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Abstract. A representation of functions as integrals of a kernel <ji(t; x), which

was introduced by Studden, with respect to functions of bounded variation in

[0, oo) is obtained whenever the functions satisfy some conditions involving the

differential operators (<//<# ){/(z)/>v¡(r)}, z = 0, 1,2,.... The results are related to the

concepts of generalized completely monotonie functions and generalized absolutely

monotonie functions in (0, co). Some approximation operators for the approximation

of continuous functions in [0, oo) arise naturally and are introduced; some sequence-

to-function summability methods are also introduced.

1. Introduction and statement of main results. Let {Wj(i)}i™o be an infinite

sequence of functions which are positive on [0, co) and each belongs to C™[0, oo).

Define a sequence of differential operators, D¡, by

,f  ^ r,sr s d f(t) .        .   .    -

In a recent article Studden [7] has discussed in detail the solutions of the

following system of infinitely many differential inequalities

4>(t)eC<°(0,co),       r/(/) â 0   and    (- l)*Dk^Dk_2- ■ ■ D0<p(t) ä 0

for all 0 < t < oo and k = 1,2,....

A solution of (1.2) is called a generalized completely monotonie (abbreviated

GCM) function on (0, co) with respect to {w^t)}. Assuming that there exists a

function/(/) on [0, oo) such that

(i) 0</(0<l,       re [0,w);        lim/(0 = 0;
(-.00

(1.3) CfiOdKco;       inf (1-/(/)) >0;
•20

(ii)      1 -f(t) í Wi(t) S 1 +f(t),       t e [0, co),    /=1,2,...;
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and assuming further that w0(t)= 1 (otherwise <f> is replaced by <f>fw0) Studden has

represented the GCM functions as integrals of a kernel </>(/; x), which is defined

by means of {w¡(t)} only, with respect to a Borel measure p., on [0, oo).

The closely related topic of generalized absolutely monotonie (GAM) functions

on a finite interval (a, b) was discussed by Karlin and Ziegler [5] (see also Karlin

and Studden [4]). They, under some mild conditions on {w^t)}, expanded each

GAM function on (a, b) into a "power"-series.

Let w0(t)=l, t e [0, oo). Set, for «^ 1,

Ut 'X)=\X W'n(Q | " Wn _ ,(#„ _ x) ■ ■ ■ j  ' Wl{$ x) d£x ■ ■ ■ d$n, 0  S   t  ¿  X,

(L4) =o,

and set <j/0(t; x)=l, O^tfíx; if/0(t; x) = 0, t>x. Now denote

Gk<p(u) = (-l)kDk_xDk_2---D0<p(u),       k=l,2,...,

G0<f>(u) = <p(u).

Given a function c/> e Cn + 1(0, oo) it follows by integration by parts (see [7, (4.12)])

that for /, u, 0 < Z < u < oo,

(1.6) m = 2 hit;u)^§+ f Uf,x)Gn+x4>(x)dx.
k = 0 wk\M)      Jt

This is a sort of "finite Taylor expansion" of <f> by means of the "derivatives"

Gk(p. The natural question arises as to under what conditions is it possible to

expand a function <f> e C°°(0, oo) into the "Taylor series"

(i.?) «O-ÍWí;«)^.    mt>o.

In case <f> is a GCM function, an adaption of some work of Karlin and Ziegler [5]

yields mild conditions under which any GCM function can be expanded into the

series (1.7). We shall omit the details here as the results will appear as consequences

of ours.

Evidently, in case ^ is a GCM function, the series on the right-hand side of (1.7)

converges absolutely for each pair />0, u>0(if u<t, then the series is composed

of zeros). Furthermore, for a fixed i>0, the series is bounded (by <f>(t)) uniformly

in u>0. If <7i(0 + )<oo, then the series is bounded (by ^(0 + )) uniformly in i^O and

h>0. Therefore one arrives at the question of characterizing those functions

<f> e C°°(0, oo) for which the series on the right-hand side of (1.7) converges abso-

lutely, or converges to cf>(t), or both. This apparently is a difficult problem and we

are only able to give a partial answer.

