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LOCALLY UNIFORM SPACES
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JAMES WILLIAMS

Abstract. The axioms for a locally uniform space (X, *) may be obtained by locali-

zing the last axiom for a uniform space to obtain V* 6 X, Vt/e *, 3 Ve "P"; (Ko V)[x]

S= U[x], With each locally uniform space one may associate a regular topology, just as

one associates a completely regular topology with each uniform space. The topologies

of locally uniform spaces with nested bases may be characterized using Boolean alge-

bras of regular open sets. As a special case, one has that locally uniform spaces with

countable bases have pseudo-metrizable topologies.

Several types of Cauchy filters may be defined for locally uniform spaces, and a

major portion of the paper is devoted to a study and comparison of their properties.

For each given type of Cauchy filter, complete spaces are those in which every Cauchy

filter converges; to complete a space is to embed it as a dense subspace in a complete

space. In discussing these concepts, it is convenient to make the mild restriction of

considering only those locally uniform spaces (X, -f) in which each element of V is a

neighborhood of the diagonal in Xx X with respect to the relative topology; these

spaces I have called NLU-spaces.

With respect to the more general types of Cauchy filters, some NLU-spaces are not

completable; this happens even though some completable NLU-spaces can still have

topologies which are not completely regular. Examples illustrating these completeness

situations and having various topological properties are obtained from a generalized

construction. It is also shown that there is a largest class of Cauchy filters with respect

to which each NLU-space has a completion that is also an NLU-space.

Preface. For any locally uniform space (X, V), the sets of the form V[x], for

x e X and V e"f~, describe a neighborhood system for a regular topological space.

Conversely, the neighborhood system for any regular space X is generated by the

local uniformity consisting of all neighborhoods of the diagonal in Xx X.

If a local uniformity has a nested base, then the generated topology is para-

compact. From this it follows directly that a local uniformity with a countable base

has a pseudo-metrizable topology. On the other hand, if the topology of a regular

space has a o-locally finite base, it is easy to construct from such a base, a local

uniformity with a countable base which generates this topology, thereby demon-

strating Nagata's result that a regular T^-space whose topology has a a-locally

finite base is metrizable. In fact the condition needed for the construction is

somewhat weaker than a-local finiteness.

Using a localized form of écart space, Niemytski has proved a result which says

essentially that local uniformities with countable bases have pseudo-metrizable
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topologies; it is contained in a 1927 paper to which I was led by a series of accidents

after completing my own work. In view of the fact that Nagata's result follows so

easily from Niemytski's, it is surprising that the two results were separated by a

long period; and the connection does not seem to have been pointed out since.

1. Introductory concepts. When not otherwise specified, the terminology here

will be like that in Kelley [9]. It will be convenient to develop our ideas about

locally uniform spaces in terms of the more general class of semi-uniform spaces,

whose theory is presented in Cech [2]. A semi-uniformity on a set X is a filter Y

on X x X such that, for each F e Y,

(1) A(X) = {(x,x> : x6l}çKand

(2) V-i={(y,x>:<x,y}eV}e"r.

If Y is a semi-uniformity on a set X, then a base (subbase) for Y is just a base

(subbase) for Y considered as a filter; the pair (X, Y) is a semi-uniform space; the

elements of Y are called semineighborhoods of the diagonal in Xx X; and for each

x e X, •Arx = {V[x] : VeY} is the semineighborhood system at x generated by Y ;

in case the family {Jrx : x e X} is a neighborhood system for a topology &~ on X,

we say that S~ is the topology generated by Y. We shall call those semi-uniformities

which have generated topologies topological.

1.1 Theorem. Let (X,Y) be a topological semi-uniform space. Then for each

A^X and M<^ Xx X, we have

A' = D{V[A]: VeY}   and   M~ = f| {F° M ° F : VeY},

where A~ and M ~ are the closures of A and M in X and Xx X respectively, with

respect to the generated topology of Y

Proof. This is essentially Theorem 6.6 of Kelley [9].    □

Definition. We shall say that a subbase 38 for a semi-uniformity on a set X is

locally uniform iff VU e38,Vx e X,3VeY : (V ° V)[x]^U[x]. If Y is a locally

uniform semi-uniformity, we shall call Y a local uniformity, and call (X, Y) a

locally uniform space.

Definition. For any set Xand any Kçlx X, we let V2=V° V, and for each

neco-{0}, let Kn + 1=Fn° F.

1.2 Theorem. If (X,Y) is a locally uniform space, then V/iew-{0},Vi/e^

Vxe X, IV e Y : Vn[x]sU[x].

Proof. This follows directly from the above definition.    □

1.3 Lemma. Every locally uniform space is topological.

Proof. Let (X, Y) be a locally uniform space; pick xeX. The collection of

all semineighborhoods of x is a filter since Y is. Pick UeY and let (U[x])°

= {ye X :3VeY; V[y]<=U[x]}. Clearly x e(U[x))°<=U[x], and it remains to

show that (U[x])° is a semineighborhood of each of its points. For any given
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ye(U[x])°, pick VeY' so that V[y]sU[x]; then choosing WeY so that

W[W(y)]=W2[y]^V[y]^U[x] shows that W[y]^(U[x])°; hence (U[x])° is a

semineighborhood of y.    □

The converse of the above lemma is, incidentally, false; a topological space A'

may be generated by a semi-uniform space if and only if Vx, y e X, x e{y}~ iff

ye{x}~, by Theorem 23B.3, p. 402 of Cech [2].

The following theorem is contained in the unpublished work of G. D. Richard-

son; similar theorems relating regular topological spaces to other generalizations

of uniform spaces have also been given by A. S. Davis [4, Theorem 4], S. A.

Naimpally [12, Theorem 2], and K. Morita [10, Part I, Theorem 1, and Part IV in

his discussion of "Uniformities" which "agree strongly with the topology]."

1.4 Theorem. The topology of a locally uniform space is regular. Conversely, for

any regular space X, the set of all neighborhoods of the diagonal in Xx X is a local

uniformity which generates the topology of X.

Proof. Suppose (X, Y) is a locally uniform space. For any given xe X and

neighborhood V[x], with VeY, if UeY is such that U2[x]^ V[x], then (U[x])~

£ {/[£/[.*]]£ V[x] by Theorem 1.1. Hence each neighborhood of each point has a

closed subneighborhood.

Now suppose A' is a regular topological space and let Y be the set of all neigh-

borhoods of the diagonal in Xx X. It is clear that Y is a semi-uniformity, and for

given UeY and xe X, if A, B, and C are open neighborhoods of x such that

C-^B^B-ÇA^U[x], then V=(Bx B) U [(A-C')x(A-C-)] U [(X-B')x

(X— B')] is an open neighborhood of the diagonal such that

F2[.v] = V[B] = A S U[x].    D

Definition. For any set K, we shall abbreviate the product KxK to Kx2.

While this notation for Cartesian squares is only necessary for very long expres-

sions, it increases the readability of most ; for consistency, we shall use it throughout.

Definition. We shall say that a subbase 38 for a semi-uniformity Y on a set X

has the neighborhood property iff Vt/ e38,Vx e X,3V eY : (V[x]) *2^U.lfYisa

local uniformity with the neighborhood property, we shall call Y an NLU or

neighborhood local uniformity, and call (A', Y) an NLU-space.

The following simple results are useful for identifying local uniformities and

NLU's. The almost trivial proofs of 1.5, 1.6, and 1.9 have been omitted.

1.5 Theorem. A subbase 38 for a topological semi-uniformity has the neighborhood

property iff each V e38 is a neighborhood of the diagonal in X"2.

1.6 Theorem. A semi-uniformity Y on a set X is an NLU iff it has the property

that VUeY,\tx e X,3V' eY : (F2M)*2<= U.
i

1.7 Theorem. Let X be a regular topological space; suppose 38 is a collection of

symmetric neighborhoods of the diagonal in X"2 such that for each neighborhood M
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of x, there is a neighborhood N of x and an element V e 38 such that V[N] S M. Then

39 is a subbase for an NLU generating the topology of X.

Proof. Let 38 and X satisfy the above condition. 38 is clearly a subbase for a

semi-uniformity. The condition shows as a special case that 38 generates the topology

of X. Hence 38 has the neighborhood property by Theorem 1.5. It remains to show

that 38 has the local uniform property. Given x e X and U e38, we may choose

K'e 38 and a neighborhood B of x so that V[B]<= U[x], then we may choose We 38

so that W[x]ÇB, so that (W n V)2[x]<= F[rF[x]]£ V[B]ç U[x]. Consequently 38

is a subbase for an NLU generating the topology of X.    □

Definition. If °?/ and Y are semi-uniformities on a set X, % is stronger than Y

\ff%^Y

1.8 Theorem. Iftfl is a local uniformity on a set X, then there is a strongest NLU

Y contained in tf¿. <?/ and Y have the same topologies.

Proof. Let % be a local uniformity on a set X, let iY be the set of all neigh-

borhoods of the diagonal in X"2. We shall show that *nif is the required

structure: 9/ n W is clearly the strongest structure we might consider, and it has

the filter and symmetry properties to make it a semi-uniformity. It generates the

topology of (X, <?/) since for each xe X and neighborhood U[x], with U e°U, we

may choose WeiY so that W[x]=U[x] by Theorem 1.4; so that (C/u W)[x]

= U[x], with U u W e W n iY. <?/ n iY has the neighborhood property by Theo-

rem 1.5 and we show the local uniform property as follows: Pick xeX and

N e <W n iY, choose We W so that Wa[x]sN[x] and Ue <?/ so that i/2[x]^-WM

and £/[*]£ W[*], and WeW so that IFM^ U[x] and IFç IF, then

(H>u t/)2M = (fF2u(H>o C/)u(i/o fK)u í72)[.t]

£  1F2[x] U (72[x] £ /V[x],

with JF U Ue <W n #:   D

1.9 Theorem. Suppose Y is a local uniformity on a set X and °U is a topological

semi-uniformity on X which is stronger than Y and has the same topology, then tff

is a local uniformity.

Definition. If Y is a local uniformity, then for each n e o>-{0}, let

tT" = {[/ çz X"2 : 3VeY: Vn S U}.

1.10 Theorem. For each local uniformity Y and each neœ-{0, 1}, Yn is an

NLU with the same topology as Y.

Proof. Let Y be a local uniformity on a set X; it suffices to prove the theorem

for Y2. First, Y2 is clearly a semi-uniformity. Pick W e Y2, pick xe X, and choose

VeY so that F2ç IF; choose UeY so that C/4MçF(4 then U2eY2 and

((t/2)2M),<2ç(F[x])><2SlF, so that f2 is a neighborhood local uniformity by
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Theorem 1.6. The relative topology of Y2 is of course weaker than that of Y, and it

is also stronger since Y is locally uniform.    □

Two other properties which one might require of a local uniformity are that it

have a base of open sets, or that it have a base of closed sets. I do not know

whether it is reasonable to make both requirements in the case where the topology

is not completely regular, but one can, however, say the following:

1.11 Theorem. If (X,Y) is an NLU-space and 38 = {V° : VeY}, then 38 is an

open base for an NLU °1/ which is stronger than Y and generates the same topology;

<% is of course the weakest such structure having these properties.

Proof. Let (X, Y) and 38 be as above. 38 is obviously a base for a semi-uni-

formity % which is stronger than Y and generates the topology of X. <% has the

neighborhood property by Theorem 1.5 and is locally uniform by Theorem 1.9.    □

1.12 Theorem. If(X,Y) is a locally uniform space and 38 = {V~ : VeY}, then

38 is a closed base for a local uniformity °U which is weaker than Y and has the same

topology; °ll is of course the strongest such local uniformity having these properties.

