vn be a nondegenerate holomorphic map.

Then by a suitable choice of the normalization constant in (1), we obtain f*vv^p.R.

Moreover, the choice of constant is independent off.

Proof. Let 3¡ be the locus of J(f) = 0 on P(R). Then/*>v is a pseudometric on

K*iR) which is a metric on K* (P' =P — S¿¡). By Lemma 1, we must show Ric (f*vv)q

= c0f*vv on P'. By the above remarks, this is equivalent to showing Ric# (f*vv)\î)

^ c0 on Sp-, where SP is the circle bundle of K* defined by the metric/*^. Now

/is locally a holomorphic diffeomorphism of P' onto f(P') which gives an iso-

morphism /*: f\q Tp, -»• i\q F/(P.) preserving metrics. Here f\q TnP-> is equipped
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with the metric v¡ gotten by restriction of vv. Therefore it is enough to prove

Ric# (v,)q(£) ä c0 on S/(P0. From Lemma 2 we get Ric# (vf)($) ä Ric# (vv)($) in

7T*(F*p-) (£> T*lP.)). These are positive sections, hence Ric#(v/-)<,^Ric#(vy)',(|) in

A" T*p-, <g) Aa 3/*po- Now Lemma 3 gives Ric# (vv)"(|)^ c0 everywhere, hence

Ric# (v,)'(í) ä c0, as desired.

Remarks. This argument specializes to give the usual result on distance-

decreasing for negative sectional curvatures when q= 1. When q = n, it specializes

to Griffiths' Schwarz lemma in [3]. The proof in the general case is by interpolation.

To state the next result, suppose that V is an n-dimensional complex manifold

with a metric vv in S' /\" Tv, where S'E=S'(E) denotes the /th symmetric power

of the bundle F. Let/: W^- Kbe a holomorphic map, where W\s ^-dimensional.

Then f*vv is a metric on S' /\" Tw which has the local form

g(iq2 + qdz1 A • • • A dzq A dzx A • ■ - A dzq)'.

This defines a volume form (f*vv)ltl which has the local form

iq2 + qgvldz1 A ■ ■ • A dzq A dzx A ■ ■ ■ A dzq.

Proposition 2. Let Vn be a compact complex manifold such that Sl /\q Tv is

negative relative to a metric vv. Letff. Pq(R) -> V be nondegenerate and holomorphic.

Then the normalization constant in (1) can be chosen independently of f such that

Proof. We want to mimic the proof of Proposition 1. First note that vv defines

a Ricci form by the same formula (4) as before, except that the Ricci form is now

defined on tt*(T* (g> T*), where v.'Zy^ V is the projection from the sphere

bundle of Sl f\q Tv. By the same arguments which establish Lemmas 2 and 3, we

get

Lemma 2'. Let W^ V be a complex submanifold. Hence vv restricts to give a

metric vw in Sl /\q Tw. Then 2wç2v and Ric# (vw) ¡> Ric# (vv) on Sw.

Lemma 3'. Let V be compact, and suppose that S' /\Q Tv is negative relative to v.

If i is the canonical section of length one of ir*Sl f\q Tv, then [Ric (n)']'(f)^c>0,

Now let f*vv = g(iq2 + qdz1 A • • ■ A dzq)1 so that (f*Vv)lll = iq2 + '>gllldz1 A ■ ■ ■ A dzq.

To apply Lemma 1 to (f*vv)111 and thus to complete the proof, we must show

(a) Ric (f*vy)in is positive definite,

(b)(Ric(f*Vvyil)q^c0(f*vvy».

Proof of (a). Note that (a) follows if Ric (vf)111 is positive definite on f(P'),

where vf = vv\siAiTnP.r Let wx,.. .,wq be local coordinates around xef(P'), and

set vf = h(iq2 + qdzl A • • • A dzq)1. If £ and f are the canonical sections of the sphere

bundles S(5¡ A" TV,) and S(A" T/(n), then we have

Ric#(^)(l) = ddc log h = I-ddc log n1'1 = /-Rie* 0}")(f).
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By  Lemma  2',   Ric# (vf)  is  positive  definite,  from  which  we  conclude  that

Ric# (f*vv)in is positive definite.

Proof of (b). We claim that (b) follows from

(c) [(R\ef*vvyY^cJ*vv.

Note that (c) holds because of Lemma 3'. Expressing (b) and (c) in local coordinates

we have

(b') (dd° log g1")" ê iq2 + qC<>gí,ldz1 A---Adzq,

(c') [(ddclogg)q]1 ^ c1g[iq2 + qdz1 A ■ ■ ■ A dzq\.

Let ddc logg = i 2 gt,dz, A dz¡, so that (ddc log g)q = det (gij)(iq2 + qdz1 A • ■ ■ A dzq).

Hence (b') and (c') can be written as

(b") (\¡iyaet(gil)^c0gí<1,

(c") (det(g„))' è clg.

Since Ric# (vf) is positive, we know that (gu) is a positive definite matrix. It is now

clear that (b") follows from (c") with c0 = (l/l)qc1.

To state the next result, we recall that a complex vector bundle F is negative in

the sense of Grauert if the zero section can be blown down to a point (see [5]). This

is equivalent to the existence of a plurisubharmonic function on F which is strictly

plurisubharmonic on the complement of the zero section. A complex vector bundle

F is positive in the sense of Grauert if its dual is negative in the sense of Grauert.

We recall that if F is Grauert-positive then S'E has positive curvature for / suffi-

ciently large. We can now state the following:

Proposition 3. Let Vn be a compact complex manifold such that /\q T* is

positive in the sense of Grauert. Letf: P* -> V be a nondegenerate holomorphic map

defined on the punctured polycylinder (A*)kx Aq~k. Then f extends to a rational^)

map f: PQ^ V.

Proof, (i) Because A" T* is Grauert-positive, S' /\q T* has positive curvature

for some /»0 (see [5], [2]). By choosing /even larger, we may assume that Sl /\" T*

is very ample (see [2]). This means that V is immersed into a Grassmannian

Gr (m, N) by the global sections of S' /\" T*. To be explicit, we choose a basis

wx,.. ., a>N for the vector space F of global sections. Evaluation of a section on the

fiber gives the exact sequence

0 -> F-> VxF->S> A" F? -> 0,

which defines a map y. V ̂  Gr (m, N) by sending x to the subspace Fx of F.

We now fix a metric in Sl /\q Tv by vY = w1 A tDj + • • • + wN a ¿on.

(ii) To extend/: P* -» Vn to a rational map/: Pq -*• Vn, it is sufficient to extend

each of the holomorphic sections f*co¡ of S1 A' T** to a rational section of

C) Rational means that/has no essential singularities along zi = 0,..., zk = 0.
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S' A" T*. This is because the cü¡ give local coordinates on V. We will show that

/*cu¡ has at most a pole of order /—1 along z¡ = 0, i=l,..., k. Write/*cui

=gi(iq2 + Qdz1A ■ ■ ■ Adzq)'. If g¡ has an essential singularity or a pole of order >N

along some Z; = 0, then there is a c>0 such that, in the punctured polycylinder

P*(-j) of radius \, we have |g,| >c/(zx- ■ -zk)N. For if not, the Riemann extension

theorem yields gi = hj(z1- ■ -zk)N, where /¡¡ is holomorphic on P(-j), a contradiction.

Suppose that we can prove

(*) j (/*(", A œjy» < CO.

Then we have

>  f    (/*(«,, A côd)1"
Jp'

f Çim r dr       f
kil2" dzx A ■ ■ ■ A dzq > lim c'        -4^- ■ ■

Jp. e — 0       Je        'l J,

1'2 „    j, rl/2
/-! drx      [     rk drk

r2NH

Hence

œ>C0nSt^73vW'^(£2"2W)fc'

from which we conclude 2 — 2N/l>0, or N<1.