Of the following three theorems we shall prove the first and leave the proof of

the other two to the reader. (They are derived from the proof of the first theorem

in much the same way that results in [5] were derived.)
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Theorem 1. Let m,(c; d) and M,(c; d) be defined by

mfxd; c) =  min w,(t) á  max w,(t) = M,(d; c),       i = 1, 2,....
cJStSc dStic

Suppose that for every c e (0, co) there exist a d, 0<d<c, and an e>0 such that

(1.8) hm(n^W = 0.
H-.» 'i = i mL(c; d)l

Then if, for some räO, <f> e C°(t, co) and, for some /0 = 0, the series

/'i bounded uniformly in u in compact subsets of(r, co), then cb(t) admits the expansion

(1.7) for all u, t, z^?>max (t, z*0).

Remark 1. Condition (1.8) is fulfilled for instance if the functions wt(t) are

uniformly bounded above and below. This is the case if (1.3) is satisfied.

Theorem 2. Ifw,(t), i= 1,2,..., are nonincreasing in [0, oo] and if the assump-

tions on cf> of Theorem 1 are fulfilled, then the conclusion of Theorem 1 is valid.

Theorem 3. Suppose there exist two sequences {cn}, {dn} such that, for all n

sufficiently large,

(1.10) cn(x-tY/n\ ^ Uf, x) Ú dn(x-t)n/n\,       x 2; t,

and such that, for some e > 0,

(1.11) lim^e« = 0.
ZI-* OO   Cn

Then if the assumptions on </> of Theorem I are fulfilled, then the conclusion of

Theorem 1 is valid.

The following is now an immediate consequence of the above discussion and

theorems.

Corollary 1. Under the assumptions on {wt(t)} in either one of the preceding

theorems, each GCM function on (0, oo) possesses the expansion (1.7).

Another consequence whose proof will be given after the proof of Theorem 1

is the following.

Corollary 2. Suppose {w¡(t)} satisfies the assumptions of one of the above

theorems and that <f> e C°(t, oo) for some t^O. 77zí7z the series (1.9) is bounded

uniformly in u in compact subsets of (t, co), for some t0 ̂  0, if and only if cf> is the

difference of two GCM functions in the interval (max (t, r0), u) for every

M>max (t, r0).
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Under (1.3) we shall give a complete characterization of the case where the

series (1.9) is bounded uniformly in u>0. This characterization turns out to be

even more interesting due to its nature.

Theorem 4. Let {w^t)} satisfy (1.3) and let <f> e Cœ(0, oo). Then a necessary and

sufficient condition in order that

(1.12) sup J «0; u) %^i = H < oo
">o)c = o wkW

is that there exists an a(x) of bounded variation in [0, oo) such that

(1.13) f \da(x)\ = H,
Jo

and

(1.14) m=   f     Hf,x)da(x), t>0,
Jo

where 4>(t; x) is the kernel of Studden [7, (2.7)].

Remark 2. (a) Condition (1.12) corresponds to <f>(Q + )<co in the case of the

GCM functions.

(b) The proof of Theorem 4 provides us with a different proof of [7, Theorem 1].

Studden's proof, however, seems to work only for ?>2F(oo).

(c) By virtue of Theorem 1, if (1.12) is fulfilled, then <f>(t) admits the expansion

(1.7)forallu,/,u£f>0.

Our following result is of the nature of Theorem 1 but involves an entirely

different condition on {wt(t)}. As it turns out, the proof of this theorem is much

shorter than that of Theorem 1.

Theorem 5. Let <p e C°°(t, oo) for some t^O and assume that for some tx}tO

c-15)   î.-■«.L^£;,*Lr = °° /«■aU**<«*/>tx).
k = 0 ' = * = " Wk+iix)<Pkiti,x)

Then if for some t0, 0^/0 = /i> the series (1.9) is bounded uniformly in u in compact

subsets of(r, co), then <f>(t) admits the expansion (l.l)for all u, t, u^t^ max (t, tx).