Proof. Let (A', Y) and 38 be as above. 38 is obviously a base for a semi-uni-

formity ^ which is weaker than Y; by Theorem 1.1 it is stronger than Y3. By

Theorem 1.10 it must generate the same topology as i" and Y3. So by Theorem 1.9

°il is a local uniformity.    □

Finally, we shall consider some methods for comparing locally uniform spaces;

they will be used later for studying completeness.

Definition. Two local uniformities Y and if are weakly equivalent if for some

n, m e a>-{0}, Yn^ iY and Wm<^ Y

. A local uniformity Y is of course weakly equivalent to each Yn. Moreover,

using the fact that for each VeY, (V3)° is an open neighborhood of F, it is easy

to see that Y is weakly equivalent to a local uniformity with an open base, and also

weakly equivalent to one with a closed base. Two weakly equivalent local uni-

formities generate the same topology by Theorem 1.10, and they tend to give the

same kind of information about the space; it is thus natural to consider as a

uniformlike structure for a regular space, equivalence classes of locally uniform

spaces; in which case the uniform spaces consist precisely of those equivalence

classes which contain only one element. Concepts defined in terms of such equiva-

lence classes suggest corresponding statements about the local uniformities

belonging to them, and we shall apply the terms "weak" and "strong" to such

statements, according to what is appropriate.

Definition. Suppose (X, °i¿) and ( Y, Y) are locally uniform spaces, a function

/: (X, <%) -> ( Y, Y) is uniform iff VVeY, 3UeW:f[U]çV (where f(x, y) =

<fi(x),f(y)}).f is weakly uniform iff for some n e a>-{0}, /: (X, %)^(Y, Yn) is

uniform./is a (weakly) uniform isomorphism iff/and/-1 are one-to-one and onto

(weakly) uniform functions.
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With respect to these definitions, it is easy to see that the composition of (weakly)

uniform functions is (weakly) uniform, and that two local uniformities °U and Y

on a set X are equal (weakly equivalent) iff the identity t: (X, °ll) -> (A", Y) is a

uniform (weakly uniform) isomorphism.

1.13 Theorem. (Weakly) uniform functions on locally uniform spaces are con-

tinuous with respect to the relative topologies.

Proof. Let (A', 'W) and ( Y, Y) be locally uniform spaces; it suffices to show that

if for given n e co — {0},f: (X, °ll) -*■ (Y, Yn) is uniform, then/is continuous. Pick

x e X; for each neighborhood N of f(x) in Y, we may choose VeY and Ue%

so that V[fi(x)]^N and f[U]^ Vn, so that

f[U[x]] =f[U][f(x)] £ V«[f(x)] s N.

Hence/is continuous.    □

If ( Y, Y) is a locally uniform space and A"£ Y, it need not be the case that

Y2\X=(Y\X)2; in fact the two local uniformities need not be weakly equivalent,

this being the case in Example 3.4; hence we make the following:

Definition. A locally uniform space ( Y, Y) is a strong extension of a subspace

(X, Y\X) iff Vn e co~{0}, Yn\Xand (Y\X)n are weakly equivalent.

1.14 Theorem. ( Y, Y) is a strong extension of(X, °?¿) iffinew — {0}, 3me w~ {0},

VUe°U,3VeY: Um^Vn n X*2.

Proof. This follows directly from the fact that for each n e cu —{0}, Yn\X must

be weaker than (Y\X)n = al/n.    □

2. Local uniformities with nested bases. Our first main task will be to show that

a locally uniform space (X, Y) with a nested base has a paracompact topology.

The strategy will be to show first that each neighborhood of the diagonal in Xx2

is uniformizable, and next to show that Y may be replaced by a uniformity with a

nested base which generates the same topology. Paracompactness then follows, in

the pseudo-metrizable case by A. H. Stone's paracompactness theorem, and in the

non-pseudo-metrizable case from a result by E. Zakon. The nearly trivial proofs

of the following two lemmas are omitted.

2.1 Lemma. If a local uniformity has a nested base, it has a nested symmetric base.

2.2 Lemma. If 38 is a nested base for a local uniformity Y, then {V2 : Ve38} is a

nested base for the NLU Y2.

The proof of the following theorem uses a technique introduced by Niemytski

[13, p. 511].

2.3 Theorem. If a local uniformity % on a set X has a nested base, then the set

of all neighborhoods of the diagonal in Xx2 is a uniformity.
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Proof. By the above lemma, we may assume that °V is an NLU. It suffices to

show that for each symmetric neighborhood F of the diagonal there is a neigh-

borhood U of the diagonal such that U ° t/ç F; so choose V to be any symmetric

neighborhood of the diagonal. By Lemma 2.1, % has a symmetric nested base sé.

Let 38 = {V n U : U ese}. 38 is a nested collection of symmetric neighborhoods of

the diagonal. 38 generates the topology of °l¿, and is a base for a semi-uniformity

stronger than <?/. Therefore by Theorems 1.5 and 1.9, 38 is a base for an NLU Y.

Since F is an element of Y, V.v e X, 3WeY: (W[x])x2^ V; and 3UeY:

U3[x]^ W[x], so that (l/3[.y])*2ç k. Thus V.v e X, we may choose Uxe 38 in such

a way that (Ux[.x])x2^ V. Let Í7=U {(^M)x2 : x e X}. U is a symmetric neigh-

borhood of the diagonal.

Claim. U o [/^ F. Pick x, y, z e X so that <x, _y>, <j, z> 6 U, then there exist

points r, s e X such that x, y e Ur[r] and y, z e Us[s]. Since U„ Us e 38, one is a

subset of the other. Suppose for instance that UrZUs. By assumption ze UTs\.

On the other hand, using the symmetry of UT we have xe Ur[r], re Ur[y], and

y e Us[s], so that x e U?[Us[s]]^ U3[s]. Thus

<x, z> e Us[s] x U3[s] £ t/s3[i] x V°[s] S F.

Therefore U° U^V.    D

Definition. For any semi-uniformity <?/, we shall define the cofinality of ■?/ to

be the least cardinal k for which °)¿ has a base of cardinality k.

2.4 Theorem. Suppose that (X, <?/) is a topological semi-uniform space, and that

% has a nested base and has cofinality k. Then k has the property that for each

collection if of open subsets of X with cardinality less than k, C\ *$ is open. If X has

a nonisolated point, then k is the largest cardinal with this property. Also, for any

collection 3/> of neighborhoods of the diagonal in X"2 of cardinality less than k,^)^

is a neighborhood of the diagonal.

Proof. The first statement differs little from Proposition 26, p. 133 of Isbell [8].

To prove the second, suppose that x is a nonisolated point of X, then the neigh-

borhood system at x has a nested open base of cardinality «-, and its intersection x

is not open. This shows the maximality of k. Finally, let 3P be a collection of

neighborhoods of the diagonal in A"*2 of cardinality less than «■. Pick xe X; for

each P e 0> there is a neighborhood NP of x such that N¿ 2^P.LetK = (~]{Np : P e 3P},

then Kmust be a neighborhood of x and Kx2^C] 3P. Hence H ^"isa neighborhood

of the diagonal.    □

2.5 Theorem. An NLU with a nested base may be extended to a uniformity with

a nested base, which has the same topology and (at most) the same cofinality.

Proof. Let Y be an NLU with a nested base and with cofinality k, defined on a

set X. Let {Va : a e «■} be a base for Y. Let U0 = V0 n Vq1. We proceed by induction

for each A e k to choose symmetric neighborhoods Uh of the diagonal in A"x2. If
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Xe k and UK has been chosen, then by Theorem 2.3, there is a symmetric neigh-

borhood C/A+1 of the diagonal in A""2 such that C7A + 1Ç FA+1 and UK+X ° ÍA,+ 1£ UÁ.

If A is a limit ordinal less than k and each Ua for a<A has been chosen, let

Uk = (~] {Ua : a<X}; UA is a neighborhood of the diagonal by the above theorem.

By construction, {£/A : A e k} is a nested base for a uniformity generating the

topology of (A", Y),    a

2.6 Corollary. A local uniformity with a countable base has a pseudo-metrizable

topology.

Proof. This follows directly from the above and Theorem 6.13 of Kelley [9]. □

Theorems similar to the above corollary have been given by Niemytski [13],

A. H. Frink [5, Theorem 4], J. Suzuki [15, Theorem 1], and K. Morita [10, §IV,

Theorem 4]. The nice proof of the following result was suggested by the referee,

who noticed that, in view of the above theorems, most of E. Zakon's results on

uniformities with quasi-nested bases [16] carry over to local uniformities with

nested bases.

2.7 Theorem. Let (X, °U) be a (locally) uniform space; suppose °l{ has a nested

base and is not pseudo-metrizable ; then every open cover of X has a discrete refine-

ment.

Proof. By Lemma 2.2 and Theorem 2.5 is suffices to prove the result for the

case where (X, <?/) is a uniform space. By Theorem 2.Id of [16], we may let

{Va : a e k} be a family of equivalence relations on A'which generate the topology

of X, and are nested in such a way that Faç Vß iff ß^a. Let sé be any open cover

of X. Let 38 be the set of all FA[x] for which x e X and A is the first ordinal such

that 3A e sé: VÁ[x\^A.38 clearly refines sé and covers X. To see that 38 is discrete,

suppose for example that for A^t¡<k, Fa[x], Vv[y]e38, and FÀ[x] n F„[j]#0.

Using the fact that {Va : a</c} is a nested family of equivalence relations, we see

that Vx[y] n FA[x]#0, so that FA[x] = VÁ[y]^ Vn[y\. Then r¡ = X because both are

the first ordinal a such that Va[y] is contained in some element of sé. Hence

V,[y\=VK[x\   D

2.8 Corollary. Every (locally) uniform space with a nested base has a para-

compact topology.

Proof. This follows immediately from Stone's paracompactness theorem for

pseudo-metric spaces [14] and the above result.    □

We now show how to construct local uniformities with nested bases for a certain

class of topological spaces:

2.9 Theorem. Let (X, 9~) be a regular topological space, suppose {séa : a e k}

is a nested collection of families such that

(1) U {-^a '• <*e k} is a base for ST,

(2) Va e k, V38^séa, C) 38 and O {X-B : Be38} are open.

Then 9~ is generated by a local uniformity with a nested base indexed by k.
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Proof. Let (X, 9") and {séa : a e k} be as above. We may assume without loss

of generality that each séa contains X and the empty set. Pick ae*; for each

xe X,

let Mx = (~) {A : x e A and A e séa},

let Ni = f){X-A- : x e X-A~ and A eséa},

let Va = \J{(Mxn Nax)x2 : xeX}.

Claim. {Va : a e k} is a nested base for an NLU generating the topology of X.

It is nested since Va, ß e k, if séa^sée, then Va^Ve. Each Va is symmetric by

construction, and from our assumption about séa, each M% n Nx is an open neigh-

borhood of x, so that Va is a neighborhood of the diagonal in A"x2 as well. In order

to show that {Va : a e k} is a base for an NLU generating the topology of X, it is

thus sufficient by Theorem 1.7 to show that Vx e^V neighborhood A of x, 3Va, 3

neighborhood B of x: Va[B]^A. Pick x 6 X and A e IJ séa, then we may choose

ß e k, and B e seß, so that x e /i Ç B^ A and A e seß ; in which case

Va[B] = \J{Mayc\Nay: Mayr\Nayr\B^ 0,yeX}.

Now if ye A, then M^A, if y i A, then y $ B and N¡ n 5=0. Hence

V«[B] Z\J{M$nN*:yeAl~A.       D

If in the above theorem each séa is locally finite, then the space (X, íé~) will be

pseudo-metrizable, as we will soon show. In any case, if the index set k is countable,

we have immediately that (X, ïé~) is pseudo-metrizable by Corollary 2.6. For any

locally finite family s/, and any subfamily 38 of sé, it is easy to see that f) 38 is open

and that \J {B : Be38} is closed, so that (~) {X-B : Be38} is also open. Conse-

quently, the above theorem implies Nagata's metrization theorem [11] that a

regular topological space with a <r-locally finite base is pseudo-metrizable.