(iii) It remains to show (*). First, we show that

Now/*v„ = 2?'=1/*(cUiA¿3¡) so that

/V = (| Ift|a)(i*'+,&1 A---A i/f,)'.

Using the fact that the function x -»■ x1" is concave(5), we get

which gives (l//Y)(/*(to,A«<))1"á(l/iV)1"(/%)1", and hence the claim.

Now let k : P -> F* be the universal covering map. The Poincaré volume p. on P

is invariant under covering transformations, so it descends to give a volume form

p.p. on P*. Therefore, (f*vvyil-^p.P. on F* is equivalent to (K*f*vv)lllSp-p on P.

The latter statement follows from the Schwarz lemma applied to the function/° «r.

(5) If E is a measure space such that n(E) = 1, and 4> is concave, then Jensen's inequality

says ]E 4> ofdp = 4,(jEfdn) (see [10, p. 61]).
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Now the volume of the concentric polycylinder F(^) is finite in the Poincaré

volume, which implies that p,P.(P*(^))<cc. Therefore we conclude that

Í      (fiw, a a,))1" ̂  MÛ1" \      (f*vvy*

- n\nÍ'1 Í        '*" < °°'

as desired.

Remark. Note that if /= 1, i.e. if /\" T* is very ample, then/extends as a holo-

morphic mapping. For q = n this is Griffiths' extension theorem for canonical

algebraic varieties [3]. The proof also establishes Griffiths' theorem when Kv is

positive.

Before giving the applications of this theorem, we must recall the notion of

smooth compactifications of algebraic varieties (see [2]). Let U he a smooth pro-

jective Zariski open set, i.e. U— K— W, where Kand Ware projective varieties. A

smooth compactification of U is a nonsingular projective variety U' such that

Í/C V is a dense open set and U'— U=D is a union of nonsingular divisors Dt

with normal crossings. Thus a local analytic equation for D in U' is zx,..., zk = 0.

This has the useful consequence that if F is a polycylinder in U', then U n P

= ([/' — D) n P is just a punctured polycylinder (A*)"x A"-". Recall that U' is

obtained from V by quadratic transformations. Thus there is a rational holo-

morphic map U' i"> V which is biholomorphic on U. Smooth compactifications

are not unique. Given two compactifications U', U", there is always a third one

U'" with rational holomorphic maps trx: IT-* U' and n2: £/"-> U". If/: X^ Y

is a rational map between algebraic varieties, then there is a subvariety B^ X

along which/is indeterminate. However, we can always find a smooth compactifi-

cation X' of X—B such that it: X' -> X pulls / back to an everywhere defined

function, i.e. a rational holomorphic function.

As an example, we note that Pn is a smooth compactification of C„, where

F = Fn_! is the hyperplane at infinity. Let z0, Zu z2 be homogeneous coordinates

on P2 such that £> = {z0 = 0}. Then zjz0 is holomorphic on C2 = P2— D and has a

pole along D. However, zjz0 is indeterminate at [0,0, 1] (homogeneous coor-

dinates). To remedy this, we blow up [0, 0, 1] to obtain a rational variety P2 and a

holomorphic map tf. P'2 -> P2. If <? = 7r-1[0, 0, 1] is the exceptional set, then tt is

biholomorphic on P'2 — S. Now zJzq extends from P'2 — S to P2 as an everywhere

defined rational function/: P2 -> Px.

An immediate corollary of Proposition 3 and the above remarks is the following

extension theorem.

Corollary 1. Let Uq be a q-dimensional Zariski open set as above, and

/: Uq —> Vn a nondegenerate holomorphic map. If f\q T* is positive in the sense of
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Grauert, then f extends as a holomorphic map f : U'q^ Vn for a suitable smooth

compactification Uq.

This, in turn, gives the following degeneracy theorem:

Corollary 2. Let Vn be an n-dimensional complex manifold such that /\q T*

is positive in the sense of Grauert. Then any holomorphic map f: Cq -> Vn is totally

degenerate.

Proof. By Corollary 1,/extends to a holomorphic map/': P'q -> Vn. We know

that for /»0, S' f\q T* is very ample. Therefore we can find a global section

cu 6 F(Sl A3 V) such that f*o> e F(KPq) is nonzero. But F(KPq)~F(K'Pq) = {0}, a

contradiction.

Remarks. (1) The extension theorem is also valid when A" T* is very ample

and/: Um-> Vn has rank ä p (dim Un = m).

(2) If A' T* ¡s positive in the sense of Grauert, then the Schottky-Landau

theorem holds. This says that if/: Pq(R)^ Vn is normalized so that/(0)=/> and

|/(/)(0)| = 1(6), then there is a constant Fmax independent of/such that AS Fmax.

The proof follows from the Schwarz lemma in exactly the same way as for the

equidimensional Schottky-Landau theorem in [3].

II. The basic Kodaira estimate. We will give a modified proof of a Schottky-

Landau theorem due to Kodaira [8]. To state the theorem, we recall that an alge-

braic manifold is of general type if

lim inf m~n dim H°(V, Km) > 0
m-> »

where n = dim Fand AT is the canonical bundle.

Theorem (Kodaira). Let B(R) = {z e Cn \ 2 N2 < R}, and let /: B(R) ~> V be

holomorphic and nondegenerate. Suppose f is normalized such that f(0)=p and

|/(/)(0)| = 1 (7). If V is of general type, then there is a constant Fmax independent of

f such that FáFmax.

In particular, this implies that there is no nondegenerate map/: Cn -> V, where

V is of general type. The usefulness of Kodaira's theorem is that the numerical

criterion of general type is usually much easier to compute than curvature con-

ditions. The main point in the proof given below is that balls are used instead of

polycylinders.

Conventions. We begin by establishing some conditions regarding curvature

and volume forms. This will be done to avoid complicated and irrelevant constants

(6) U(/)(0)| is defined by measuring /*((e/eZl) A • • • A(e/Sz,)) with the metric v in A"Tf,

for example.

(7) 17(/)(0)| can be defined relative to coordinates on a fixed polycylindrical neighborhood

U of /(0).
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in the final theorems. First, we let dc = (- l)1,2(3-d)/47r (8). This is defined so that

SMmld°log\z\*=L Let ||z||2=|z1|2+--- + |zm|2, and define WJaf-|*l.

ijj = dt] = ddc log ||z||. If we let (j = r¡A^n^1, then the sphere of radius r in Cn has

volume 1 relative to <x: Js[r] a= 1. If L is a line bundle given by transition functions

fae, then sections of L are locally defined functions sa such that sa=faßsß. \ï{aa} is a

collection of positive Cœ functions satisfying aa=\faß\2aB, then the length of a

section is measured by \s \2 = \sa\2jaa. The first Chern class of L is defined by cx(L)

= ddc log aa. With these definitions one verifies that an ample bundle has positive defi-

nite first Chern class. By this, we mean that if dd° log aa = (( — 1 )1,2/4tt) 2 g?jdzt A dz¡,

then the hermitian matrix (gf;) is positive definite. For example, one easily checks

that the hyperplane bundle on Pn is positive according to this definition(9).

Proof of the basic estimates. We begin by defining a volume form on V. Let L

be the hyperplane line bundle on V determined by some projective imbedding. If

V is of general type, then there is a section s e H°( V, Km <g) L*) for some m > 0(10).

Let a be the metric on L defined above. Thus o is a positive C° section of L ® L.