Remark 3. Condition (1.15) is satisfied for example when (1.10) holds for all

sufficiently large n and the sequences (cn), (dn) satisfy

2^±i_L = 00
¿?0dndn+l1+\

since maxiSxSu wn+x(x)^dn+xfcn.

The last result to be mentioned in this section deals only with GCM functions.

We were unable to extend it to the more general case. The proof here is an adaptation

of the technique of Amir and Ziegler [1] and is left to the reader.
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Theorem 6. A necessary and sufficient condition that each GCM function on

(0, co) can be expanded into the series (1.7) is that for each u and t (u> t) there exists

an s (0<s<t) for which

(1.16) lim p£4 = o.
n-oo ipn(s;u)

In §3 we shall introduce some approximation operators which arise naturally

from our discussion and which generalize the Szász operators [8], while in §4 we

shall define by means of the GVjS's, some sequence-to-function summability methods

which generalize the [J,f(x)] transforms [3].

2. Proofs.

Proof of Theorem 1. Let c/> e Cœ(T, co) be such that (1.9) holds and fix u,t,

iz^Omax (t, t0). Since xpk(d; x)^x/ik(t0; x) for t^d^x^u and since [t, u] is

compact it follows by (1.9) that

(2.1) J M* *)%7^ ^ H,        tidèxSu.
k = 0 Wk(X)

By virtue of (1.6) our proof will be complete once we show that

(2.2) lim       x/,n(t;x)Gn+1cp(x)dx = 0.
zi-*co   Jt

Now by (2.1) the series on the right-hand side of (1.6) converges as n -> oo, hence

define

g(d)^(d)-2Md;u)^

(2-3)

= hm       x/,n(d;x)Gn+1cf>(x)dx.
n-.cc Jd

We have to show that g(t) = 0. We shall show, following the technique of Karlin

and Ziegler [5], that g(d) = 0, t^d^u.

Our proof is done in steps. First by (2.1):

(2.4) |GvMx)| Ú H-rfä^y       t ï d < x ï u,   n = 0, 1, 2,....

We shall prove that whenever a function </> e Ci,*, u] satisfies (2.4), then for every

c, t<c^u, there is an e>0 such that if c — e^bfíc then

(2.5) lim  \C Ub;x)Gn+lcb(x)dx = 0.
Z1-.CO Jb
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Then we shall prove that geCm(t, u], that it satisfies (2.4) and that g(d) = 0,

t^d^u. Now by (2.4), for f¿d<b<c,

f Mb; *)|G.+iK*)| dx ik H f Mb; x)/n+,jx). dx
Jb Jb Yn + 1\", X)

Hr-n+x(b;c)

Mn(d;b)

IJf,\±JMi(d;c)\fc-bY+^      _
H\UtmJd^)\b^d)      -»°   -"^

by virtue of (1.8), provided £ is properly chosen. This proves (2.5).

We now prove that g e C°(t, u] and at the same time produce Gkg(d). An easy

computation shows that

GkMd; w) = wk(d)M-k(d; u;k),       n g k,

= 0, n < k,

where, for n>k and d^u,

(•« /"ín l'île+2

>pn-kid; U-, k) = W„(fn) HV-ifin-l)--- Wfc+1(ffc+1)í/£fc+i"-í/£n,
J¿ ^d ^d

and Md; u; k)=l. Hence, formal differentiation of (2.3) yields

w»(«) '
(2.6) Gkg(d) = GkY(d)- 2 wk(d)MAd; u; k) %^,       f < ¿ £ u.

To justify the term-by-term differentiation we observe that, for f¿tx<d^u,

Mti;d)M-kid;u;k)

Wfc(fte)--- Wi(£i) ¿fi •■•<#»   •        W„(fn)--- M»fc+i(ffc+1)</ffc+i---<ifB
íl -"ti -'tZ -M

J.iz pile+ 2 ri e(2

ML) ■■■]        wk+x(ik+ x)     wk(èk) ■■■}    ML) dL ■ • • dL
r¡ -'fZ •'í, ■'ti

=? f ML)- • • f ' *i(fi) «!•■ din = Mh;u).

