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TRANSFORM AND THE LOCALIZATION PROPERTY

FOR EIGENFUNCTION EXPANSIONS FOR SOME

PARTIAL DIFFERENTIAL OPERATORS
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Abstract. The asymptotic behavior of a certain Fourier transform is investigated,

and the result is applied to obtain a localization theorem for elliptic operators on the

torus.

Let T(x) be a positive analytic function, homogeneous of weight 1, in Rn — {0}

(n> 1). Define C = {x\ T(x)^\), 8C={x\ T(x)=\). This note is about the asymp-

totic behavior, as r -» oo, of the Fourier transform

Fô(r,6)= f (\-(T(x))2fe™-»dvx,
Jc

where 0<S^[(n-l)/2] + l, 9eSn-\ r=\x\, and dvx = the volume element in Rn.

In case 8C has everywhere positive Gaussian curvature, the asymptotic behavior of

F6(r, 6) has been discussed by Hlawka [5].

Such integrals arise in the extension of the localization theorems for summation

of Fourier series by Riesz means to certain types of eigenfunction expansions for

more general elliptic operators. That estimates of the type contained here would be

useful in this context was pointed out to me by E. M. Stein, and the present note is

a result of that conversation.

In order to estimate Fó(r, 9), it is necessary to know something about the asymp-

totic behavior of integrals of the form

G(r, e,f) = [   f(x)e<^ dsx,
Jsc

where dsx = the surface area element, and/(.v) is a sufficiently smooth function on

8C. The asymptotic behavior of G(r, 6,f) has been investigated, for general types

of 8C, by several authors ([4], [5], [6], [8], [9], [10]).

The result we will use in this paper is the following:

Theorem A [9] (a more general C™ version is given in [10]). IfdC is analytic, and

if C is convex (this is certainly unnecessary in R2), then \G(r, d,f)\ g <t>(6)r -c-1"2,
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where <b(9) is in L"(Sn~1), for some p>2. Moreover, the Lp norm of <t>(9) depends

only on bounds for f(x) and a certain number, depending on n, of its derivatives in a

neighborhood of 8C. (In order to speak of the derivatives off(x), it suffices here, for

example, to extend f(x) homogeneously, say of weight 1, and then take ordinary

derivatives.)

It should be pointed out that there is an important question left unanswered by

Theorem A. Namely, is the convexity requirement in dimensions greater than 2

superfluous or not? Insofar as I know, this is not known. If the requirement is

unnecessary, one could extend localization theorems without qualification to all

constant coefficient homogeneous elliptic operators on the torus.

I shall now describe the passage from G(r, 9,f) to F6(r, 9). We begin with a

lemma which occurs in [5], and whose proof is short enough to reproduce here.

Lemma (Hlawka).

f (\-(T(x))2few-x)dvx = 28 f  (1 -t2f-Hn + 1 dt f elr«°-x) dvx.
Jc Jo Jc

Proof.

f (\-(T(x))2)deirW-x>dvx= I   e"iä-x)dvx f
J c J C Jl

4(i-/2)s
dtv '

dt
C JT{x)

f eirW-x)dvx I      2S(\-t2)ä-1tdt.
JC ¿T(x)

The last double integral is over a cone in Rn + 1. Reversing the order of integration,

the double integral becomes

2S f  (l-^y-Hdt Í  ewo-x) dvx = 2S f  (1 -t2)"-1^^ dt f eirlw-x) dvx.   Q.E.D.
.'o Jtc Jo Jc

By the divergence theorem, the double integral on the right in the statement of

the lemma equals

(1) ^ Í  (\-t2)ô~1tndt f    eitrW-x\9, n(x)) ds„
ir Jo Jec

where n(x) is the outward normal to 8C.

Now the major contribution to the integral in (1) comes from points near the

"horizontal" part of 8C, i.e. from points near the compact subset Me of 8C on

which n(x) is parallel to 9. Indeed, iff(x) is a C°° function on 8C such that/(x) = 0

in the complement of a small neighborhood of Me, and fe(x)=l in a smaller

neighborhood of MB, we have

'7     =\1\    fe+fi    (Í--/.X
o Jec     Jo Jic        Jo Jcc
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and we can choose/(x) so that the contribution to (1) from the second double

integral on the right is 0(r ~n), uniformly in 9 [6, p. 767].

We are left with the integral

^ f  (1 - t2)6~Hn dt [   fe(x)eitrie-x)(9, n(x)) dsx.
lr Jo Jsc

Lemma. (9, x) is bounded away from zero on Mg, uniformly in 9.