Now s (g î is a real nonnegative C°° section of Ky (g Ky (g L* (g L*, so that

oí (g s is a nonnegative section of F™ g) Fy. Therefore it has a globally defined

/nth root

Q = (flj <g> s)1,m e T(*V (g) Fy),

which is the volume element we want. If s is defined locally by sa, then the (n, n)

form £2 is defined locally by Q.a = allm\siX\2lm.

Now suppose that/: F(F) -> F is holomorphic and nondegenerate. We will also

suppose that/(0)=/> <£ (s), where (s) = {x e V \ s(x) = 0}. Let $ he the comparison

function defined by/*£2 = ( — l)nl2idz1 AdzxA ■ ■ ■ AdznAdzn. Thus

l-ia>i"*»f)\se<>f\*'»\J(f)\\

Since / is normalized so that f(0)=p and |/(/)(0)| = l, we can multiply Q. by a

constant independent of/so that £(0)= 1. The idea of Kodaira's result is to apply

the proof of Jensen's theorem to £. We define two order functions by

T(r) = f     Í/S»,        F#(r) = f     f1'»^,

where /3=((-l)1,2/4w) 2?= i ^ A dzjf B[r] = {zeCn \ \\z\\<r} and r<R. The order

function F(r) has the natural interpretation as the volume of the image f(B[r]).

(8) This is different from the d" used in §1.

(9) If L is very ample, take a basis s0,..., s" for the global sections, and define aa= \s°\2

+ ■ ■ ■ +|s?l2- Since L is very ample, a has the form 1 + |z!|2 + |z„|2 +higher order terms. Here

the zi are coordinates centered at an arbitrary point x. Then ddc log aa is positive definite at x

(see [2]).

(10) We recall Kodaira's proof: Since L = [X], where Xis a nonsingular hyperplane section

of V, we have the exact sequence 0 -> H°(V, Km ® L*) -* H°(V, Km) ->■ H°'X, Kf)---. Now

dim H°(V, Km) = 0(mn) whereas dim H°(X, Kf) = 0(mn-1), so that dim H°(V, Km ® L*)>0

for sufficiently large w.
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Unfortunately, T#(r) is required for technical reasons. Counting functions are

defined by

n(t)=\    f-\       N(t) = Ç n(s)^,
Jzm Jo s

where Z[t]=f~\(s)) ^ B[t\,

»i(0-f     r~\       Nx(t) = fnx(s)^,
Jrui Jo s

where R[t] = (J) n B[t] and (J) is the divisor of J(f) = 0. The normalization

conditions are simply that neither Z=f'x((s)) nor (/) pass through the origin so

that both n(t) and n±(t) converge. The functions n(t) and n^t) should be thought

of as the area of Z[t], R[t], respectively. Hence n(t) and n±(t) are zero for small

values of t, so the improper integrals N(t) and N^t) converge. We can now state

Proposition 1.  Under the assumptions of Theorem 1  we have T(r)^r2n and

T#(r)iil0r2n, where l0 is an absolute constant depending only on n = dim V.

Proposition 2.  Under the assumptions of Theorem 1 we have

1     dT#nk1ln Cr dt 1

T*{r)-^rx+^N{r) + Nx{r) ánlog + /i.

Here k is a positive constant such that c^L)71 ä k(nl¡(47r)n)Q, and lx is an absolute

constant depending only on n.

The Schottky-Landau theorem will follow easily from Propositions 1 and 2.

Preliminaries to theproof of both propositions. Consider I(t)=]BUi ddc log f A 0™"1.

Let TE(Z[t]) and Te(R[t]) be e-tubes around Z[t], R[t], respectively. Since

ddclog£ is C" on the region B°[t] = B[t]-Te(Z[t])-Te(R[t]), Stokes' theorem

gives

f     ddc\og£ A -A""1 = j     dclogÇ A 4>n~1~\ i/clog| A f1"1
Js°in Jsm JeTeCziw

dclogÇ A -A""1.
JdT$iRUi)

Recall the residue formula for an analytic function /

lim Í       dclog l/l2 A 0""1 = f   i/.""1
E^°JdTe(n J(n

where Te(f) is an c-tube around the divisor (/). Moreover, if g is a function which

does not vanish on (/), we easily find that

(2) lim f       íFlogg A •/>*"1 = 0.
C-.0 JaTs(n



(4)
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Now

d° log i = (\/m)dc log (aa o/)+(l/m) ¿c log \sa °f\2 + d* log |/(/)|2.

Using this, together with the residue formula, we find that

(3)   lim Í      ddc log i A tp"-1 = \     í/MogÍAf-1-í     f1'1-]     0""1.
e^oJB°m Jsm mJzm Jrui

On the other hand, since ddc log |n|2 = 0 if h is a nonvanishing holomorphic

function, we find that

f     ddc log i A «A""1 = - f      ddc log (aa of) a «A""1
JB°m mJsJti]

= I f      /*Cl(L) Af1.

Taking the limit in (4) and combining the result with (3), we obtain

(5)   if    /*Cl(F) a f-' + ̂ f    ^n-1+f    0"-1 = f    rfMogfA*»"1.
mJBin m Jzm Jrui Jsm

For convenience, we introduce K(t) = J*B[(] f*cx(L) A >pn~l. Since i/> has a singularity

at the origin, we should show that K(t) converges. This will be answered by the

following lemma of Lelong (see [9, pp. 72-73]).

Lemma. Let 9 be a closed positive current of type (1, 1). Then

(0        f e A .A""1 = -¿2 f     0 A /s»-i--¿-a í     ÍAr1.
-/B[r1]-ß[r2] '1 ^Btril '2 J B[r2l

(ii) 7/ 0   is   C   a/   /ne origin,  then the integral JB[ri # a <j>n ~l converges and

(iii) If 9 is Cx at the origin, then js[r] 9 A ¡A™"1 g const-r2/or r^r0.

Since our notation is somewhat different from Lelong's we recall the proof.

Since B[r] is contractible, there is a current a such that da=9. An easy computation

shows that <A"-1|,S*[/-] = (''2'l~2)~1/3'I~1. Then Stokes' theorem gives

( 9 A f1"1 =  f       aA<An"1-i       a A f1"1
•'B[r1]-B[r2] JsiT!] Js[r2l

= if       «A/S-^-iäf       «A/?-1.
'1 •'Stril '2 Js[r2l

Another application of Stokes' theorem gives (i). If 9 is C°° at the origin, then for

rrSr0 sufficiently small, we have

if     «A^-l = -¿-af     ̂ r
,   . r Jsirl ' Jßlrl

*Sf    n^oHBMíconst-r2.
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Using (*) in (i) to compute the limit as r2 -> 0, we get (ii). The estimate (*) applied

to (ii) gives (iii).    Q.E.D.

Returning to the proof, we write (5) as

1
K(t) + ^ n(t) + nx(t) = f    dc log f A f"1.

We now integrate this from e to r with respect to dt/t to get

m   ij;,(,)á+i^,)¿+J;'„l(,)á.j;^<M^{A>-,

Since dt/t = dlog \\z\\, Fubini's theorem gives

(7) Í-Í    ¿Flogf A -A""1 = f ¿log |z|| A ¿/clogf A f1"1.
^e    '   •'SHI *'B[i]-B[e]

If a  and  ß  are   1-forms  and  <A  is  an  (n—l,n—1)  form,   then  daAdcßA<¡>

= — dca a dß A <A- Therefore

i/log ||z||  A  dc log f A -A""1 = i/log f A  £ZC log |z||  A  .A""1

= ¿(logf A dclog \\z\\ A iA"-1).