Whence

(7,,      Î m*-,(^;,)^ s ̂ p^fJMM

where, by (2.1), the series on the right-hand side converges, and it follows from the

nature of the dependence on d on the right-hand side that the series on the left-

hand side converges uniformly in Jin compact subsets of (tx, u]. This justifies (2.6).
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Appealing to (2.7) once again, it follows by (2.1), (2.4) and (2.6) that

(2.8) \Gng(d)\ S 2Hwn(d)/UtA d),       t è h < d á u.

Now (2.5) for c = u shows us that g(d) = 0 in some proper interval [w — c, u]. Let

co = inf {c | g (d) = 0 for all d e [c, u]} and suppose c0 > t. Then ( 1.6) with g replacing

</> gives
j-co

g id) =       x/jn(d;x)Gn+1g(x)dx
Jd

(since C7ng(x) = 0 for c0<xáw; « = 0, 1, 2,...). Consequently,

rco

g(d) = lim        x/jn(d;x)Gn+1g(x)dx,

TV4
but by virtue of (2.8) and the proof of (2.5), there exists an et >0 such that

J-Co
x/>n(d; x)Gn+1g(x) dx = 0,       de [c0-£1; c0],

d

contradicting the definition of c0. Therefore c0 = t and, as g(d) evidently is con-

tinuous in [t, u], g(d) = 0, de [t, u], and the proof is complete.

Proof of Corollary 2. Sufficiency is obvious by the discussion preceding

Theorem 1, so we prove only necessity. Let w> max (t, i0). By either one of

Theorems 1, 2 or 3, cf> satisfies (1.7) for all zzäomax (t, t0). Hence, for u^t

> max (t, t0),

k = o ¿WkW itAo 2wk(u)

= <l>iit)-<t>2Í'),    say.

Now by the proof of (2.6) it follows that each of <tS¡ is a GCM function in

(max (t, t0), u) and this completes the proof.

We shall defer the proof of Theorem 4 until after we prove Theorem 5 due to

the shortness of the proof of the latter.

Proof of Theorem 5. Here again (1.6) is valid so that we are done once we

establish (2.2). Fix u, t, u^Omax (r, tx). By (1.9),

Í^^^vTTxT^      t^x^u.
zc = o wk\X)

Therefore

oo > H(u-t) i  J  \\k+iiti;x)^Gk+1^dx
k = oJt wk + l\X)

f0Jt  Wn+AXJViAhiX)

>
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By virtue of (1.15), this implies that for a subsequence k¡ -*■ oo

r
hm      <Pk,(ti; x)\Gki + xcf>(x)\ dx = 0,
i-x* Jt

which in turn implies

(2.9) lim f  Mit; x)\Gki + x<p(x)\ dx = 0.

Now (1.9) guarantees the existence of the limit on the right-hand side of (2.3) and

therefore (2.9) implies (2.2). This completes the proof.

Proof of Theorem 4. First we prove sufficiency. We show first that

(2.10) Y MO; t) G^(?;x) á 1    for all x, t e [0, oo).
k = 0 wk(t)

To this end recall (1.6) for the function </)(?; x) which as a function of / is a GCM

function in [0, oo). For every «^0 and x, t e [0, oo) we have

(2.11) 1 = 0(0; x) = 2 U0; t) Gt(tr'AX)+ f «0; u)Gn+xr(u; x) du.
k = 0 WkV) Jo

Hence

1 ä  2 «0;/)^^f},       « = 0,1,2,...,   x, te [0,oo),
MO

which establishes (2.10). Now (2.10), together with [7, (3.3)], implies that

0^Gk>p(t; x)^wk(t)fifk(0; t), t>0, therefore we are allowed to differentiate under

the sign of the integral in (1.14) and thus have

(2.12) G„fKt)=\   Gkr(t;x)da(x),       t>0.
Jo

Hence by (2.10)