2.10 Proposition. Suppose that X is a regular topological space and that

{séa : a e T} is a nested collection of locally finite families whose union is a base for

X. Then X is pseudo-metrizable.

Proof. By Theorem 2.9 X has a local uniformity $f with a nested base. Let k be

the cofinality of ^l. If «: = X0, then Zis pseudo-metrizable by Corollary 2.6. If for

each x e X, {x} is open, then X is pseudo-metrizable by the pseudo-metric d given

by d(x,y) = 0 if xe {>>}", and d(x, y)=l otherwise. So assume «>X0, and that x

is a point of X for which {x} is not open, we shall derive a contradiction. Let

{séa¡¡ : n e of} be a countable subcollection of {séa : aeT} such that for each

new, séan contains a neighborhood of x and séttn+ contains a neighborhood of x

which is strictly smaller than any neighborhood of x in séan. Let

N = f){A eséan : xeA and n e ay}.

N is the countable intersection of open sets and since k> H0, N is an open neigh-

borhood of x. Let seß be a family in {séa : aeT} which contains a subneighborhood
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B of N. B does not belong to any séXn, hence V« e u>, jéeSséBn. But then V« e w,

3 A e séan + i— séan: xeAeséR; so that every neighborhood of x meets infinitely

many elements of seß, a contradiction.    □

Theorem 2.9 gives a sufficient condition for the existence of a local uniformity

with a nested base on a topological space. The condition is given in terms of two

latticelike properties of families in a nested collection.

We shall now consider in more detail the relation between lattice properties of

open sets and local uniformities with nested bases. In the process we will derive a

converse for Theorem 2.9.

Definition. An open subset of a topological space is regular iff it is equal to the

interior of its closure.

For any subset A of a topological space X, A'° is a regular open set. Conse-

quently, if the topology of X is regular and has a base 33, then {B'° : B e 38} is a

base of regular open subsets of A". In any case, the family of all regular open subsets

of A" is a complete Boolean algebra, where the operations of meet, join, and

complement are given by f\ sé = (Ç\sé)~°, \/ sJ = ((J séy°, and ~A = X-A~.

This result is presented in Halmos [6].

Definition. By a regular decomposition of a topological space X we shall mean

a pairwise disjoint family sé of regular open sets such that IJ s/ is dense in X.

2.11 Lemma. If the intersection of a family of regular open sets is open, then it is

regular.

Proof. Let 38 be a family of regular open sets whose intersection is open; we

need to show that f] 38 = (C\ 38)-°. First Ç\ 38 = (Ç\ ̂ )°Ç(P| 38)~°. On the other

hand, for each Pe38, (Ç\ <J>)-açzp-° = p, so that (0 &)^°£f) 3/.    Q

2.12 Lemma. Every regular decomposition sé of a topological space X is an

atomic generating set for a complete subalgebra 38 of the Boolean algebra 3$ of all

regular open subsets of X. If sé is locally finite, then the meet operation in 38 is just

the set-intersection operation.

Proof. Let sé, 38, and X be as above, and let \J and ~ be the join and complement

operations in 38. Let 38 = {\J 38 : 3P<^s4}. We shall show that '38 is a complete sub-

algebra of 0t.

(1) V.^çj/, ~V ^=V (sé-'38): Since X-(\J 38)-°- = X-(\J 38)~, it suffices
to show(U(^-^))"° = A'-(U^')"- Since (J ^ is dense, we have

x = (U <r = (U &)' u (U ^J-38))-

= (\Jíé>)-yj(\J(sé-3>)Y°;

so A--(U'^)"^(U(^-^))"°- On the other hand, \J(sl-38)<^X-\J 38, so

\J(sé-38)cz(X-\j3Py = X-(\J'3»)-, and so ÍU(^-^))"°S(^-(U W

=x-(\jm-.
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(2) If {38a : aeT} is any given collection of subfamilies of sé, then

\]{\l S8a:aeV}=\IVJ{3?a:aeY}e38:

First,

V {V ** •■ « -e r> - (u {(U a»-0 : « e n)-°

2 (U {U ̂  : « 6 r})-° - v U {&« : « 6 r}.

But also, (U {(U ^«)~ : a e T})- =(IJ {U ^ : « e H)-, so that

V {V &« ■■ « 6 H s (U «U ^)- : a e r})-°

= (U(U^:«er})-°

= VUR:«rj.

(3) Suppose Jar* is locally finite, then the meet operation in 38 coincides with set-

intersection: It suffices to show that the intersection of a collection of elements of

38 is open, and therefore regular, by the previous lemma. But this will follow

directly from the fact that for each x e X, there is a smallest element of 38 containing

x. Given xeX, let s/x = {A e sé : x e A~}. Since sé is locally finite, we have

x $ U {^~ : ^ e -^~•s^x} = ({J (sé — séx))~. Hence, using (1), we have

x e A--(U K-X))- = ~(V K--0) = V <■

Clearly, séx is the smallest collection for which x e \/ séx.    □

2.13 Lemma. Let if be any locally finite cover of a topological space X by regular

open sets. Then if generates a complete atomic subalgebra 38 of the algebra of all

regular open subsets of X; the atoms of 38 form a locally finite regular decomposition

ofiX.

Proof As before, we let 38 be the algebra of all regular open subsets of X, and

VA e38, let ~A — X— A~. Let T be the set of all functions <f> from if to ¿8 such that

VA e (€, either <f>(A) = A or </>(/!) = ~ A. Let sé be the collection of all nonempty sets

of the form C\ {<¡>(A) : A e if}, with ¡peT. We shall show that s/ is a locally finite

regular decomposition of X.

(1) Each given element A of sé is open and therefore regular: Suppose x e A e sé.

Using the local finiteness of if, we see easily that there is a neighborhood N of x

which meets only those elements of if whose closures contain x. From the definition

of A, it follows that N^A. Hence A is open.

(2) Each point of X belongs to the closure of some element of sé, so that IJ sé

is dense in X: First we prove the following fact. If 38 is a finite subcollection of if

and x e C\ {P~ : P e 38}, then for some <j>eT, x e (f) {<¡>(P) : P e 38V)-. Proof: if 38

has one element, the fact is trivial. Suppose we have shown the fact for n elements,

and suppose & has n+ 1 elements, pick P e 38. We choose </> e Y so that

xe(C\{^>(R):Re38-{P}})-;
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let 2 = DP): Re:é-{P}}. Claim: either xe(Qr\P)~ or xe(Qr\~P)~,

since otherwise there is an open neighborhood N of x such that N n 2 n P = 0

and N n Q n (X—P)~ = 0, so that Af n g is a nonempty open subset of (A-— P)

n F", which is the boundary of P, a contradiction. Hence we may choose </>' e F so

that x 6(g n<p'(P))- and V/î e .^-{F}, <f>(R) = <p'(R), so that

xe(fW(P):Fe^})-.

lfc€x = {A e^ : xe A~}, then we may use the above fact to choose <f> e T so that

xe(H W^) : Ae¥x})-P and may further require of </> that V/l eif-if,, <p(A) =

~ A, so that H {<p(A) : ^ e if — 1^x} is a neighborhood of x by local finiteness. From

this we conclude that x e((~) {<¡>(Á) : A eif})-.

(3) The local finiteness of if clearly carries over to sé, and sé is pairwise disjoint

by construction. This together with steps ( 1 ) and (2) shows that sé is a locally finite

regular decomposition of X. Hence by the previous lemma, there is a complete

subalgebra 38 of 9 for which si is an atomic generating set. From the construction

of sé it is clear that any complete subalgebra containing # contains sé also. Thus

we have left to prove only that if ça?. Claim: for each given C e if,

C = (\J{Aesé : A<^ C})~° =\J {Aesé : A Ç C}e38.

Clearly (\J {A e sé : AçC})-°^C~° = C; on the other hand, if x e C and

séx = {A e sé : x e A "},

then each A eséx meets C, and must therefore be a subset of C, but then (IJ séx)~°

is a neighborhood of x contained in \/ {/l eu* : A^í}.    D

2.14 Theorem. ^4 regular topological space X has a (local) uniformity with a

nested base iff its topology has a base which is the union of a nested collection of

complete atomic Boolean algebras of regular open sets whose meet operations

coincide with the set-intersection operation.

Proof. First suppose A' is a regular topological space with a base which is the

union of a nest collection of complete atomic Boolean algebras whose meet opera-

tions are set-intersections. This collection clearly satisfies the hypotheses of Theo-

rem 2.9, and so X has a local uniformity with a nested base.

Now suppose X has a local uniformity with a nested base. We shall first consider

the case in which X is pseudo-metrizable. Let {<tf'n : n e cu} be a nested collection of

locally finite open covers of X whose union is a base for the topology of X. Vn e w,

let cên^={C~° : Ce^}; then {ifn : «ecu} is a nested collection of locally finite

families of regular open sets and its union is a base for the topology of X. By the

above lemma, each (€n generates a complete atomic Boolean algebra 38n. Thus

{38n : n e w} is the required nested family.

We next suppose that X is not pseudo-metrizable. Let <?/ be a (local) uniformity

for X with a nested base. By Lemma 2.2 and Theorem 2.5, it suffices to assume $/
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is a uniformity. By Theorem 2. Id of Zakon [16], ■?/ has a nested base {Va : a ex)

consisting of equivalence relations. For each a, let séa = {Va[x] : x e X}. Then each

séa is a discrete family of clopen sets, and the collection {séa : a e k} is linearly

ordered by refinement. For each a e k, let 33a = {\J 38 : 3Pçséa}. Each 38a is, with

respect to intersection, union, and set complementation in X, a complete algebra

of clopen (and therefore regular open) sets. Hence {38a : a e k} is the required

nested collection.    □

2.15 Corollary. A regular topological space X has a (local) uniformity with a

nested base iff there is a refinement-nested collection of regular locally finite decom-

positions of X whose union is a basis for the algebra of all regular open subsets of X.

Proof. In view of the above theorem it suffices to mention that if for each a e k,

séa is an atomic basis for the complete algebras 38a, and if IJ {38a : a e k} is a base

for the topology of X, then (J {38a : a e k} and hence IJ {séa : a e k} is a basis for

the algebra of all regular open subsets of X.    □

3. Completeness. The possibilities for both "weak" and "strong" com-

parisons which were given at the end of §1 also arise with Cauchy filters:

Definition. For each new —{0}, a weak Cauchy filter of degree n on a semi-

uniform space (X,Y) is a filter J5" on A" such that VVeY,3Fe&: FxF<^ Vn.

A Cauchy filter is a weak Cauchy filter of degree 1. A locally uniform space is

(strongly) complete iff every (weak) Cauchy filter on A'converges with respect to the

relative topology of Y; a (strong) completion of (X, Y) is a (strongly) complete

locally uniform space (Y, iY) containing (X,Y) as a dense subspace.

While the above definitions seem reasonable by comparison with the similar

concepts in uniform spaces, they do not represent the only possibilities, and study

of their failings will help motivate the additional Cauchy ideas which we will

consider in §6.

3.1 Theorem. If (X,°ll) and (Y,Y) are weakly uniformly isomorphic locally

uniform spaces, then (X, <W) is strongly complete iff( Y, Y) is. In particular, if 8/ and

Y are weakly equivalent structures on a set X, then (X, °li) is strongly complete iff

(X,Y)is.