In the last step we have used the fact that <A" = 0. Hence another application of

Stokes' theorem to (7) reduces (6) to

f K(t) 1 + 1 í n(t) d-¡+ f nx{t) % = f    log fa- f    log fa.
Jc l        mJe l       Je ' Jstr] Jsie]

Now F(/) = Jb[í]/*í'i(F)A<A" 1^const-r2 by (iii) in the lemma above, so that the

improper integral J0 K(t)(dt/t) converges. Moreover, Js[e] log fa is just the mean

value of log | on S[e], Because of our normalization, logf(0) = 0, so that

lim^0JS[£]logfa = 0.

Taking the limit as e -^ 0, the expression above becomes

(8) LrmJi+LN(t)+Nl{t) = ( log|ff.
'"Jo '       m Jsir)

Proof of Proposition 1. The idea is to reinterpret J"s[r] log fa using concavity of

the logarithm and polar coordinates. We give the proof for F#, the proof for F

being essentially the same. First, log f = n log f1"1. Then concavity of the logarithm

gives

log f a g n log        i 1/na.
''sir] Jslrl

The formula for polar coordinates tells us that

(y^—) P t2"-^dt [    ein° = Í     f1,n<*> = l^r) f     Cllnßn,
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where 2-n-7(n-l)! is the volume of the unit sphere in Cn and <F> = ((-\)V2/2)ndz1

Adz1A ■ ■ ■ A dzn A dzn is the standard euclidean volume form on Cn = R2n. Differ-

entiating the above identity, we get

{^T^iir^Lr-'Sir]

Applying these remarks to (8), we get

d_T*
dr<9>        r\[KK+iN^N^^nXoA^r) r2n-l

Now the left-hand side of (9) is nonnegative, which implies that

dT#(2n-1\     1

\  n  jr2""1 dr   *l-

Integrating   the   inequality   dT#\dr^(n\2n  l)r2n  l   from   0   to   r   gives   T#(r)

^(n/(2n-l)2n-1)r2n, which we write as F#(r)â/0r2n.

Proof of Proposition 2. The idea is to reinterpret the term §r0K(t)dt/t in (9)

using the order function F#. It is here that the assumption that L be positive is

critical. We first remark that if G is a positive semidefinite hermitian matrix, then

det G1,n S trace G/n. This follows from the theorem on the geometric and arith-

metic means, (A1;..., A„)1"I = (A1-r-■ ■ •+An)/n applied to the eigenvalues of G.

Now recall that if 9 is a positive C° (1, 1) form, we have the relation between the

projective and euclidean trace (see [9, pp. 72-73])

(10) f     »A.*-1--¿if     0Aß"-\
J Bír) ' J B[r)

Now let 9=f*cl(L) = ((—l)ll2l4tr)'2gkldzkAdz¡, where the hermitian matrix

G = (gkl) is positive definite. An easy computation gives 9 a ßn~1 = (trace G)ßn.

Substituting into (10), we get

f    f*Cl(L) A -A""1 = -¿-a f    (trace G)j8»
n.. Jsm '        Jam

(det G)llnßn.
f2n-2
1        -iBm

Now V is compact and cx(L)n is an everywhere positive (n, n) form, so there is a

constant k>0 such that c1(L)n^(n\kl(4tT)n)Q. Pulling this back to B[t], we get

/*c1(F)"ä(n!A:/(477)'l)/*Q, or (det G)ßn^k£ßn. Therefore det G£k£ and

(det G)1"1 § kllne'n.

Substituting this into (11) gives

f f*cx(DAf-'^f  einßn.
J Bit) ' Jßifi
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Recalling the definitions of K and F#, the estimate (9) becomes

[June

(.2, (£)J>¿, il   ÍN(r) + Nx(r)
1     dT#

,2n-l    dr + h

where lx=\og (2n-1/n)^0. Note that for f¿t0,

Cimßn ^ const• vol (F[í]) ^ const- t2n,
iJb\

so that the integral J"0 T#(t) dt/t2"'1 converges. This ends the proof of Proposi-

tion 2.

Proof of the Schottky-Landau theorem.   Before giving the formal proof, we will

give a heuristic argument. First, the basic estimate gives

(13)
kiln r

m
£T#(t)~-x anlog

1    dT*
,27.-1    dr

+/l.

Suppose that F# is extremely nice, let us say T#(r) = ra + 2n. By Proposition 1, we

know a^O. Substituting into (8) we obtain

klln f

hence

(14)

— I   ta + 1 dt á log [(a+2n)ta]+lx,
m J0

const-/œ + 2 g const• log t + const.

The left-hand side of this equation grows much faster than the right-hand side,

so it is valid only for rá /?max for some Fmax<co. A crude version of the Schottky-

Landau theorem can be obtained by a slight refinement of this argument.

Proposition. // V is of general type and f: B(R)^~ W is nondegenerate, then

R<co.

Proof. We recall a standard calculus lemma of value distribution theory (see

[11, p. 54]).

Lemma. Let ^ be a continuously differentiable, positive, increasing function on

[r0, oo], where r0 ä 1. Then ¡A' g ¡A" for any ß>l on J= [r0, oo] — /, where I is an open

set such that j", d log x < oo.

One easily checks that F#(r) satisfies the hypotheses of the lemma(11). The

inequality (13) yields

^ fjmjêziè log
T#2(r)

+lx    onJu

(xl) For example, dTit\dr = const -r2"-1 Js[r] (llna. Since (Un is continuous, Stokes' theorem

shows JS[r] f1/no is a continuous function of r, so that dTitjdr is continuous.
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where A = k1,njm. Introduce S(r) = jr0 F#(r) dt¡t2n~x and write the above equation

as

AS(r) g log T*(r)+ log (T#(r)¡r2n ~1) + l1    on Jx.

Now dS/dr = T#(r)/r2"~1, and the lemma gives dS/dr^S2 onJ2. Therefore we get

AS(r) á logF#(r) + 21og5'(r)-r-/1    on JxnJ2.

We rewrite this as

AS(r) Ú (2n-\)\ogr + \og(dSldr) + 2\ogS(r) + h

and apply dS/dr á S2 on J2 once more to get

AS(r) á (2n-l)log/- + 41og5(r) + /1    on J1r\J2.

Dividing by S(r) we get

,  ^ ^      ,n log r   4 I02 SYr)      /, .
^(2n-l)-JL. + -^ + ^_   on/in/2.

Now F#(r)^/0r2n, so S(r)^(l0/2)r2. Moreover, the complement of any set of

finite logarithmic measure contains a sequence {r,} such that r, -> co. Therefore

we find that

(15) 0<^^^)1^ + 41°¿^)A/0 r? S(r>)        /0r?

Using l'Hôpital's rule to compute lim (log S(rj)/S(rj)), we see that the right-hand

side of (15) tends to zero as r¡ -> co, thus the inequality is valid only for rá Rm^

<oo.    Q.E.D.

Proof of the precise Schottky-Landau theorem. The problem with the above

"proof" is that the choice of J1 and J2 is not a priori independent of the order

function F#, which certainly depends on/ The precise Schottky-Landau theorem

is proved by a more precise analysis of the integrated order function S(r)

= }r0T#(t)dt/t2n-1 (see [8]). For convenience, we write 0(/-) = (r2n-1)-VF#/i/r.

Then (13) becomes

(16) AS(r) ^ n log BQ.(r)

where B = eli = 2n~1/n.

The first step in the proof is to obtain a tentative bound for Fmax by assuming

(*) Q.(r) ^ r2""1^/-)4.