2 «o; ol%gûl á i 2 «o; o^%f} \d«(X)\
fc = 0 wkVJ Jo     k^o wkV)

p CO

^ |ifa(x)[  < OO.
Jo

This proves sufficiency and shows that

(2.13) H ^ f    \da(x)\.
Jo

Conversely, as we have remarked in Remark 2(c), by Theorem 1, (1.11) implies

that

m = I hit;u)QM,     u^t>o.
k = 0 wkW
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Rewriting this yields

X(t\     v >l>k(>; u) , /p,. .a Gk<p(u)
m = loJAAA^)U^u)AAM

where uk = k/u (for i:=0we understand &/«fc as u). Now [7, (2.7) and (2.8)] </>(?; x)

= e~xtP(t; x)/P(0; x), x, í e [0, oo), where

rt CO CO

P(t;x) = i+    <?-*«-» 2 *>*(£)-i>rW'; 0*
•<Z fc = 0

Denote F(t) = Ju/(t) </t where/is the function of (1.3). Then, by (1.3), 0<,F(oo)

<oo, and by [7, (3.2)] it follows that

(2.15) 0^(i;i)^"IlMfW.

Consequently, for any fixed t>2F(co), x/¡(t ; x) -> 0 as x —> oo. We are now able to

apply [7, Lemma 4] and conclude that the functions

<D„(f; x) = xjjjj; n/x)/x/,n(0; n/x),       n ä tx, x ¿ 0,

= 1, x = 0,

= 0, n < tx,

converge to xp(t;x) uniformly in 0^x<oo, for every fixed t>2F(co). Also, for

each fixed k, xfik(i; u)/i/ik(0; u) -*■ 1, as u^-co, and x/i(t, k/u) -> </!(?; 0 + )=l, as

u-> co. Therefore by (1.12) and (2.14) we have

(2.16) cb(t) = lim  J m k/u)xpk(0; u) %g,       / > 2F(co).

If we define the functions au(x) by

«„(0) = 0,

(2'17) , *        V   z m    x G^fo)««(*) =  > W0; k) -77V,     0 < x < 00,

then the functions au(x) are of uniformly bounded variations in [0, 00) and (2.16)

takes the form

/•CO

</>(t) =       xp(t; x) dau(x),        t > 2F(co).
Jo

Now since x/i(t; co) = 0 for t>2F(co) it follows by [2, Theorem 5.1] that there exists

an a(x) of variation not exceeding H such that

I* co

(2.18) cp(t) =       x/>(t; x) da(x),       t > 2F(oo).
Jo
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But 0^ifi(t; x)5jl for ail /, x e [0, oo), hence the integral in (2.18) exists for all

t>0; so define y(t) by

(2.19) x(t) = I    M;x)da(x),       t > 0.
Jo

Evidently Gk(T — x)iu) = 0 for w>2F(co) and by the sufficiency part and Theorem 1,

it follows that, for 0 < t ̂  2F(oo) < w.

Therefore,

z» oo

0(0 =       >f>(t;x)da(x),       t > 0,
•/o

and the proof of (1.14) is complete. Also it was noted that J" \da(x)\-¿H so,

together with (2.13), (1.13) is established.

In fact, if a(x) is chosen to be normalized, i.e. a(x) = ^[a(x + ) + a(x —)], 0<x<oo,

then by the uniqueness of a(x) [7, Theorem 2] we have lim,,..,,, au(t) = a(t) at every

point of continuity, t, of a(x).

3. The approximation operators. Throughout this section we assume that

{Wi(0} satisfies (1.3).