Proof. Let /: (A', °li) -> ( Y, Y) be a weakly uniform isomorphism of locally

uniform spaces and suppose for example that (Y, Y) is strongly complete, then

for some necu-ÍO}; Well, 3Ue %:f[U]^ Vn. If W is a weak Cauchy filter of

degree m on (A", <?/), then for each V eY,vie may choose U e <% so that/[i7]ç F"

and choose FeP so that FxF^Um, so that/[FxF]ç(F")m= Vnm- Thus/[^"]

is a base for a weak Cauchy filter of degree nm on ( Y, Y), and hence converges ;

hence J^ itself converges since /is a homeomorphism, by Theorem 1.13.    □

As a result of the following theorem, we shall often consider completeness

problems only for NLU-spaces.
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3.2 Theorem. In a semi-uniform space with the neighborhood property, convergent

filters are Cauchy. If a weak Cauchy filter on a locally uniform space has adherent (*)

points, it converges to each of them.

Proof. Suppose the filter !F converges to a point x in the neighborhood semi-

uniform space (A", Y). Then for each Ke^we may choose U ef and Fe J5" so

that ( U [x])x 2 ç F and Fe U [x], so that F x Fç F.

If J^ is a weak Cauchy filter of degree n on the locally uniform space (A", Y) and

x is an adherent point of J2; then for any neighborhood A of x, we may choose

VeY' so that Vn + 1[x]^A and FeJ^ so that FxFçV". Since x is an adherent

point, some j e A'belongs to F[x] n F; consequently Fç FBfj>]£ Fn + 1[x]^>4.    □

Suppose (A", <?/) is a subspace of ( F, Y) and J5" is a filter on X. If J5" is weak

Cauchy on (X, <W), then it is weak Cauchy in (Y,Y) since necessarily VVeY,

Vnew-{0}, Vn n I,25(Kn A*2)n. However, if & is weak Cauchy in (Y,*Q it

need not be weak Cauchy in (X, °?/), a fact which will often be a nuisance.

3.3 Theorem. If a local uniform space ( Y, i ') is a strong extension of(X, 81), and

3F is a filter on X which is weak Cauchy in (Y,i '), then ¡F is weak Cauchy on (X, °l/).

Proof. Let (A", 8/), ( Y, i '), and ¡F be as above. Suppose J^ is weak Cauchy of

degree n in (Y,Y) and suppose mew — {0} is such that for each given Ue ■?/,

We Y: ¿7'"^ Fn n A"*2; if we then choose Fe J^ so that FxF^ F", we will also

have Fx Fç Um. Hence ¿F is weak Cauchy of degree m on (X, 8/).    fj

3.4 Example of a "bad" extension: Let R be the set of real numbers; we define

a base for a local uniformity Y on Y=Rx{0, 1} as follows: Vne w — {0}, let

F„ = {<x, y) e Xx2 : \xx-yx\ < l/n and x2 = y2, or xx, yx > n and x2 ¥= y2}-

The collection {Vn : ne a> — {0}} clearly generates the expected product topology on

R x {0, 1}, and using Theorem 1.7, it is easy to see that it is a base for an NLU as

well. Let A"=Ax{0}, and let 3F = {F<^X : 3n e w. F^{x e X : xx>n}}, then & is

weak Cauchy in Y of degree 2, but is not weak Cauchy on X. Also, Y2\ X is not

weakly equivalent to (Y\ X)2.    Q

Finally, we shall give some simple compactness theorems for local uniform

spaces.

3.5 Theorem(2). Let (X,Y) be a strongly complete NLU-space, then a closed

subset A of X is compact iff'every infinite subset of A has a limit point in A.

Proof. Suppose (A", Y) is strongly complete, A is a closed subset of X, and every

infinite subset of A has a limit point, but A is not compact. We may let & be an

ultrafilter on A which does not converge. If it were the case that Vf/ e Y, 3xv e A :

U[xv] e ¿F, then J^ would be weak Cauchy of degree 2 in (X, Y). So we may choose

F) The set of all adherent points of a filter i^ona topological space X is C\ [F~ : Fe &}.

(2) I suspect this theorem holds for complete spaces as well.
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a symmetric UeY such that Vx e A, U[x] $38~. Pick x0 e A, and for each «^ 1,

pick xn e (A - U?=o U[X}\) e !F. Then the set {x,- : j e a>} has a limit point y in A.

Let VeY be such that (V[y])x2^ U, then for infinitely many distinct x¡ and x,-,

<x¡, Xj> e (F[j])x2c (7, contrary to the choice of the xn's.    □

3.6 Lemma. If X is a compact topological space and V is a closed subset of Xx2,

then V2 is also closed.

Proof. Let X and F be as above. If <x, z> e (V2)~, then for any neighborhoods

N of x and M of z, N x M r\ V2i=0 and so V[N] n V~1[M]^0; the collection

of all such sets V[N] n F-1[M] is a filter base, which must have an adherent

point y, by compactness. For any neighborhoods N of x, K of >>, and M of z, we

must have Kn(V[N]n V~1[M])^0, so that (NxK)nV^0 and (ATxM)

n V+0. Hence <x, y) and (y, z> belong to F" = V, so <x, z> e F2. Hence F2 is

closed.    □

3.7 Theorem. If X is a regular compact topological space, then there is a unique

NLU which generates the topology of X.

Proof. Let A' be a regular compact space. Since there is only one uniformity gen-

erating the topology of X, it suffices to show that if Y is any given NLU generating

the topology of A", then fis a uniformity: By Theorem 1.12, the closed elements of

Y form a base for a local uniformity generating the topology of X, so that for each

given UeY, and each x e X, we may let Vx be a closed element of Y such that

F|[x]çl/°[x]. Then Vy e X,

(C]{V2 : xeX})[y] S V2[y] £ U°[y].

Hence f){V2 : x e X}^U°. Each V2 is closed and A1*2 is compact, hence the

intersection of a finite number of the sets V2 is contained in the open set U°;

we have
n /  n \2

with H?-i VXj e Y Hence Y is a uniformity.    □

4. Piecing together a locally finite collection. We shall now consider the follow-

ing type of problem: Suppose {Ca} is a locally finite cover of a topological space X,

and for each a, Ya is a local uniformity generating the topology of Ca. Is X locally

uniformizable, and under what conditions is there a local uniformity Y such that

each Ya is equal to Y\Cal As a special case we will get Nagata's piecing together

theorem for metric spaces. By way of comparison, we shall consider in addition the

problem of piecing together a locally finite collection of uniform spaces.

4.1 Lemma. Suppose we have the following things:

(1) X, a topological space;

(2) (€, a locally finite closed cover of X;
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(3) for each C e (ê; Yc, a local uniformity on C;

(4) r, a set of choice functions from if to [J {Yc : Ce if} such that

(i) VC e % T[C] is a symmetric base for Yc;

(ii) Vf, g e T,f(n)g e T, where VC e if; (fi(r>)g)(C)=f(C) n g(C).

For each fe T, let Uf={Jf[^]. Then {U, : fie V} is a symmetric base for a local

uniformity which generates the topology of X.

Proof. Assume hypotheses (1) through (4): {U, : fe T} is a symmetric base for a

semi-uniformity since it is clear that Vj,geT; Aç Uf, Uf n Ug= Unni)g and U¡ is

symmetric (since for each Ce^ff'C) is).

To show that {U, :feT} generates the topology of X, pick xeX, and let

Cx, ■ ■., Cn be the elements of if which contain x; first, every neighborhood of x is

generated by {U¡ : fe T}: Let N be any subneighborhood of U"=1 C¡. For each

7=1,...,«, pick Vj e YCj so that VAx] çN n Q. By making repeated use of the

fact that Vg, he F, g(r\)h e T; we may pick/e F so as to satisfy the finite number

ofconditions/(Q)c Vhj=l,..., n. Then rV2U?-i V,[x\2, J?=1/(C,)[x]= U,[x\.

Hence {Uf i/eT) generates every neighborhood of x. Second, we show that

{Uf : fe T} generates only neighborhoods of x: Pick g eT; for each k=l,. . .,n;

let Pk be a neighborhood of x such that Pk n CkÇg(Ck)[x] and Pfc£ U?=i Q. Then

U9[x] = Ü giCtm = Û f H P*) n C; =   H Ffc.

Finally, we show that {Uf : fie V} has the local uniform property; it suffices to

show that VxeX, V neighborhood K of x, 3fieT: U2[x]^K. To this end, we

assemble the following list, given x in X and any neighborhood K of x.

(i) Cx, ■ ■ -, Cn the elements of ^ containing x.

(ii) For eachy'= 1,..., n; V.¡, an element of Yc¡ such that F2[x]çA^ n Q.

(iii) N, a subneighborhood of U?=i Q such that Vj= 1,..., n; N n C/£ F;[x].

(iv) / an element of V such that Vj= 1,..., n;/(Cy)ç Fy and/(Q)[x]ç/V.

Now, c//[x] = U?=i/(Q)[x]ç^^U;n=i Q- So that

U,[Uf[x]] = Û /(C,)[t/;[x]]
i-i

£ Ù/(Q[#]= 0/pynC,]
i = 1 ; = 1

S Û  K3[F,[x]]ç:/in(ù C,)-       D

4.2 Corollary. If a topological space has a locally finite closed cover of regular

subspaces, then it has a regular topology.

Proof. Suppose a space X has such a cover %?. For each C e if, let Yc be the set

of all neighborhoods of the diagonal in C. Let V be all choice functions/from ^

to U í^c ■ Ce'tf} such that VC e ^,f(C) is symmetric; clearly T satisfies conditions

(i) and (ii) in the above lemma. Hence X is local-uniformizable, and therefore

regular.    □
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4.3 Corollary(3). Iffë is a locally finite closed cover of a topological space X by

pseudo-metrizable subspaces, then X is pseudo-metrizable.

Proof. In the hypotheses for Lemma 4.1, we let each Yc be a pseudo-metrizable

uniformity and let {VCrt : n e w} be a nested symmetric base for Yc. For elements

of T, we choose the functions/, defined by VCec€,fin(C)= VCn. V has properties

(i) and (ii) since VCeif, T[C] = {VCn :nea>} and V/n,/m e r,"/„(n)/m=/max(n.ml.

We conclude that the sets Un = J /„[if] form a countable base for a local uniformity

generating the topology of X. Hence X is pseudo-metrizable by Corollary 2.6.    □

In Lemma 4.1 we constructed a local uniformity Y such that for each of the

given subspaces Ce<&, Y\C and Yc had the same topology; however, in order to

construct Y so that Y'\C-=YC, it is necessary and sufficient that if be a compatible

collection in the following sense:

Definition. A collection 0 of locally uniform spaces is compatible iff for any

two elements (X,8/) and (Y,Y) of 8, 8¿\Y=Y\X; 0 is strongly compatible iff

Vn e co-{0}, {(X, Yn) : (X, Y) e 0} is compatible.

Definition. A family if of subsets of a set is star finite iff each Cef meets only

finitely many elements of if.

4.4 Theorem. Let X be a topological space, if a locally finite closed cover for X,

and {(C, Yc) : Ce^} a compatible collection of (neighborhood) locally uniform

spaces. Then

(I) there is a strongest (neighborhood) local uniformity 8/ such that VC e (€,

8¿\C=YC.8¿ generates the topology of X.

(II) If, in addition, if is star finite, each Yc is a strongly complete NLU, and

{(C, Yc) : C e 1>} is strongly compatible, then 8¿ is strongly complete.

Proof of I. In the hypotheses for Lemma 4.1, we take F to be the set of all

choice functions /: if -> IJ {Yc : Ce%} such that VC e if, f(C) is symmetric.

T satisfies conditions (i) and (ii); hence the collection of all sets of the form

Uf—fW] is a base for a local uniformity 8/ generating the topology of X.

(1) 8/ is the strongest local uniformity such that VCeif, 8i\C = Yc: Pick Ceif.