Assuming (*), inequality (16) becomes

S(r) á (n/^)(log F + (2n- 1) log r + 4 log S(r)).
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Dividing by S(r) and simplifying constants we get

i  < " /  ;i   A.n.    nlogr    4JogJSYr)\

Using S(r)^(l0/2)r2 and log x^e~1x for x>0, the first two terms are dominated

by (2l1/lQ)r-2, (2(2n-\)e-1/l0)r-\ respectively. Writing (4log S)/S = (% log Sll2)/S

á8e"1/'S'1,2â8(2)1,2c"1//¿,2'", and assuming räl, the above estimate becomes

n f2/t    2(2«-De-1    8(2)^-^ 1
- ¿ I k       /o /o1'2   ; ?•

We write this as 1 ̂ r0(Ar, n, PoY'1 where r0 is a constant depending only on n, k,

and the point p0. Note that we have chosen foal. We conclude that // O(r)

£r**-iS(r)*, thenrSr0.

Now assume that r>r0. By what we have just shown, we know that one of the

following must hold:

(a) F#2(r)<r2"-1Q(r),

(b) r2"-152(r)<F#(r).

Suppose that (a) holds on an interval /. Using Q(r) = (r2n~1)~ldT#/dr we find that

dr<dT*¡T*2. Suppose (b) holds on an interval/. Using dS/dr = T#(r)/r2n-1 we find

dr<dS¡S2. Since both Fand S are nondecreasing, this implies that on the interval

(r0, Fmax) we have dr<dT#\T$2-\-dS\S2. Integrating this inequality we obtain

1 1 fr1   2/o_i
r   r° < T#(r0) + S(r0) =  rF+   r20  '

Since r0äl, this yields Fmaxár0 + 3//0. Thus we have obtained a bound on Fmax

depending only on n, k, and /?0-

III. A degeneracy theorem for holomorphic maps/: Cn ~> Pn— D. In this sec-

tion we discuss an n-dimensional generalization of Picard's theorem. The first

result is the following:

Theorem 1. Let D^Pn be a nonsingular divisor of degree i/än + 3. Then any

holomorphic mapping f: Cn -> Pn— D is totally degenerate, i.e. \J(f)\ =0.

In dimension one this says that any entire function/: C^Px — {four points} is

constant, a crude version of Picard's theorem. Another way of stating Theorem 1

is that any nondegenerate holomorphic map /: Cn -> Pn must intersect D if D is

smooth and has high enough degree.

Proof of the theorem. We construct a cyclic branched cover Wn of Pn satisfying

(a) Wn —> Pn is branched exactly along D.

(b) Wn is a nonsingular hypersurface of degree d in Pn+1.
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If/d(z0,..., zn) = 0 is a homogeneous equation for D, one easily verifies that such

a Wn is given by F(z0,..., zn + 1) = zn+1-fd(z0,..., zn). Note that Wn-D=Wn

— w ~1(D) because the cover is cyclic. Because of condition (a), 7r: Wn—D -> P„— D

is a covering map(12), so/lifts to a map/': C"^» Wn— D^Wn.

Wn-D -y Wn

7Tf//
/       f

C   -£-+   Pn-D    -     '-*   Pn

The idea is now to apply Griffiths' theorem on canonical algebraic varieties (see

[3]), which implies that any holomorphic map /: C" -t> Wn is totally degenerate

if KWn is very ample. Thus it remains to show that the cyclic cover constructed

above has very ample canonical bundle.

To see this recall that a line bundle F on a variety V is very ample if its global

sections give an immersion of F into PN. The immersion gL is constructed by taking

a basis s°,..., sN for the global sections of F and sending x -*■ [s°,..., sN], where

[w0,..., wN] are homogeneous coordinates on PN. Moreover, if W<^ V is a sub-

manifold of V, then the global sections of F on V restrict to global sections of F

on W, so that if L is very ample on V, it is very ample on any subvariety W. By

explicit computation, we see that any positive multiple of the hyperplane bundle

[H] on Pn+1 is very ample, and hence very ample when restricted to any sub-

variety of Pn+1. Now we can explicitly compute Kw from the adjunction formula

Kw — KPn + 1 <g [rFJlw, where [W] is the line bundle determined by the divisor W.

Recall that KPn + 1 = [H]~{n + 2). Moreover, W is linearly equivalent to [H]d. To see

this, just observe that g=fd\z% exhibits the linear equivalence. We conclude that

Kw=[Hy-(n + 2)\w, so that Kwis very ample if d>n + 2.    Q.E.D.

To state the next theorem, we let D<=, Vn be a possibly singular divisor. D is

said to have good singularities if for each point x e D there are local analytic

coordinates zx,..., zn on Vn centered at x such that a local equation for D is

zx... zk = 0. Thus the singularities of D are locally normal crossings. For example,

a union of nonsingular hypersurfaces meeting transversely with no more than n

components passing through any point is such a divisor. An interesting special case

is the union of hyperplanes in general position. Other examples are surfaces in P2

with a nonsingular double curve, etc.

Theorem 1'. Let D^Pn be a divisor of degree d^.n + 3 having good singularities.

Let f. B(R) -> Pn — D be a nondegenerate holomorphic map normalized so that

f(0)=p0e Pn— D and |/(/)(0)| = l. Then there is an absolute constant Fmax(n, p0)

such that R á Fmax(n, p0).

(12) In fact, ■nl(Pn — D)-^Zi. The covering transformations are given  by  [z0,...,zn+i]

[z0,.. .,/)z„ + 1], where /> = exp (2-rrild). Hence Wn— D is the universal cover of P„ — D.
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As an immediate consequence we have

Corollary 1. Let D^Pn be a divisor of degree d^n + 3 with good singularities.

Then any holomorphic map f. Cn -> Pn — D is totally degenerate.

The proof is somewhat more complicated than in the previous case, although the

idea is the same. We begin by defining a cyclic branched cover Wn ü> Pn which is

branched exactly along D. lust as before, Wn is defined by z£ + 1— fa(z0,..., zn) = 0.

The technical problem is that Wn has singularities lying over the singularities of D.

By means of explicit quadratic transformations we desingularize Wn to obtain an

algebraic manifold W'n %. Pn. Because the singularities of Wn lie in the singular

locus of D, Wñ-n'-^D)^ Wn-n-\D). Moreover, rr': W'n—n'-\D)^Pn-D

is a covering map, so we get a lifting/': C-> W'n — ■n'~1(D)^ W'n. If we can show

that W'n is of general type, Kodaira's theorem will apply to give Theorem 1'.

wn - tt-^o) - wi - 7t'-\D) —». w;

//

{ f
Cn-y Pn-D • > Pn~D - -* Pn

The theorem is therefore proved modulo the lemma:

Lemma 1. Let D^Pnbe a divisor with good singularities such that deg (D) ä n + 3.

Let W'n be a desingularization of the standard d-fold cyclic cover Wn of Pn branched

exactly along D. Then W'n is of general type.

To give the proof of the lemma, we review the notion of rational differential

forms and the residue operator [4]. Next we discuss the resolution of singularities.

Then we will be able to calculate the so-called adjoint conditions which the singu-

larities of Wn impose upon the rational differential forms in the ambient projective

space, from which the lemma will follow.

(A) The residue operator. Let Vn+1 be an (n+ l)-dimensional complex manifold,

and W^ Fn+1 a nonsingular divisor. Given a rational (n+l)-form vv with a first

order pole along W, we want to define a holomorphic n-form F(a>) on W. We first

solve the problem locally. The global result will follow by taking sections of the

appropriate sheaves. Thus we set Vn+1=Pn+1, the (n+ l)-dimensional poly-

cylinder. On Fn+1, w = (hdz1A ■ ■ ■ Adzn+1)/fi where/is a local defining equation

for W. Since W is nonsingular, we may assume by shrinking Pn+1 that one of the

partial derivatives, say 8f/8zn+1, is nowhere zero on W. Then we have

hence

h dz1 A ■ ■ ■ A dzn     df

W = 8f/8zn+1 A T
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Define

h dzY A • ■ • A dzn
R(œ) =

8f¡8zn+1

i.e. we integrate out the logarithmic term df/fi One easily checks (see [4]) that the

definition is independent of the choice of local defining equation, etc. The result of

this is the Poincaré residue sequence

0 —> Ky —> Ky ® [W] -^> Kw —► 0.