Let u>0 be arbitrary. Then the function </>(/; u) is represented by

rit

(. CO

; u) =       if/(t ; x) dau(x),        t > 0,
Jo

where a„(x) = 0, 0¿x<m; au(x) = l, iz^x<oo. Our discussion in the proof of

Theorem 4 yields

lim  I MO;v)^f^ = o,     o<x<u,
"-"» k/ttx WAV>

= 1,        u < x < co,

or rewriting it, we have for u, x>0, u^x,

(3.1) lim 2«0;,)^^il-J^y
,-.fc40m       w*(w)   L      W_

!-«*(«)•

This suggests the introduction of the following approximation operators. With

a function f(t) which is defined in [0, co) associate the family of functions Svf

defined on [0, oo) by

(3.2) SJ(x) = 2 rÁO; u) §gíg^/(£),        u > 0,
k = 0 WkW \uf
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provided the series on the right-hand side of (3.2) converges. By virtue of (2.10)

the operators are well defined for every function/(r) which is bounded in [0, oo).

In fact, it is not difficult to prove with the help of (3.1) that if/(0 is bounded in

[0, oo) and continuous at 0^x<oo, then

(3.3) limSu/(x)=/(x).

We shall prove much more.

Theorem 7. Let f(t) be defined in [0, oo) and assume that f(t) = 0(eM) for some

A^O. Then (i) (3.3) holds at every point of continuity, x, off(t); (ii) iff(t) is con-

tinuous in [a, b] then (3.3) holds uniformly in x e [a, b].

Remark 4. (a) In Theorem 7 we implicitly state that whenever /(/) = 0(eM),

then Suf is well defined for all w>0.

(b) In the case wt(t)=l, i = 0, 1, 2,..., the operators Su reduce to the well-

known Szász operators [8]

SJ(x)
áo   k\ J\ü)'

and Theorem 7 in this case is well known.

Proof of Theorem 7. First we show that whenever f(t) = 0(eAt) for some A^O,

then Suf is well defined. By [7, (3.1) through (3.4)]

(3.4)

and

(3.5)

Hence

0^«0;M)^(2^P

0 ^ Gkx/,(u;x) ^ xfcHv(K)e-*(u-2i,<°°».

Jc = o Wkl\U) \U/ ¿?0 K\

= exp{-x(M-2i'(co)) + xe'4/u(M-r-/;'(iv))} < co.

Now we observe that by (2.11) it follows from the proof of Theorem 1 that

Gkxf>(u;x)
(3.6) 2 WO;«)-wk(u)

= 1,       u, xe [0, oo),

so that we get

(3.7) SJ(x)-f(x)= J W0;«)-
k = 0 Wk\M)

Gkx/>(u; x)
f 9 -fix)

Let xe [0, co) be a point of continuity of/(r) and let e>0 be prescribed. Then
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there exist w0>0 and S>0 such that if u}¿u0 and |rc-x(u + F(¡7))e'4,"| <Sw, then

\f(kfu)—f(x)\ <e. By (3.6), for wäw0, we then have

\sj(x)-f(x)\ s\2+2mo;u)
Gkif>(u; x)

Wki") I)f\7.)-m

where 2i is taken on all k, \k — x(u + F(u))eAIU\ <8u and £2 is taken on the rest.

It follows by (3.5) and (3.6) that

2 wo; «)Gk<fj(u;x)

wAu)

Sety = x(u + F(u))eAlu. Then

?«*»>^Hi)-.H
<   e-JC(u-2F(co))/j   t  ^j y )¡_

/r^i-zw < e.

- 2,. - 2,.,,- xu +yÚ C(x)e-xu8-2tr2 2 (k-y)2T-¡ = C(x)3-2«->>
ic = o k.

= C(x)S-2u~1.x(l +F(u)fu)eAIU exp (xu(eAIU- 1) + xF(u)eAIU)

= 0(u~A,   as u^> 00.

This completes the proof of (3.3) and inasmuch as our estimates are uniformly in

x e [a, b], (3.3) holds uniformly in each interval of continuity [a, b] of f(t).

4. Some sequence-to-function summability methods. Throughout this section

we assume that {wt(t)} satisfies (1.3).

Let <j> e C^O, 00) and denote w = {w¡(t)}. The [J; w;<f>(x)] transform of the

sequence {sn} (n ä 0) is defined by

(4.1)
G::Y(x)

t(x)= 2 M0;x)^£sk,     x>o,
fc = 0 Wk(X)

provided the series on the right-hand side converges for all sufficiently large x. The

sequence {sn} is said to be summable to í by [/; w; <f>(x)] if lim^c t(x) = s.