First, <W\CSYC since VgeT, Ug n (CxC)==g(C)eYc. Second, <%\CsYc: Pick

VceYc; for each D e<ë, we may, by compatibility, choose VDeYD so that

VD nCxC=Vcr\ DxD. Define ^e T by VD eif, g(D)= VD. Then U9 n (CxC)

= VC. Third, if iT is any local uniformity such that VCeiY, W\C = YC, then

if<^8/: For each symmetric W eiY, let g e T he given by g(C)=W n (CxC);

then U,z W. Hence HTç®.

(2) Assume now that each Yc is an NLU; we shall show that there is a strongest

NLU 8/' such that VCeif, 8/'\C=Yc: Let 8/' be the set of all neighborhoods of

the diagonal which belong to 81. By Theorem 1.8, 8l' is the strongest NLU

(3) This result is Nagata's Theorem 2 of [11], stated for pseudo-metric spaces.
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contained in 8/; so by the properties of 8/ given in step (1), we have VC e^; <?/'|C£

Yc; and if 8l'\C^.Yc, then 81' is the strongest NLU with these properties. To show

for any given Cer€, that 8/'\C^Yc, let F be any symmetric element of Yc; choose

feT so that i7/nCxC=F; let W' be an A"x A'-neighborhood of A(C), the

diagonal inCxC, such that W' n Cx C= F; let W= W' u (X-C)*2. Then, since

C is closed in A", IF is a neighborhood of the diagonal in A"x X such that W n

(CxC)=F; so then IF u f// e <&" and (IF U U,)C\ CxC=V. Hence 8/'\C^Yc.

Proof of II. Let 8/ and ^/' be as above. Assume that ^ is star finite, that each Yc

is strongly complete, and that {(C, Yc) : C e &} is a strongly compatible collection ;

we need to show that 8/' is strongly complete. Since 8/^.8/''^_8¿2, 8l and 8/' are

weakly equivalent local uniformities. By Theorem 3.2, 8/' is strongly complete iff

8/ is; hence it suffices to show that 8/ is strongly complete. Choose new — {0}

and let í^ be a weak Cauchy filter of degree n on (X, 8/). If some extension ¡W of ^

converges to a point x e X, then x is an adherent point of 'S, to which fS converges

by Theorem 3.2. So let J^ be an ultrafilter which extends ^S; we shall show that

3F converges.

Let U0 = \J{CxC : Ce(€}e8l. Choose FeJ^so that FxF^US; pick xeF.

Then Fç f/ôM- By the definition of U0 and the star-finiteness of % U£[x] is the

union of finitely many elements of if. Since & is an ultrafilter, some given Cofc€

contained in Ul[x\ belongs to ¡F, Then it is easy to see that &\C must be weak

Cauchy of degree n in US[C]. Let 38 = {Be<W : B^US[C]}; 38 is finite. Pick

Fc eYc. For each «-element sequence p = (p0,..., pn-i) of elements of 38, we

make choices as follows: By strong compatibility we have that Y2*_1\C=Y2n\pn^1,

so we may choose Vn.Xi0eY0n_1 so that V*lx<„ n Cx2£F£B n p.^gKf.

Similarly, we choose Fn_2?i0 e ^„_2 so that

yn-2.p   ''Pn-1  —   vn-l,p   n Pn - 2  —   'n-l.o

and so forth until we choose Vo¡0eY0o so that FóJ n pi2ç Ffifl n Pox2ç VfiP.

For each B e33 v/e now choose 1FB e f^¡ so that

^B £ O {^ :j<n,pe »38, and £ = />,}.

For each Be% let WBeYB be such that VDe33, WBn Dx2^WD. Let 0=

\J{WB : Ber€}e8/. Then

VP e »0, V./ < n,    Ûnpf2 = {J{WBnPx2: BeV}cz Wp¡c= VUp.

Now pick Fe^\\J38 so that FçC and FxF^Un^U¡¡. Pick x e F. For each

P e n38, let

Sc = {veF: 3x0,. .., 3x„; x0 = x, xn = y, and V/ < «, <x¡, xi + 1> e (7 n p*2}.

Then F is represented as the finite union F= (J {5P : p e n38}. Since iF\\J 38 is an

ultrafilter, we may choose some p e n38 so that .£„ e J^| J á?. Pick y, z e 5„. Then

there are sequences <j0,..., v„> and <zQ,..., zn> with_y0 = z0 = x, yn=j>, and zn = z
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such that Vi<n, (y¡,yi+x}^Pi, and <z¡, zi + 1> e p¡. We may now estimate the

distance in C from y to z as indicated:

Hence Sp xS'0£ V2n. Fhis shows ¡F\C is a weak Cauchy filter of degree 2n on

(C, Yc), and hence converges.    □

In proving strong completeness in the above theorem, the assumption that

{(C,YC) : Ce*të} is strongly compatible cannot be dropped, as shown by the

following counterexample. Strong compatibility can, however, be replaced with

the following weaker condition: {(C,YC) : Ce ft} is compatible and VC, Detf,

Vn e <«-{0}, 3mew-{0}: Y£\D^Y%\C. The proof is similar to the one above, but

messier. I do not know whether the star-finiteness condition is needed or not. It is

perhaps worth mentioning that it may sometimes not be possible to choose 81' in

the above theorem so that (X, 81') is a strong extension of each (C, Yc), as is shown

in the proof of Proposition 4.6.

4.5 Example. Of two compatible strongly complete locally uniform subspaces

which cannot be pieced together to form a strongly complete locally uniform space.

Let P = w-{0}, let A"=Fxcu, let A=Px{0, 1}, and let B = PxP, so that

X=A u B. We shall now define an NLU Y on X whose relative topology is dis-

crete, and whose restriction to A or to B is strongly complete. Y will not be strongly

complete although it is the strongest local uniformity whose restriction to A or B

is Y\A or Y\B: Define </>: P->P inductively by <px= 1 and <¡>J+x = (/>j+j. Let R be

defined as follows:

R = {«¿i, 0>, <y, 1» :+,*y< h+JJeP]

u {«&-+;-1, 1>, <*,+;-1,»» : n à 2,n,jeP}

U {«h+J-U*>, <4>n+J-i+j-l, 1» :j> 2,n,jeP}.
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For each neP, let

Fn = [(R U R-1) n ({yeco : y ä h} x w)x2] u «x, x> : x e A"}.

It is easy to see that {Fn : n e w} is a base for an NLU Y on X which generates the

discrete topology. To see that Y\A is complete notice first that ((R u R'^A)2 is

an equivalence relation for which each equivalence class is finite. Similarly, one can

show that Y\B is complete by first verifying that ((/? u /v_1)|5)4 is an equivalence

relation each of whose equivalence classes is made discrete by some Vn. On the

other hand, Y is not strongly complete since {<<£,-, 0> : jeP} is a weak Cauchy

sequence of degree 4. Finally, Y is the strongest common extension of Y\A and

Y\B since VneP, Vn = (Vn r\ Ax2) u (Vn n Bx2).    Q

The result for uniformities analogous to Theorem 4.4 is false, as is shown by

Proposition 4.6. It is curious, however, that in spite of this we still have the follow-

ing result:

4.5 Proposition. If X=XX u X2, and (Xx,8¿x) and (X2,8/2) are compatible

uniform spaces, then there is a uniformity 8¿ on X such that 8l\Xx=8¿x and 8/\X2 = 8/2.

Proof. VUx e 8lx, VU2 e 8l2, let UXUU2=UX\J (Ux ° U2) u (U2 ° Ux) u U2. Let

38 = {Ux D U2 : Ux e %, U2 e 8/2}. Claim: 38 is a subbase for a uniformity of the

required type. Pick Ux e %x and U2e8¿2; then it is clear that A(A")£ Ux □ U2, and

if Ux and U2 are symmetric, so is Ux D U2. In order to find Ûx e 8lx and Û2 e 8¿2

such that (Ûx D c72)2£ Ux D U2, we make the following choices for i,j=l, 2; i^j:

Pt e % so that Pf£ Ut; Q{e % so that Q^Pi and Qt r\ Xx2^P¡; 0, e % so that

Ü?£ Q¡. By definition, Ûx D Û2 is the union of four terms, and thus (Ûxn Û2)2

will be the union of sixteen. It is a straightforward job to verify that each term is

in fact a subset of Ux □ U2. For example,

(Ûx ° Û2) o (Û2 o Ûx) £ Ûx ° Q2 o Ûx £ Ûx ° Px ° Ûx £ P? £ t7i £ Ui D U2.

Finally, for /= 1, 2, 38\X¡ is a base for <2r{: Clearly, 0$\Xt£%, so it suffices to

show that each U, e % has a subset in 38\ Xt. Pick l/¡ e %. Choose P¡ e ^ so that

P¡2!= Ut; choose Qi e % so that Q^Pi and 0¡ n Ar/2sPJ, Then

(Qi □ 2y) nir = Ô,u (Ô, » (g, n A","2)) u ((ß;- n A^2) o &) u (ß, n A^2)

g P,2 £ i/i.

Hence ^lA'j is a base for f/¡.    □

4.6 Proposition. Suppose that 1$ is a closed three-element cover of a space X, and

that {(C, 8/c) : C e'io} is a compatible collection of uniform spaces. There need not

exist any uniformity 8l such that VCe^, 8l\C=8¿c.

Proof by example. Let C be the complex numbers with the usual uniformity.

Let D be the unit disk minus the origin, assign it the relative uniformity of C. Let

Ax, Bx, Cx, A2, B2, C2 divide D into six closed pieshaped pieces, as indicated.
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Assign each piece the relative uniformity of D. Let (A, 8¿A), (B, 8/B), and (C, 8/c)

be the independent sum of the uniformities for Ax and A2, By and B2, and Cj and

C2, respectively. {(A, 8/A), (B, 8lB), (C, 8/c)} is a compatible collection since, for

instance, 8¿A\B = 8/B\A is the independent sum of the relative uniformities on

Ax n Bx and A2 n B2. The collection is of course also strongly compatible since it

consists of uniformities.

Finally, if 8¿ is a uniformity which restricts to 8¿A, 8¿B, and 8ic, then in particular,

8/, viewed as a local uniformity, must be a strong extension of 8¿A. Let Y be any

local uniformity piecing together 8lA, 8/B, and 8/c. Let F be the set of all deleted

neighborhoods of the origin. It is easy to verify that J5" must be a weak Cauchy

filter of degree ^4 on (D, Y); but F\A is not a (weak) Cauchy filter on (A, 8/A).

Hence Y is not a strong extension of 8/A by Theorem 3.3. Hence no uniformity on

D restricts to 8/A, 8lB, and 8lc.    D

5. Bridge spaces. Here we shall be concerned with local uniformities whose

topologies fail to be completely regular. Using results of the previous section, we

shall first give a generalized construction and then specialize in order to verify the

existence of particular kinds of locally uniform spaces, and to help show what

conditions regular topological spaces may satisfy short of being completely regular.

To show that the constructed spaces are not completely regular we introduce a

general class of topological spaces which we call bridge spaces, whose topology can

never be completely regular, and verify that our constructions produce bridge

spaces. Before going on, we shall show first that every regular space whose topology

is not completely regular is already, in effect, half of a bridge space.

Definition. By a bridge space we shall mean a regular topological space B

together with a pair of points a~ and a+ in B which have disjoint closures, but are

functionally linked, that is, for any continuous real-valued function/on B,f(a")

=f(a+).

5.1 Construction of a bridge space from a regular space which is not completely

regular. Let A" be a regular, but not completely regular space. Choose a e X and

an open neighborhood TV of a so that there does not exist a continuous real-valued

function on X which is 0 at a and 1 on X—N. Let X' and X+ be two distinct
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copies of X. Let B be the space obtained from X' u X+ by identifying x~ and x + ,

for each x in the closed set X—N. B is regular by Corollary 4.2.