Proof. It suffices to show that (9, x)#0 if n(x) is parallel to 9. This will be

demonstrated if we can show that x is never perpendicular to n(x).

By Euler's differential equation for homogeneous functions,

8T(x) 8T(x)

and since F(.y)^0 unless x = 0, and the right-hand side is proportional to (x, n(x)),

the lemma is proved.

Now

^f  (\-t2)i-1tndt [   fe(x)emo-x\9,n(x))dsx
(2)       lr Jo Jec

= ^ f   fe(x)(9, n(x)) dsx f  (1 -12)6-ii»e*».«) dt.
ir Jec Jo

Assume for the moment that S is an integer. Then if we integrate the inner

integral on the right side by parts S times, we find that

f  (i _í2)a-irneiír(8.x) dt = cf/to.rtfrft x))-*-(ir'(B, x))~ö (   h(t)emo-x) dt,
Jo Jo

where c and h(t) are, respectively, a constant and aC° function, both of which are

completely determined by S. Moreover, h(t) has a zero of order ä(n— l)/2 at r = 0,

since 0 < 8 ̂  [(n -1 )/2] + 1. We conclude that

T f   fe(x)(9, n(x)) dsx Í  (l-r^-^V^'*? dt
,r Jec Jo

= 77^1 Í   M*M. n(x))(9, x)-'**« dsx

-77¿n f  m dt Í   fe(x)(9, n(x))(9, ,)-««««».*» dsx.
v")      Jo Jec

Now inasmuch as f0(x) can be chosen so that (9, x) is bounded away from zero

on the support of fe(x), uniformly in 9, and so that the derivatives of the homo-

geneous extension of/(a-)(0, x)~6 can be uniformly bounded in a neighborhood of

8C, we can apply Theorem A to the integrals over 8C to obtain the following result :
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Theorem B. // 8C is analytic, and if, for n>2, C is convex, then \Fó(r, 9)\

g <D(0)r -«-<»+1,/2, where O(0) is in Lv(Sn~x), for somep>2.

The theorem remains valid if S is not an integer. In order to see this, we integrate

the second integral on the right side of (2) [S] times by parts to obtain

f   (l-ty^tV^-^dt = (ir(9,x))-l6]¡  h(t)eitrW-x> dt,
Jo Jo

where the function h(t) is a sum of several terms, each of which, apart from a

constant factor, is of the general form (1 — t2ytß, where a ä S — [S] — 1, and ß^n— [S].

Each of the corresponding integrals can be handled by the same standard

method from the asymptotic theory of Fourier transforms [2, pp. 46-51], the only

differences being in the number of integrations by parts that must be performed in

order to either render the resulting expressions 0(r~ô~in~1V2), or bring them into

the standard form in which — 1 <a<0. To take a specific example, the integral

$10(\-t2y-in-1tn + ineme-x) dt, which corresponds to one term of h(t), is already

in standard form, and requires no further integrations by parts. Formula 2.8(6)

of [2] then tells us that this integral equals

CleirW-x)(r(9, x))w-ö + c2eir(e-x)(r(9, x))1»-'-1

+ ■■■ +cl(n_1)l2f™-x\r(9, x)y»~ô~"n-w + R(r, 9),

where R(r, 9) = 0((r(9, x))-'"1-"'2^1), and the constants cx,..., clin.xym do not

depend on 9. Integration over SC, bearing in mind Theorem A, then yields the

desired result.

We conclude with a brief description of the connection between Theorem B and

localization theorems for elliptic differential operators on the torus.

Let Q(8/8xí) be a constant coefficient homogeneous elliptic operator of degree p

on the n-torus Tn, and let T(x) = (Q(x))llp. The eigenfunctions of Q(8\8x^) are the

functions eUN,x), where N is an integral lattice-point, and the corresponding eigen-

values are the numbers of the form (iT(N))°. Now the eigenfunctions of Q(8/8x¡)

can be ordered in an intrinsic way by the corresponding eigenvalues. In particular, if

cn = (2tt)-4   f(x)e-^-^dvx,

we define SB(x) (R>0,8^0) by setting

In the case in which Q(8/8x¡) is the Laplacian, this reduces to spherical Riesz

summation for Fourier series.