First we characterize conservative and regular [/; w; <f>(x)] methods.

Theorem 8. The [J; w; 4>(x)] method is conservative if and only if ' <j>(t) possesses

the representation (1.14) where <x(x) is of bounded variation in [0, co). It is regular

if and only if in addition

(4.2) x(0) = «(0 + )    and   a(oo)-a(0) = 1.

In the case wt(t)=l, ;' = 0, 1,2,..., the [/; w; <f>(x)] method reduced to the

[J, Y(x)] method of Jakimovski [3]. Theorem 8 in this case was proved in [3].
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Proof. It is well known that for the [J; w; </>(x)] method to be conservative it is

necessary and sufficient that (1.12) be satisfied and that the following limits exist:

(4.3) lim 2W0;x)^,
*->» k^0 wk\x)

(4.4) limW0;x)^^,       k = 0,1,2,....
X-, co Wk(X)

Since (1.12) and (1.14) are equivalent, we only have to show that (1.14) implies the

existence of the limits in (4.3) and (4.4). Now by (2.10), (2.12) and (3.6) it follows

by Lebesgue's dominated convergence theorem that

k = o wk(X)       k^0 Jo wk(X)

Ç™  \?   t m     ^ Gkxp(x; u)  , , .
=        Z WO;*)   \Z'     da(u)

Jo    k = o wk(X)

= a(co) — a(0).

Also it follows by (3.4) and (3.5) that, for each w>0,

Gkx/>(x; u)
0 ^ lim «0;x)

wk(x)

g lim (x + F(0°Vk uke-uxx-2F^» = 0i       /c = 0,1,2,...,

and

C^(x;0) = 0,   k = 1,2,...,       0(*;O) = 1.

Therefore,

lim W0;x)^ = 0,       ¿=1,2,...,

and

(4.6) lim <¡>(x) = a(0 + )-a(0).
X-. co

From (4.5) and (4.6) we see that the method is regular if and only if, in addition,

(4.2) is satisfied. This completes our proof.

A totally regular method is one that sums a sequence {sn} (n^O), to s, whenever

sn —> s both for s finite and for s infinite. We conclude this paper with a charac-

terization of the totally regular [J; w; ct(x)] methods.

Theorem 9. A regular [J; w; </>(x)] method is totally regular if and only if </>(x)

is a GCM function in [0, co), i.e. if and only if a(u) of the representation (1.14) is

nondecreasing.
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Theorem 9 for the [J, r(x)] methods was proved by Lee Lorch and the author

[61.
Proof. Sufficiency of the condition is obvious. Conversely, assume that the

[J; w; <f>(x)] method is totally regular. Then by a theorem of H. Hurwitz (see [5])

lim  2 Tk(0;x)
x->°° fc = 0

Hence, for each 0 < v < oo,

(4.7) lim   2  M0;x)

\Gk<rix)\    GJ(x)

k^vx

wk(x)       wk(x)

\Gk<f>(x)\    Gk<f>(x)
wk(x)       wk(x)

= 0.

0.

Now we may assume that a(u) is normalized. Then by (2.17) and the discussion at

the end of the proof of Theorem 4, if v is a point of continuity of a(u), then

(4.8) lim   2  U0;x)^^ = a(v),
*-*" ktix WfcW

and

GkrJx)\

)
f \da(u)\ ̂ Iim inf f \dMu)\ i Hm sup  2  «<>; x) i^£

ik iim sup í°° 2 MO; x) Gt(?;y \da(u)\.
*-"*>     Jo    ktvx wk\X)

By Theorem 7, the last limit is equal to J"¡¡ \da(u)\, hence

(4.9) lim   2  W0;JC)M = f \da(u)\.
x-"° kSvx wk\X) Jo

Combining (4.8) and (4.9), (4.7) yields

\da(u)\ —a(u) = 0,   for all points of continuity v,
Jo

of a(w), whence a(u) is nondecreasing.
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