Claim. B with a~ and a+ is a bridge space. Suppose not, then there is a con-

tinuous function / on B such that/(a") = 0 and/(a+)=l. Define t: B-^B by

Vx" e Ar- ; T(x J = x+ ; and Vx+ eT, r(x + ) = x". Let g(x)= 1 -f(r(x))+fi(x). It

is clear that t is continuous, that g is continuous, that g(a J = 0, and that Vx e X— N,

g(x~)=g(x + )= 1, but this is impossible by choice of a and N. Therefore B with

a~ and a+ is a bridge space.    □

5.2 Construction^) of a bridge space ST from a regular space T which is not

normal, using disjoint closed subsets A and BofT which are not normally separated

(that is, are not separable by disjoint open sets). Assume T, A, and B are as above.

Let Zbe the integers with the discrete topology; let RT be the space obtained from

the product TxZ by identifying for each neZ, x e A, and y e B, <x, 2«> with

<x, 2«+l> and <j, 2n— 1> with <[y, 2«>. RT is regular by Corollary 4.2, since

{[Tx{n}]~ : ne Z} is a locally finite closed cover of regular subspaces isomorphic

with T, where ~ denotes the quotient projection from Tx Z onto RT.

Tx{2n+l}

Ax{2n} Ax{2n + 2}

Ax{2n+\} Ax{2n + V,

fix {2«+l}

fix{2« + 2}

Tx{2n}

From now on, we shall use the points <x, «> of Tx Z to represent the corre-

sponding points <x, n}~ of RT, and dispense with ~. Let ST be RT with two new

points a' and a+ added, and having, for each kew, the basic neighborhoods

Nk  = {aJ u {<x,y} : xeT,y < -k},

Nk+ ={a + }u«x,j> :xeT,y> k}.

ST is regular because first RT is and second ST is regular at a" and a + , since for

each kew, the ^-closure of Nk + l is contained in Nk.

(4) The method used here generalizes an example credited by Hewitt to Tychonoff and

Arens; he describes the example in [7].

B x [2rí]

fix {2n-l}

Fx{2n + 2}
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The fact that ST is really a bridge space will follow easily with the help of the

next theorem. Like Berri and Sorgenfrey [1 ], we shall say that a filter is regular iff it

has a base of open sets and a base of closed sets. The following two results generalize

Propositions 4 and 5, p. 457 of [1].

5.3 Theorem. Let T, A, B, and ST be as in the above construction. Suppose F

is a regular filter on ST such that for some ne Z and each F e F, (Ax {«}) n F '

and Bx{n} are not normally separated in Tx{ri}. Then a~ and a+ are adherent

points of F.

Proof. Let T, A, B, ST, !F, and n be as above. We shall show that a+ is an adherent

point of F, the proof for a~ being similar. Because of the identifications in ST, it

makes no difference to assume that n is odd, for if n were even, then (A x {«}) n F~

= (Ax{n+l}) r\ F~, so that (A x{n+ 1}) n F~ and Bx{n+l} must be non-

separated in Tx{n+l}, for each FeF. It suffices to show by induction on odd

integers that for each odd m^n, and each Fe.F, (A x{m}) n F~ and Bx{m} are

not separated in Tx{m}. For each jeZ, let if. T^ Tx{j}^ST be the obvious

embedding; then for each open P^ST, t;rl[P] is open in T. For each Fe J5" we

have that A n inx[F~] and B are not separated in T. By induction we assume for

some odd integer yen that VFeF, A n ',rl[F"] and B are not separated. Pick

FeF, choose G,HeF so that H~^G°ÇG~SF°. To show that A rMf^F-]

and B are not separated, we first establish that A and B n Ç+X[G~] are not separ-

ated: Suppose to the contrary that M and N are disjoint open neighborhoods of

A and B O tf+x[G~]. Then we have the following:

N^ Bn tfA[G-] = LfMG- n (Bx{j+ 1})]

B = (ßnl-1[G-])u(ßnl-1[5'T-CJ) £ Nu if^Sr-G-].

A rw"*[//-] £ M cm-^G0].

So   A/Oif^G0]  and   N u if1[ST — G~]  are  disjoint  open   neighborhoods   of

A n if^//-] and B, contrary to assumption.

Finally, if A r\ if+2[F~] and B were separated, we could repeat the above

argument to obtain neighborhoods separating A and B n Ç+X[G~], which as we

have just seen is impossible.    □

5.4 Corollary. Let T be a regular space with disjoint closed subsets A and B

which are not normally separated; then the space ST built from T using A and B in

Construction 5.2 is a bridge space.

Proof. Let T, A, B, and Sr be as above. Suppose/is a continuous real-valued

function on ST such that/(a + )= 1. For each r< 1, we may choose ne Z so that

Vm^n, Vx e T,f(x, m)^r, by continuity at a + . For each s<r, let

Fs = {<*,/> :f(x,j) > s},



458 JAMES WILLIAMS [June

then {Fs : s<r} is a base for a regular filter J5" on ST, by continuity off. But for

each FeF, (A x{n}) n F~ =A x{n}, which is not separated from Bx{n}. Hence

a~ is an adherent point of F; so each neighborhood of a" contains points whose

image under / is ^s, for each s<r<l. Consequently, fi(a~)^l. Similarly,

fi(a-)úl.    D
5.5 Example of a bridge space ST which is countably compact, and is such that no

NLU generating the topology of ST has a completion. Assign the order topology to

the ordinals LI and 0+1. Let F=i2x(Q+l) be the product space. Fis countably

compact since Si is countably compact and Sl+l is compact. But Fis not normal,

and the following closed subsets are not separated in T; A={(x, x> : xe Si}, and

B=Six{Si} (proofs of these properties are outlined in [9, pp. 131-132, 162-163]).

Let ST be the bridge space built from T in Construction 5.2. ST is Hausdorff

since Fis; therefore ST will be countably compact iff every infinite subset of ST has

a limit point. Let F be an infinite subset of ST, then one of the following must be

true:

(i) 3neZ such that Tx{n} contains an infinite subset of F;

(ii) every neighborhood of a' contains an infinite subset of F;

(iii) every neighborhood of a+ contains an infinite subset of F.

Hence A must have a limit point in Tx{n}, for some n, or at a~ or a+ ; so ST is

countably compact.

Let Y be an NLU which generates the topology of ST. (ST, Y) cannot have a

strong completion (S*, Y*) since then ST, being a countably compact subset of

the strongly complete space (S*, Y*), would be compact by Theorem 3.5, which

is impossible. By tracing down what is "wrong" with a specific Cauchy filter on

(ST,Y), we can get the stronger result that Y does not have a completion: We

begin with a filter on Li,

jr = {/7 ç Q : 3x e Si, Vy > x; y e F}.

For each neighborhood U of the diagonal in Six SI we have (according to [9, p.

204]) 3x e SI, Vy, z>x: <x, y} e U, so that J27' is a Cauchy filter on any NLU-space

(SI, 8/) which generates the order topology on SI. We transfer J5" to a filter <3 on ST

by means of the map a -> <a, Si, 0>. The image of Li in ST is isomorphic with Si;

hence (S is a Cauchy filter for any NLU Y which generates the topology of ST.

Now if (ST,Y) had a completion, <$ would converge in it to some point y. The

neighborhood system of y, restricted to ST, would be a regular filter 38? contained

in (S. Each element of^" must therefore contain a set of the form {<a, O, 0> : a>a0},

for some a0 e O; this particular subset of A x{0} cannot be normally separated from

7ix{0}. So by Theorem 5.3, a~ and a+ are adherent points of 38?, but ¿8? cannot

converge simultaneously to a~ and a +, a contradiction. Hence (ST,Y) cannot

have a completion.    □

5.6 Construction of a strongly complete NLU-space of cardinality Xl5 whose

relative topology is separable and first countable, but not completely regular. Our
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technique will be to construct an appropriate local uniformity on a bridge space

obtained from Construction 5.2. Let (T, 8/) be a complete uniform space of

cardinality Xx whose topology is separable and first countable but not normal (an

example of such a space is given at the end of this construction).

Use Fin Construction 5.2 to get the bridge space ST. ST is the countable union

of the separable subspaces {a~}, {a + }, Tx{n}, for ne Z; hence ST is separable and

of cardinality Xx. Also, ST is first countable since the neighborhood systems at a'

and a+ have countable bases, and RT = ST — {a~, a + } has the following locally finite

cover of first countable closed subspaces: {Tx{k} : keZ}. This collection is also

star finite. For each neZ transfer the complete uniformity 8/ to an isomorphic

uniformity 8¿n on Tx{ri}. The collection {(Tx{ri}, 8/n) : ne Z} is obviously com-

patible by construction, and since each 8ln is a uniformity, the collection must be

strongly compatible as well. So by Theorem 4.4 there is a strongest NLU Y on RT

such that VneZ, Y\Tx{n} = 8ln. Y is also strongly complete.

Now define a semi-uniformity on ST as follows: VVeY,Vkew, let Vk=V

u (Nk x Nk) u (Nk+ x N¿). Let iY be the semi-uniformity for which {Vk : kew,

VeY} is a base. Claim: if is a strongly complete NLU generating the topology

ofSr.

(1) iY is a local uniformity generating the topology of ST: First, iY\Rr is a

local uniformity generating the topology of RT since for each x e RT, the sets Nk

and Nk may be taken small enough so that F^[x]= F2[x], provided, for example,

that Fis a subset of

V* = U{(Fx{n,n+l})*2 : neZ}.

Also, it is clear that iY generates the neighborhood systems at a~ and a+ ; iY is

locally uniform at a~ and a+ as well, since Vk e w,

(FÍ-^F*.*'] = V*_2[N¿_2] £ Nit.

(2) W is an NLU since each Vk is a neighborhood of the diagonal in ST x ST.

(3) iY is strongly complete: Let 3F be a weak Cauchy filter on (ST, iY) of degree

n. If 3k e w, VFe3F; Fn(ST-(Nk u Nk+))¥=0, then F restricts to a filter on a

subspace Xk = Tx{jeZ : -k^j^k}, for some keZ. But then F\Xk is weak

Cauchy of degree n on the subspace Xk+2n = (V*)n[Xk]. Now iY was constructed

so that (Xk+2n, iY\Xk+2n) is a subspace of (RT, Y); thus !F\Xk is weak Cauchy on

(RT,Y) and hence converges. If VA; e eu, 3Fe F: F r\ (ST-(Nk u Nk+)) = 0, then

¡F is eventually in every neighborhood of a+ or in every neighborhood of a", and

therefore converges.    □

5.7 Example of a complete uniform space of cardinality Kx whose relative topology

is separable and first countable but not normal. We shall get our example by con-

structing a complete uniformity for the half-open rectangle space. Let 8¿ be the

usual uniformity for the unit interval [0, 1]. For each Ue8/ and xe[0, 1], let
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Ux — U n ([0, x]*2 u (x, l]*2). Let T be the set of all monotone nonincreasing

sequences on [0,1]. For each aeT, let Ua = (\ {Ux : x e a}. The collection

{Ua : aeT, U e 8/} is clearly a subbase for a semi-uniformity. To show that it is a

subbase for a uniformity, pick U e 8/ and aeT; then if we choose Fe 8/ so that

F2£f7, we have the following: Vx,yea;(Vxr\ vy)2=V2r\ V2^Uxn Uy. The

same is obviously true for arbitrary intersections, and hence V2<^Ua.

Let Y' be the uniformity for which {Ua : U e 8/,ae T} is a subbase. We may

show that the generated topology of Y is the half-open interval topology for [0, 1]

as follows : For each x e (0, 1 ], a e F, and U e 81, we may choose y e (0, 1 ] n U [x]

so that y<x and Vxne a, xn<x implies xnfíy; this assures that (y, x]£ Ua[x].