The exact cohomology sequence globalizes this to give

H°(KV) —* H°(KV (g [W]) -^* H°(KW).

(B) Rational differential forms. A rational differential form on Pn+1 with a first

order pole along D is just a section of Kpn+1 <g> [D] = Kpn + l(D). If C* + 1Ç?„+1 is

an affine piece of Fn + 1 given by Zqt^O, then a section a> e F(KPn + i(D)) is given by

w = (Pdz1 A ••• A dzn+1)/Q

where Q is the affine equation for D and F is a polynomial of degree d— (n + 2).

(C) Resolution of singularities. Suppose that Zç F is a nonsingular subvariety

of codimension ä 2. Then there are a variety V and a holomorphic map p : V -> V

such that

(a) p: V — p~1(Z)^> V—Z is biholomorphic,

(b) p-\Z) = P(N(Z)).

Here N(Z) is the normal bundle of Z and P(N(Z)) is the variety in F obtained by

replacing each fiber N, by the associated projective space P(AQ. Note that V is

nonsingular and P(N(Z)) is a divisor. If W^ Fis a singular subvariety of V, we set

IF'=closure of p~\W-Z). Notice that p~\W) = W u S, where £ = P(N(Z))

is the so-called exceptional set. We call p~1(W) the total transform of IF and W

the proper transform. We say that V, W are obtained by blowing up V, W,

respectively, along Z. The aim is to resolve the singularities of F by a sequence of

such transformations.

In order to perform the necessary computations, we need an explicit local

description of the map/?. Therefore, letPn be a polycylindrical neighborhood of a

point x e V such that Pnc\Z is defined by z± = 0,..., zk = 0 where k = codim Z.

Thenp~1(Pn) = P'n is defined as a subvariety of PnxPk_1 as follows. Let w1,...,wk

be homogeneous coordinates on Pk-X. Then P'n = {(zu ..., zn, wx,..., wk) \ wtZj

= WjZj, l^i,JSk}. Now PnxPk_1 is covered by open sets PnxUa, where Ua

=Pk.1 — {wa = 0}. Coordinate functions on Ua are £J = Wj/wa, 1 újúk, j^a. Thus

coordinates on Pa are given by {za, &...,&,..., £%, zk+1,..., zn}(13). The map

(13) Here ^ denotes omission.
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p:P'n^Pn is induced by the projection PnxPk_1^~Pn. Therefore, p is given

locally by

Pa\zai f 1; • • • ; f k> zk+ x, . . ., Zn) = (zaf x, . . ., Za, . . ., ZaÇk, Zk+1, . . ., Zn).

Since this notation is somewhat disgusting and cumbersome, we usually write

PÁVu ■ ■ -,Vn)  = (VaVl' • • • > Vtt> • • • » VaVk, Vk+U ■ ■ -, Vk)-

Example. Consider the variety defined by/=z2+z| = 0 in F3. We perform a

quadratic transformation (blowing up) centered along {z^O} n{z2 = 0}. One of

the projection maps is given by p(-qx, r¡2, t?3) = (i71, r)X-q2, r¡3). The total transform is

f° P = yî+7lî7ll=7ll(i +ví)- The smooth variety 1+ti| = 0 is the proper transform,

and t?i = 0 is the exceptional set.

(D) Calculation of the adjoint conditions. The problem now is to find a W'sPñ + i

which desingularizes W, and from this to calculate Kw.. The residue operator gives

sections of Kw- from sections of Kp'n + 1(W), so what we really need is a description

of the global sections of KPti+1(W). If cu is a global section of Kpn + 1(W), then

p*w has a pole along the total transform W u S. Therefore we must impose

restrictions on sections of Kpn + 1(W) such thatp*w has a simple pole on W but is

holomorphic elsewhere. These are the so-called adjoint conditions on W. If we

look at the problem locally, what we really want is a description of the subsheaf

/'*Fp;+1(IF')cA'pn+1(lF). Then every global section of/?*Fp;+1(IF') pulls back to a

global section of Kpr+1(W), and this will give us what we need. The calculation of

the adjoint conditions is thus reduced to an essentially local problem. Our im-

mediate goal is to prove

Lemma 2. For W as in Theorem V, PifKPntl(W') = Kpn + ,(W), i.e. no adjoint

conditions are imposed.

The proof of the lemma is somewhat tedious, so we give an example to illustrate

how the computations go.

Example. Let Ws.Pn+i be a hypersurface of degree d which is nonsingular

except at the point x. Suppose that a local analytic equation for W at x is/=zï +

• ■ • +zk+1 = Q. A rational (n+l)-form is given locally by

co = (hdZl A---A dzn + 1)l(zk+---+zk+1).

Consider the quadratic transformation centered at x(Xi). p: Pn+1 -> Pn+i is given

locally by n+ l projections

Pl(Vl> ■ ■ ■ > 7ln+ l)   =  (ll, '?l1?2, ■ ■ • , ^l^nt l).

Pn+l(Vl, ■ ■ -, Vn+l)  = {■nn+lVu ■ ■ -,Vn+lVn, Vn+l)-

-

(14) I.e., we blow up x and replace it by a Pn.
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The total transform of W near x is given in pieces, for example by f°px

= yï + VÏV2+ ■ ■ ■ +VÏVn+i = VÏ(i +V2 + Vn+i)- The proper transform is/1= 1+^2

+ • • • +tjk+i, which is nonsingular. Moreover, we find that

* h°PVidrn  A ■ ■ • A dr¡n+1       h ° pt]i'kdr]l A ■ ■• A dr¡n+1
a--7^-=-p-

Therefore, if n^k, the piece of the resolution given by px imposes no adjoint con-

ditions on w. By symmetry, we see that the other pieces of the resolution give the

same result. We conclude that W can be resolved in one step by p: P'n + i —> Pn+i

and that no adjoint conditions are imposed, i.e. p*KPit + i(yV) = Kpn + 1(W). Let w

be the globally defined rational (n+ l)-form on Pn+1 given by

a) = (Pdzx A ■■• A dzn + 1)/Q

on a standard affine open Cn + 1çPn+1. Thus Q is an affine equation for IF and P

is a polynomial of degree ¿/-(n + 2). The p*to is a globally defined rational (n+ 1)-

form on P'n+X with W as simple polar locus. Since W is nonsingular, the residue

operation applied top* to gives a holomorphic n-form on W. Because of the explicit

form of the residue operation given in (A), we see that the divisor of R(p*oc) on

W — S is just the divisor F ° p = Q.