There are numerous questions which can be asked about the behavior of the

Riesz sums S$¡(x), but we will only discuss one of them here, namely, is some

reasonable version of Riemann's localization theorem true for this kind of sum-
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mation. I.e. if/(x) eLp(Tn) for some p^ 1, and/(x) = 0 in a neighborhood of the

origin, is it true that for some S independent of/(x), 5^(0) -> 0? It was shown by

Riemann that the answer is yes for T1, and that in that case one can take 8 = 0, for

any p^ 1. It was shown by Bochner that if n> 1 and Q(8/8xt) is the Laplacian, then

the answer is again yes for any p^ 1, provided that 8 is greater than (n— l)/2, the

"critical exponent", but the theorem fails if 8 = (n— l)/2 and p=\ [1]. It was also

shown by Bochner in the same paper that if p = 2 then localization holds at the

critical exponent, and it was shown by Stein in [7] that localization holds at the

critical exponent iî p> 1.

For illustrative purposes, we will give here a very simple example of a localization

theorem for general operators, leaving aside the delicate question of validity at the

critical exponent, and the discussion of general V spaces. What we will show is that

localization holds for any operator of the type under discussion, provided that

f(x) eL2(Tn) and 8>(n—1)/2, and provided that, in dimensions greater than 2, the

set C={x | T(x)fi 1} is convex. This possibly unnecessary convexity requirement is

forced upon us by the present formulation of Theorem A, and it would, I think, be

very interesting to know whether or not the convexity requirement in Theorem A is

superfluous.

The connection between Theorem A and localization is this: let f*(x) be the

periodic extension of/(x) to Rn, and for any R>0, let Fô(Rx) = Fô(Rr, 9), which

was defined at the beginning of the paper. Then if (n -1 )/2 < 8 ̂  [(n — 1 )/2] +1, the

function f*(x)F6(Rx) is, for any F>0, in L\Rn), and

(3) Sí(0) = (R/2nT Í  f*(x)Fö(Rx)dvx.
Jr*

(We will not discuss the validity of (3) when 8 = (n—1)/2.)

In order to establish (3), note first of all that Fó(x) is always C°°, and by Theorem

B, F6(x) is in L1(Rn). The Fourier inversion theorem thus applies to Fô(x), and

hence, for fixed R, to (R/2Tr)nFö(Rx). Supposing f*(x) to be of the form

exp (-i(N0, x)), we see that the right side of (3) equals (1 -(T(N0/R))2)0 if N0 e RC,

and is zero otherwise. Formula (3) is therefore established for trigonometric

monomials, and hence, by additivity, for trigonometric polynomials. If we can

now show that

f(x)eL2(Tn)   implies   f*(x)Fà(Rx)eLl(Rn),

and that

f   \fk{x)\2dvx^0   implies    f   \fk*(x)F6(Rx)\ dvx-+0,
Jxn Jr*1

formula (3) will follow by approximating f(x) in L2(Tn) by trigonometric poly-

nomials. In what follows, we may clearly assume that R=\.
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Now

f    \f*(x)Fó(x)\ dvx=\     + J   f
Jru Jr£l       k = lJk£r£k+l

\f*(x)Fd(x)\ dvx g f l/^x)^)^8-^»'2,
JcgrSfc+l -'kSrSfc+1

by Theorem B.

The last integral is dominated by k~ö-in + 1V2 ¡kSrSk+1 |/*(jc)0(ö)| dvx. But

But

|<D(0)|2 dvx = ckn'\     for some c > 0,    and

|/*(x)|2 <&„ ̂  c^""1,    where c, -> 0 as f   |/(x)|2 ^ -* 0.
JkSrSk+l Jt"

Thus by the Schwarz inequality,

f \f*(x)<b(0)\ dvx = c'¿»-\
JkSr¿k+l

where c'f -> 0 as JT" |/(x)|2 dvx -> 0, and this establishes the desired conclusion.

We now pass from (3) to the localization theorem. Suppose f*(x) = 0 if r<e.

By (3),

S£(0) = (Rßny í   f*(x)Fó(Rx) dvx = (Rßny \     +(RßnT f    .

The first quantity is zero. By Theorem B, the second is dominated by

R-ô + (n-i)i2 f     \f*(x)(&(9)\r-ö-in + 1)>2dvx.
Jr¿e

By the argument used to establish (3), the integrand is in L^R"), and hence the

last quantity tends to zero as R -> oo, which establishes the localization theorem if

(n—l)/2<8á[(n-l)/2] + l. Theorem 16 of [3] then implies that the theorem is

true for all 8>(n-l)/2.
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