Hence the ^"-topology is weaker than the half-open interval topology; and it is

clearly stronger as well. The topology of Y, being the half-open interval topology,

is thus separable and first countable. Y' is also complete: Let F be a i "-Cauchy

filter on [0, 1]. Then IF is J//-Cauchy, and so converges in the usual topology to

some point x e [0, 1]. Claim: [0, x] e IF and consequently F converges to x in the

half-open interval topology. Suppose not; let a be a strictly decreasing sequence

which converges to x. Choose FeF so that FxF^Ua, then for some new,

F^(an+1, an], contradicting the fact that ¡F converges to x.

Let iY = Y(x)Y' be the product uniformity on the unit square. iY is complete

by the product theorem for uniform spaces. The generated topology of iY, which is

the half-open rectangle space topology, is separable and first countable since the

half-open interval space is. However, the generated topology of iY is not normal

(see [9, pp. 59 and 133] for a summary of half-open rectangle space properties).    □

6. NLU-completeness. The examples and constructions of the previous section

show that although strong completeness is a reasonable property for an NLU-space

to have, one may not be able to construct a completion for some NLU-spaces.

Consequently, we shall have to content ourselves with something less than the

optimal completion result. It is still reasonable to ask, however, if one may easily

describe the spaces for which completions or strong completions exist, and if one

may always construct a "partial completion" of a space in which some well chosen

class of filters converges. To discuss these questions we make the following

Definition. For any NLU-space (X, Y), an NLU-Cauchy filter on (A", Y) is a

filter which converges in some larger NLU-space containing (X, Y). (X,Y) is

NLU-complete iff every NLU-Cauchy filter on (X, Y) converges in (X, Y). An

NLU-completion of (X, Y) is an NLU-complete NLU-space containing (A', Y) as

a dense subspace.

The above definition of an NLU-Cauchy filter is "external" in the sense that the

local uniform structure of the space involved is not directly used; only its topologi-

cal properties and its relation to other NLU-spaces are involved. So one thing we

will need to find is an "internal" characterization of an NLU-Cauchy filter, given

entirely in terms of the structure of the space involved.
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6.1 Theorem. Suppose that (X, 8/) is a dense subspace of an NLU-space (Y, Y)

and that every NLU-Cauchy filter on (X, 81) converges in ( Y, Y). Then ( Y, Y) is an

NLU-completion of(X, 8().

Proof. Let (A", <¥) and ( Y, Y) be as supposed. Let F be an NLU-Cauchy filter

on ( Y, Y). Let (Z, iY) be an extension in which F converges to some point z. We

may assume Z= Fu{z}. Let ¿V be the restriction to X of the neighborhood

system of z.jV is a filter since Xis dense inZ. ./Fis NLU-Cauchy since it converges

to z; hence it converges to some point y e Y. Let M be a regular open neighborhood

of y in Z (i.e. such that M=M~°). Since M n XeJf, there is an open neighbor-

hood JVofz such that Nn X=Mn X. We have N~=(Nn X)~ =(M n X)~

= M ~, so that z e #£ N~° = M~° = M. Hence Mn fef since F converges to z.

Since the neighborhood system at y has a base of regular open sets, F converges

to y e Y. Thus ( Y, Y) is an N LU-completion of (A", 8/).    □

6.2 Lemma. Suppose F is an NLU-Cauchy filter on (X, Y); then F satisfies the

following condition :

(*) VVeY,3UeY,3FeF:(U2[F\Y2 £ F.

Proof. Let ( Y, iY) be an NLU-space containing (X, Y) in which F converges

to some point y. Pick VeY, let VeHrbe such that V n Xx 2 £ F. Choose Û eiY

so that(Û3[y})x2<^V, and choose FeF so that F¿U[y\; let U= Û n X*2. Then

(U2[F])x2 £ (l/^F])*2/^ A""2 £ (i73[j])x2n A-*2 £ Fn A-*2 £ F.    D

6.3 Lemma. Any NLU-space (X,Y) may be embedded as a dense subspace of

another NLU-space (X*, Y*) in such a way that

(i) every filter on (X, Y) satisfying (*) converges in (X*, Y*),

(ii) (X*, Y*) is a strong extension of(X, Y).

Proof. In giving the proof it will be convenient to use small Greek letters for

filters in place of the usual script letters. Let A"* be the set of all those filters on X

which satisfy (*). We define a mapping a: X-> X* by x" = {F : x eF£ A"}, for each

xe A"; in addition, if A<=, X or Kglxl, we set A" = {xa : x e A} and V =

{(xa, y") : (x, y) e V}. Define a map }:Y ^ 38(X* x X*) by

K+ = «a, ß) : a,ße X* and 3A e a, 3B e ß: A x ß£ F}.

(1) First it is clear that o is one-to-one and that VFeY, V1 n (Xa x Xa) = V.

(2) Y* is a subbase for a semi-uniformity: First, each Fef contains the

diagonal in (A'*)*2 since each filter a e X* satisfies (*) and so, in particular,

VFe^3J4ea:^x^£F. Second, each F+ e F"+ contains a symmetric element of

. Y*, since for each F+ e Y* there is a symmetric U e Y contained in F, in which

case ¡7t£ Ff and c/+ is symmetric.
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(3) If F, We Y, then V ° IF+£(Fo W)f: We have

K+ o H/t = {<«, y> : 3/3(3,4 e a,3B e ß : AxB <= V)

and (3ß' e j3, 3C e y : B' x C £ W)}

= {<a, y> : 3/3, 3/1 e a, 3/i" e /3, 3C e y : /l x ß" £ Fand B" x C £ IF}

£ (V° wy.

(4) Y* is a subbase for an NLU: We need to verify that Vae X*,VVeY,

3UeY: ((£/t)2[a])x2£ V\ By the previous step, it suffices to show that given

aeX* and VeY we may choose UeY so that ((c/2)+[a])><2£ F+. We choose

Dea and a symmetric U e Y so that (t/2[£>]) * 2£ F. Now suppose ß, y e (í/2)+[a] ;

then there exist Aea, Beß, and C e y such that ^ £ D, A x 7i£ U2, and /í x C£ Í/2.

Then B^U2[A] and C£ U2[A], so that /ix C£(t/2rj])*2£(L/2[F>])*2£ F; conse-

quently (ft y) e V. This shows (((72)t[a])><2£ V\

(5) From the previous steps, we may let Y* be the NLU for which Y* is a

subbase; it follows from (1) that o: (X, Y) -4- (A"*, Y'"*) is a uniform embedding.

We next show that if a is a filter on (A", Y) which satisfies (*) then aa = {Aa : Aea}

converges to a e (X*, Y*); this will verify property (i) of the lemma and also show

that (Xa, Y") is dense in (A'*, Y*). Given F+ e Y\ we pick A e a so that A x A £ F;

then Vxe/1, (x", a) e F+ since {x}xA^A x^£ F; so ^ff£ Ff[a].

(6) Finally, (A*, f"*) is a strong extension of (Xa, Ya); Pick « e co-ÍO}. Then

(Ya)n has a base of elements of the form (V")n, and (Y*)n has a subbase of elements

of the form (Vf)n. By direct calculation we have (F+)n n (Xa)x2^(Vf n (A"")x2)n

= (F")\ Using induction we have first Ff£F+; then Vjew-{0), if(V^y^(Vf)\

we have, using step (4),

(j/ty + i  =   ,/t 0 (j/ty g   j/t 0 ryjy* ^ (T/i + l)t_

Hence

(F1")" n (A'I')x2 £ (Fn)+ n (A"")"2 = (F"1)" = (Va)n.

Hence (f *)n|A'=(f"I')n = (-F"*|A')n, which is actually more than we needed to

show.    □

6.4 Theorem. A filter F on a space (X, Y) is NLU-Cauchy iff it satisfies (*).

Proof. This follows directly from the above two lemmas.    □

6.5 Theorem. Every NLU-space has an NLU-completion which is also a strong

extension.

Proof. Theorems 6.1 and 6.4 show that the extension given in Lemma 6.3 is the

required NLU-completion.    □

A natural question is whether an NLU-space with a Hausdorff topology has a

unique Hausdorff NLU-completion. In general the answer is no, and the following

examples give two NLU-compIetions of the rational numbers, one of which is
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stronger than the uniform completion, the other weaker. Despite this, however,

there is a uniqueness condition one can give for spaces which have a base of

regular open sets.

6.6 Examples. Let (Q, 8l) be the rational numbers with the usual uniformity.

81 has a base of sets Un = {(x, y> e Qx2 : \x—y\ < l/n, for n e a>-{0}}. Let R be

the real numbers; for each neighborhood N of the diagonal in Rx2, let VNn=Un

u(Nn(Rx2-Qx2)). Let

"P~ = {^Nn '■ new — {0} and N is a neighborhood of the diagonal in Ä*2}.

Let

iY = {VNn : n e w -{0} and for some finite open cover if of R,N = [J{Cx2 : Ceif}}.

Then Y and iY are bases for NLU's which give the usual topology on R, and so

every Cauchy filter on (Q, 8/) converges in (R, Y) and in (R, iY). By Theorem 6.1,

(R,Y) and (R,iY) are bases for NLU-completions of (Q, 81). But the local

uniformity for Y is strictly stronger than the usual uniformity, and that of iY

strictly weaker.    □

6.7 Lemma. Suppose X is a dense subspace of the topological space X and A is a

regular open set in X, then A" A n X=A, where ~~ and °~ denote the closure and

interior operations on X.

Proof. Let A, X, X, ~J °~ be as above, let " and ° denote the closure and interior

operations in X. X—A~~ is open, hence

(X-A~~)-~ = ((X-A~~) n X)-" = (X-A~)-~.

So

¿,--°~ = X-(X-A-)-~,

and

A~~°~ nr= X-(X-A~)-~ n X = X-(X-A~y = A~° = A.       D

6.8 Theorem. Suppose (X,Y) is an NLU-space whose topology is Hausdorff.

Then any two Hausdorff completions of(X, Y) have homeomorphic topologies. If, in

addition, (X, Y) has a base of regular open sets, then it has a unique Hausdorff

NLU-completion with the same property.

Proof. Let (X,Y) and (X*,Y*) be two Hausdorff NLU-completions of an

NLU-space (X,Y) which has a Hausdorff topology. Let " and °, ~^and °~, and

"* and °* denote the closure and interior operators for the spaces (A', Y), (X, Y),

and (X*,Y*) respectively. Let i: A"—^ X be the identity map; let I be the closure

of t£ A"x A'in A^x A"*. Then Vx e X— X, there is a filter F on A'converging to x;

but ÍF also converges to a unique point y e X* — X. Hence the filter base

{AxB : A,BeF-} converges to the unique point (ij)eíxl*. This shows

that I is a function which is 1-1. Similarly, î_1 is a function. By the above lemma,
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the complement of a regular open set in X has the form X—A ~°~ = (X—A 'J ^

= (X-A-)-J with A<= X. But l[(X-A~y~] = (X-A-)-* is then the complement

of a regular open set in X*. We conclude that I preserves regular open sets, and so

is open by regularity of X. Similarly, t'1 is open. Hence l is a homeomorphism.

Now suppose Y~ has a base of regular open sets. We will first show that there is

at most one Hausdorff NLU-completion with a base of regular open sets: Suppose

(A"*, Y*) is a Hausdorff NLU-completion with a base 38 of regular open sets.

If We 38 and V= W n Xx 2, then since Xx 2 is dense in(X*)x2, we have F - *°*

= w~*°*= W. W is thus determined by its restriction to X and the topology of

X*, which is unique as we have just seen. Hence Y* is unique.

To show the existence of such a completion, let (X, Y) be any NLU-completion

of (X, Y). Let 33 be the set of regular open neighborhoods U of the diagonal in

A^x2 such that U n X"2 eY. LetY* be the semi-uniformity for which 38 is a base.