Proof of Lemma 2. We first consider the case where W H+ Pn is branched over

D such that at most two branches of D meet at any point. Thus a local analytic

equation for W is f=zn. + -i-z1z2. We blow up along the locus {zl=Q}

n (zn+i=0}(15). Sincep~1(Pn+1)^Pn+1xP1, the projection is given in two pieces:

Pa(Vu ■ ■ -iVn+l)  = (Vn+lVl> •••« 'Jn+l),

PbÍVu ■ ■ -,Vn+l)  = Oh, ^2,'■ ■ • > Vlln+l)-

A rational (n+ l)-form on Fn+1 with simple pole on W is represented on Fn+1 by

w = (hdz1A ■ ■ ■ Adzn+l)lf. Now the total transform of / by pA is f°pA = rin+i

-(Vn+i7li)rl2 and the proper transform is fA = y)i + \-t]i"n2- The pullback of u> is

* h °pA7)n+ldrii  A ■ ■ ■ A  dr]n+1        h ° pAdr)x  A • • • A  dr¡n+1

PaW-7^ = r

Therefore p* has the proper transform fA as simple polar locus. Doing the same

calculation forpB, we findfB = r)x~1-qal+1 — -n2 and

ptoj = (h°pBdr]l A • • • A dr¡n + 1)ffB,

so that p* has a pole only along W. Note that fB is smooth whereas fA is still

singular. However, the ramification of fB has dropped by one. Therefore we

(I5) The point is that we blow up along an algebraic subvariety of codimension 2 in Pn + \-

To determine the effect of this globally defined transformation, it is enough to see what happens

locally at each point.
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conclude that the process can be repeated d times to obtain a sequence of quadratic

transformations

p    /}-np    J^op    J!5-...£Lnp*n+l * \¿írn+l * V£2*n+1 "* < \¿d*n+\

... Pi ... P2 P3 Pd
W <-Wx <- W2 <-■ • <- wd

such that at each stage a rational (n+l)-form on Q,Pn+i with IF as simple polar

locus pulls back to give a rational differential form on Qi + \Pn+i with a pole only

along Wi+X. In fact, the above diagram is given locally by

B     i_i B B
Zn + x — ZXZ2 < Zn+1— ZXZ2 < • ■ Zn+1—Z1Z2 < 1 — ZiZ2

Z\    zn+1—z2     zx    zn+x—z2 zn+i—z2

At each stage of the resolution, the computation of the adjoint conditions is the

same as above. Moreover, each transform on the second row is a nonsingular

piece, whereas the last piece on the first row is nonsingular, so the process ter-

minates with a variety Wd having no singularities lying above {z1 = 0} n {zn+1 = 0}

in the original W. Applying the same process to the finite number of components

in the singular locus yields Lemma 2 in the special case.

Proof of Lemma 2 in general. Suppose that V0 is obtained from Pn+1 by a

succession of quadratic transforms with nonsingular centers. Let WQ^V0 he the

proper transform of W, where W is our standard cyclic cover. Let £0 be a non-

singular variety of codimension 2 in V0 such that for x e S0, W0 has the local

equation/=Zjiz22- • ■z¡iznn+\1—z,+ 1- ■ -zk. Thus IF is given by such local equations,

where /=0. Define the weight of W0 along S0 by

p(W0, S0) = min (k-l,ax + a2-\-ha¡ + an+i).

Note that if p(W0, S0)= 1, then W0 is nonsingular along S„. Suppose we can prove

that the map p: Vx -*• V0 obtained by blowing up along 20 satisfies

(a) p(Wu zZ1)<p(W0, S0), where IF!, Si are the proper transforms of W0, S0,

respectively.

(b) W1 is given by local equations as above.

(c) pt,(Q,n + 1(W1)) = Q.n + 1(W0), i.e. p: Vx -> V0 imposes no adjoint conditions.

Then iteration of this process progressively decreases the weight of the singu-

larities of the transforms W¡ and no adjoint conditions are imposed at any stage.

Applying this to the irreducible components of the singular locus of IF establishes

the lemma, since the weights all go to zero after a finite number of steps.

To prove the above claim, we consider the local equation f=zxiz22- ■ -z^'z^Yi1

— zl + 1---zk. Blowing up along S0, we get locally

f°PA = Vn+l(Vllrl22- ■ -VÎ'VnVl-Vl+l-- 'Vic) = Vn+lfA,

f°pB = vi+iivi^2- ■ ■vîlvanYx1~1-vi+2- --Vk) = -m+if8-
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Notice that the proper transforms have the correct form and that in each case, the

weight drops by one. If w = (hdzxA ■ ■ ■ Adzn+1)jf \s a rational (n+l)-form, we

find that

pAoj = (hopAdVl a • • • A drln + 1)/fA,

ptœ = (h°pBdVl  A • • • A  dyln+1)/fB,

so that no adjoint conditions are imposed. This completes the proof of Lemma 2.

Proof of Theorem 1'. We can now show that the desingularization W of the

standard cyclic cover W is of general type. For this we use the lemma:

Lemma. Let gK be the map determined by the global sections of Kw. Suppose that

gK has no base points(16) and that dim (im gK) = dim W. Then W is of general type.

Proof. Since gK has no base points, we have a holomorphic map gK: W -> Wx

çP„. Here Wx is an irreducible, though generally singular variety of dimension

n = dim W. By construction, if 77 is a hyperplane section of Wx, the gKl(H) is a

divisor belonging to Kw-. Now let tt: Wx -> Pn be a generic linear projection. If H0

is a hyperplane in Pn, then n~1(H0) is a hyperplane section of W^ Now

dim H°(Pn, [H0f) - ^ + k\ . 0(*»).

Therefore, since independent sections of [H0]k pull back to independent sections of

Kw- by (tt o gjf)-1, we see that W is of general type.

To show that gK has no base points, we must show that there is a section <A e F(KW.)

such that <A(.t)^0, where xe IF is arbitrary. We first let x be a simple point of W.

Now the singularities of W are of codimension two, so that we can find a homo-

geneous polynomial F0 of degree d—(n + 2) such that P0(x)^0. Let

w0 = (P0dz1 A • • • A dzn + 1)/Q

be the corresponding rational differential form. Since no adjoint conditions are

imposed, R(tt*u>0) gives a holomorphic «-form on W which does not vanish at x.

(Recall that outside the exceptional set (f, the divisor of R(tt*w0) isjust7r_1(P0 = 0).)

Therefore gK has no base points lying above simple points of W. Now suppose that

x e W is a singular point. We can perform the same construction, but in general

R(tt*w0) may vanish on tt~1(x). In our case, however, this does not happen.

Referring to the calculation of the adjoint conditions, we see that

TT*(hdzx A ■ ■ ■ A dzn+x)lf = (h o -ndzy A • • • A dzn+1)lf\

where /" is the proper transform of the local defining equation / Therefore, no

new zeros are introduced by 7r*. Hence F(7r*cu0)7¿0 on tt~1(x), and so gK is without

base points.

(16) By this we mean that gK is everywhere defined. If for all xe W there is a section

<i> s T(KW.) such that <¡>(X)^0, then gK has no base points.
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To see that dim (im gK) = dim W, we pick a simple point xeW, and select

forms of degree d— (n + 2), P0,..., Pn, such that Po(.\:)^0 and the divisors (F¡ = 0)

meet transversely at x for /= 1,..., n. We can do this because [//]<*-(7l + 2) is very

ample. Now let <A¡ = F(7r*cu¡), where wt is the rational differential determined by F¡.

Among the coordinate functions of gK are <Ai/<Ao> ■ • •> <An/<Ao- The fact that the di-

visors (F = 0) meet transversely at x shows that the <A¡/^o give local coordinates

there. Therefore the Jacobian of gK has maximal rank at x, proving the claim. This

completes the proof of Theorem 1'.

Remarks. (1) One can compute the dimension of H°(W, Kw-) explicitly to

show that VV is of general type. The proof is not hard and is essentially contained

in the calculation of the adjoint conditions.

(2) The fact that we can find a polynomial P of degree d— (n + 2) avoiding the

singularities of VV shows that there is a holomorphic n-form <f> on VV which does

not meet <f. Therefore the canonical bundle Kw. restricted to any component of S

is trivial. This shows that <S is collapsed by all the pluricanonical maps gK™.

IV. Miscellaneous remarks and examples.

(1) The classical little Picard theorem can be obtained by the above techniques.

To see this, let IF be a five-sheeted branched cover of Pu branched with ramifica-

tion index 4 at 0, 1, and oo. Such a Riemann surface is guaranteed by the Riemann

existence theorem(17). Alternatively, one may desingularize the algebraic curve

determined by the affine equation z5 = x(x— 1). If p is the total ramification index

of W, the Hurwitz formula gives p = 2(g(W) — n+ 1), where n is the number of

sheets. Hence we find g(W) = 2. From Riemann surface theory we know that Kw

is very ample. Now let/: C-> Px — {0, 1, oo}. We lift to/': C-> VV, and apply the

slightly strengthened version of Griffiths' canonical algebraic varieties theorem to

conclude that/', and hence/ is constant.

We remark that this method fails to show that/: C" -> Pn — {n + 2 hyperplanes

in general position} is totally degenerate.

(2) As another example, we prove the classical theorem that any holomorphic

/: C-^S — x is constant, where S is an elliptic curve and xeS is an arbitrary

point. Let Sx ni > S be a two-sheeted unramified cover of $. By the Hurwitz formula,

Sx is an elliptic curve. Now let W "2., é\ be a two-sheeted branched cover of $x

branched at {yx,y2Ï = TT~1(x)(1B). Now the Hurwitz formula p = 2(g'— ng + n— 1)

(17) This says that a Riemann surface can be constructed by knowing how the sheets

interchange around the branch points. To be explicit, let A-¡.,..., Ak generate a transitive

permutation group on {1,..., n}. Suppose that A1-A2---Ak=l. Then there is a Riemann sur-

face W which is an /i-sheeted branched cover of Pi, branched at points xx,..., xn. The effect

of going around x¡ is described by Ai.

(18) In general, if V is a complex manifold, D^V a. smooth divisor, there is a ^-sheeted

cyclic cover of V branched along D if and only if fi([Z)]) is divisible, i.e. there is an integral

cohomology class ß such that kß = c1([D\). (See J. Wavrick, Deformations of branched coverings

of complex manifolds, Amer. J. Math. 90 (1968), 929.)
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shows thatg' = g(W) = 2. By lifting/from^5 —x to <^i-{y1,y2} and then to Wx and

then applying Griffiths' theorem to VV, we see that/must be constant.

Remark. Using the same trick for "multiplying the Chern class of FF' we may

show that if A is an abelian variety and F is a smooth divisor such that the inter-

section number (D")>0, then any holomorphic map /: Cn -> A — D is totally

degenerate.

(3) We can prove the following generalization of the big Picard theorem:

Proposition. Let V be a nonsingular hypersurface of degree d^n + 3 in Pn. Let

f be a nondegenerate holomorphic map /: A* x A" ~1 -> Pn — V. Then f extends to a

holomorphic map f: An -* Pn.

Proof. Let W be the usual canonical algebraic variety which is a ¿/-sheeted

cyclic cover of Pn branched along V. Consider the diagram

A*x A"-

A*xA"-'

A w-v- w

f
->Pn-V-

where p(zu ..., zn) = (zf, z2,..., zn) and/ is a lifting of/ By Griffiths' theorem,

/ extends to a holomorphic map/: A"^ VV. This implies (by commutativity of

the diagram) that/is locally bounded. Thus/extends to/by the Riemann extension

theorem.

Remark. The classical big Picard theorem can also be proved by these methods.

In the argument above we let IF be the five-sheeted cyclic cover constructed in (1).

Since Kw is very ample, we know that the lifting of/: A*->P1 — {0, 1, oo} to

/': A* —> VV extends as a rational map. Now for one complex variable, there are

no points of indeterminacy, so/' is holomorphic. The argument now proceeds as

before.

The above theorem has several useful corollaries.

Corollary 1. Let f: A -> Pn— V be holomorphic, where A is an open algebraic

variety and V is smooth and of degree d^n + 3. Then f extends to a holomorphic map

f: A-> Pn,for any smooth compactification A.

Proof. Immediate, using the above proposition. Any smooth compactification

works because the local extensions are holomorphic, so we do not have to worry

about points of indeterminacy.

Corollary 2. Let Vx, V2 be two smooth hypersurfaces of degree d^n + 3 in

Pn. Then Pn— Vx is biholomorphic to Pn— V2 if and only if there is a projective linear

automorphism of Pn which carries Vx onto V2.
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Proof. Let /: Pn-Vx^Pn- V2 and g: Pn-V2-^Pn- Vx be maps exhibiting

the isomorphism. Thus/°g = id and go/=id. By Corollary 1,/extends to a

holomorphic map/: Pn -> Pn, and we obviously havef(Vx) = V2. We have a similar

extension g of g. Now g °f restricts to the identity map on the open set Pn- Vx,

so g°f=idpn. The same reasoning shows that /° g = idpn, hence / is a biholo-

morphic map of Pn into itself. Now the only holomorphic automorphisms of Pn

are the projective linear automorphisms, which completes the proof.

Corollary 3. The automorphism group of Pn—V is finite.

Proof. Any automorphism ß of Pn— Vlifts to an automorphism of W— V, where

IF is the standard ¿/-fold cyclic cover of Pn branched along V. The same argument

as in the proof of Corollary 2 shows that ß extends to an automorphism ß of W.

Now the automorphism group of a canonical algebraic variety is always finite (see

[7]).
(4) We close by noting that there are many particular cases in which very strong

degeneracy theorems can be obtained by essentially one-variable techniques. For

example, let \H(d)\ be the linear system of hypersurfaces of degree d on Pn. Pick

fQ,fx e \H(d)\ to be independent. Then the set of hypersurfaces {A/0 + /x/} forms a

pencil. We set/(a)=/0 + a/ and/(oo)=/0. Notice that all the f(a) intersect along

the base locus B=f(0) nf(oo). Now the pencil 0* gives a holomorphic map

*:PB-{/(0),/(l),/(co)}-*TWO, l.co} by sending x^[f0(x),fx(x)]. If g: C

-> Pn — {/(0),/(l),/(oo)} is holomorphic, we conclude by Picard's theorem applied

to tt o g that the image of g lies in some fiber/(a). By applying this argument to all

complex lines through the origin in Cm, we see that the image of g: Cm -> P„

-{/(0),/(l),/(oo)}liesinafiber.

Using this observation, we see that by using several pencils in general position

we can require im (g) to lie in the transverse intersection of several fibers. In this

way we can progressively decrease the dimension of im (g) and in all cases im (g)

lies in an algebraic subvariety. We can also drop the dimension of im (g) by

increasing the degree of the pencil. For example, let 0* be a pencil of generically

nonsingular cubic curves in P2. There will be a certain number of singular fibers

C(a.x),..., C(ak). If k<3 we add more nonsingular fibers to get k^3. Now let

/: C-^P2 — (C(ccx)- ■ -C(ak)). Then im (/) lies in C(a) — C(ax), where a = a¡,

/'= 1,..., k. In other words,/maps into an elliptic curve minus at least one point,

and hence is constant.

Remarks. (1) The above examples are not essentially deep, since they use only

one complex variable techniques. However, they lead one to ask whether there are

conditions on a divisor D^Pn such that for/: Cn~x -> Pn— D, im (/) lies in a

divisor, preferably a divisor in the complete linear system determined by D.

(2) The above examples show how the requirement of general position makes

things harder. In fact, if we look at a configuration of more than three lines in P2,

then either they are in general position or they contain three elements of a pencil.
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