By the above lemma, each regular open element of Y is the restriction of an

element of 38. Hence Y*\X=Y. For each VeY, F3=? F-~=? y-~°~ eY*; thus

Y* is stronger than Y3 and so generates the topology of X. By Theorem 1.9, Y*

is an NLU. Every NLU-Cauchy filter on (X,Y) converges in (X, Y*). Hence

(X, Y*) is an NLU-completion of (A", Y) by Theorem 6.1.    D

We now return to the question of when an NLU-space has a completion or a

strong completion. Our discussion will involve the following two conditions on a

space (X,Y):

(i) Every weak Cauchy filter on (X, Y) is Cauchy;

(ii) every Cauchy filter on (X, Y) is an NLU-Cauchy filter.

Notice that if a space (A", Y) satisfies (i), then for each Cauchy filter ^onl the

filter F' = {V2[F] : Fe.F, VeY} is weak Cauchy, and therefore Cauchy; hence

F satisfies the condition (*) of Theorem 6.3, and is thus NLU-Cauchy. Therefore

(A', Y) satisfies (ii). Condition (ii) is strictly weaker than (i) and in fact the space

(Y, Y) of Example 3.4 satisfies (ii) but not (i).

6.10 Theorem. An NLU-space (X,Y) has a strong completion iff every weak

Cauchy filter on (X,Y) is Cauchy; in this case, if (X, Y) is an NLU-completion

ofi(X, Y~) and is also a strong extension, then (X, Y) is a strong completion.

Proof. If (A', Y) has a strong completion, then by definition, each weak Cauchy

filter is NLU-Cauchy and hence Cauchy. Now suppose each weak Cauchy filter is

Cauchy. By Theorem 6.5 there is an NLU-completion (X, Y) of (A", Y) which is

also a strong extension. Let J5" be a weak Cauchy filter of degree k on (X, Y); let

% = {V[F] n X : VeY,Fe&}. Then (S is a filter on A'which is weak Cauchy of

degree k + 2 in (X, Y). Since (X, Y) is a strong extension, ^ is weak Cauchy on

(X, Y) as well and thus converges in X to some point y. Then y is an adherent

point of J5" to which .F, being weak Cauchy, must converge, by Theorem 3.3. Thus

(X, Y) is a strong completion of (X, Y).    fj
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I do not know whether every NLU-space satisfying (ii) has a completion; the

following example, however, does answer a similar question.

6.11 Example of an NLU-space with a Hausdorff topology on which every Cauchy

filter is NLU-Cauchy, but whose strongest Hausdorff NLU-completion is not com-

plete. Let A"=Qx£2; let X=Six(Si u {Si}). We assign X a topology as follows:

Let X have the discrete topology, and for each a e Q let the basic neighborhoods

of <a, 12 > be of the form [p., a]x(A, Si], with A, p, e Si, and p.<a or p, = 0. This

topology for X is completely regular since the neighborhood system at each point

has a base of clopen sets. Hence the collection Y of all neighborhoods of the

diagonal in A^x2 is an NLU.

Let Y = Y\X; let A(X) be the diagonal in A"x2. We shall now determine the

Cauchy filters on (X, Y): Suppose F is a Cauchy filter on (X,Y) such that

H F = 0. First, it is easy to see that VF e ?F, sup {x2 : x e F} = Si. Next suppose a0

is the least ordinal such that for some FeF, sup {xx : x e F} = a0. If a0< Si, then

<a0, Si} e X must be an adherent point of F. Hence F, being Cauchy, converges

to <a0, Si}. If a0 = Q, that is if VFeF,VaeSi,3xe F: Xx>a, we may derive a

contradiction as follows: Let

VQ = &(X) u U {([0, «] x [a, Si)) -2 : a e Si}.

Then V0eY and we may choose FeJ5" so that FxF^V0; pick xeF, choose

y e F so that yx > x2 ; then since <x, y} e V0, there exists a e Si such that xx, yx = <*

and x2,y2 = a- Thus x2~^a^yx>x2, a contradiction.

We have thus shown that every nonconvergent Cauchy filter on A" converges to a

point in X, and is therefore NLU-Cauchy. Since X is dense in X, (X, Y) is an

NLU-completion of (X,Y) by Theorem 6.1. By construction, Y generates the

order topology on X—X=Six{Si}, and Y\(X-X) consists of all neighborhoods

of the diagonal in (X—X)x2. Consequently Y\(X—X) is the unique uniformity

which generates this order topology; (X— X, Y\(X— X)) thus has a nonconvergent

Cauchy filter J5" which would converge to the omitted point <0, Í2>.

Finally, (X, Y) is the strongest Hausdorff NLU-completion of (X,Y): Since

(X, Y) has a Hausdorff topology, its topology must be the same as that of the

strongest Hausdorff NLU-completion by Theorem 6.8. But since Y consists of all

neighborhoods of the diagonal in Xx 2, it must be the strongest completion itself. □

We say that a uniformly continuous function /: (A", %) -*■ (Y, Y) preserves

NLU-Cauchy filters iff the image under/of each NLU-Cauchy filter on (A", 81)

extends to an NLU-Cauchy filter on (Y, Y). Notice that the nonconvergent

Cauchy filter & in the above example is an NLU-Cauchy filter in the closed sub-

space (X-X, Y\(X- X)) since Y\(X-X) is a uniformity. We have just proved

the following unfortunate facts:

6.12 Corollary. An inclusion map from a subspace of an NLU-space need not

preserve NLU-Cauchy filters; a closed subspace of an NLU-complete space need not

be NLU-complete.



466 JAMES WILLIAMS [June

In what cases, then, can one conclude that a closed subspace of an NLU-

complete space is NLU-complete? One somewhat restrictive possibility is the

following:

Definition. Suppose (A', 8/) is a subspace of ( Y, Y). Then ( Y, Y) is a conditions

preserving extension of (A", 8/) iff there is a subbase 38 for Y such that Vx e X,

VÛe38,VVe8/, if (F2[x])x2£ Û, then 3Fe^: (F2[x])x2£ Û and Vn Xx2=V.

6.13 Lemma. Suppose (Y, Y) is a conditions preserving extension of (X, 8i) and

& is an NLU-Cauchy filter on (X, 8l); then F is NLU-Cauchy in (Y,Y).

Proof. Let 38 be a subbase for Y such that Vx e X, VU e 38, VV e Y, if (F2[x])x 2

£*/, then 3V e 38: (F2[x])x2£ Û and V c\Xx2=V. Let & be an NLU-Cauchy

filter on (X, 8/). Pick Ûe38. By Theorem 6.4 we may choose Fe 8/ and Fe& so

that (F2[F])x2£i7, and we may choose We 8/ and Ce^so that (IF2[G])x2£ F

and IF£K and GxG^W. Pick jeG n F. We may choose F e 38 so that P n A"x2

= Fand (P2[j])x2£ Í7. Then (IF2[j])x2£P, and we may choose Q e 38 so that

ßn Xx2=W and (ß2[j])x2£P. Let !F=Pn £>; then IFn A"x2=Fn W=W.

Since GxG^W, we have G£ rF[j]£ IF[>>] and

(w2[G]y2 £ (iF3b])x2 £ (P[e2Lv]])x2 S (F2Lv])x2 £ Í7.

Hence J*" is NLU-Cauchy on ( Y, Y), by Theorem 6.4.    D

Definition. We shall say that a subspace A'of a topological space Fis essentially

closed iff for each y in the closure of X, the y-neighborhood system of y restricted

to X converges in X.

6.14 Theorem. Let (X, 8¿) be a subspace of an NLU-space (Y, Y). If (X, 81) is

NLU-complete, then it is essentially closed. Suppose on the other hand that (X, 81)

is essentially closed in (Y,Y). If (Y,Y) is (strongly) complete then so is (X, <?/);

//( Y, Y) is an NLU-complete conditions preserving extension of(X, 8/), then (X, 8l)

is NLU-complete.

Proof. Let (A", 8/) be a subspace of (Y, Y). If (A", 8/) is NLU-complete, and if y

belongs to the F-closure of X, then y generates an NLU-Cauchy filter on A" which

converges in X. Now suppose (A", 8/) is essentially closed in ( Y, Y). If ( Y, Y) is

(strongly) complete and J5" is a (weak) Cauchy filter on (A', 8/), then F is (weak)

Cauchy in ( Y, Y), and hence converges in the closure of A". Thus it also converges

in X. Hence (A", 8/) is (strongly) complete. If (Y, Y) is an NLU-complete condi-

tions preserving extension of (A', 8/), then an NLU-Cauchy filter on (A', 8/) will be

NLU-Cauchy in ( Y, Y) and hence converge in the closure of X, and therefore in X

itself; thus (A", 8/) is NLU-complete.    □

Finally, as an application of our ideas about completeness, we shall consider

products of NLU-spaces. But first we shall sketch a few facts about products. As

with  uniform  spaces,  one  can  easily verify  that for any  indexed  collection
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{(Xa, Y'a) : aeT} of NLU-spaces, there is a unique product space in the category

of NLU-spaces and uniform functions whose underlying set is X {Xa : aeT}. Its

structure has a subbase of sets

W..y = {</, g>e(X{Xa:aeT})x2: </(«), g(a)} e V},

for a e T and Fe Ya. Just as with uniform spaces, the product of the generated

topologies of the (Xa, Ya) is the generated topology of the product

X{(Xa,Ya):aeT}.

For each aeT and each fie X {Xa : aeT}, we define a coordinate embedding

hY-(Xa,Ya)-^ X {(Xa,Ya) : aeT}

by requiring that VßeT, if_a(x)(ß) equals x if ß = a, and equals/(a) otherwise.

Each íf¡ct is clearly one-to-one, and it is an isomorphic embedding as well since for

each <x, j> e A^2 and each VeYa, <x, y} e V iff (ií¡tt(x), ií<a(y)y e Wa¡v; this is

true by definition of Wa¡v and t/a.

The product X {(Xa, Ya) : a e T} is a strong extension of each if,a[Xa] since

Vn e o»-{0}, IFaV= rF*,v", so that

h.a[Vn] = IF^nn^JA-.Dx2 = fFi,vn(t/,a[A-a])x2.

Similarly, X {(Xa, Ya) : aeT} is a conditions preserving extension of each

lf,a[Xa] since if x e Xa, V e Ya, and U e Ya, and

(Vfjvmiaxw2 = (t/,jF2[x]])xz £ wB,ut

then(F2[x])x2£(7, so that

.(Wlvbf.a(x)])x2 £ Wa,a    and    Wa,v n (t/,JA-])x2 = rr,JF].

Finally, i/,a[A"a] is essentially closed in X {Xa : aeT}: Suppose J2" is a filter on

if,a[Xa] which converges in (is,a[Xa])~ to some point g. Then for each ß^a, the

projection pß[-F] converges in {f(ß)}~ to g(ß), and hence tof(ß); pa[F] converges

to g(a). Hence IF converges to if¡a(g(a)).

6.15 Theorem. Let {(Xa, Ya) : aeT} be an indexed collection of NLU-spaces;

then X {(Xa, Ya) : aeT} is NLU-complete, complete, or strongly complete iff each

(Xa, Ya) is.

Proof. Let {(Xa, Ya) : a e T} be an indexed collection of NLU-spaces; let

{Wa_v : aeT, V e Ya} be the subbase for the product given above ; let / be an

arbitrary element of X {Xa : aeT}. For each aeT let iUa be the coordinate

embedding defined above, and let pa be the projection map onto Xa.

(1A) Suppose each (Xa, Ya) is NLU-complete. Let J5" be an NLU-Cauchy filter
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on X {(Xa, Ya) : aeT}. Then for each a, and each U eYa, there is a V eYa and

aGe^such that (IF2,v[G])x2£ Wa.v. But then (V2[Pa[G]])x2 = (Pa[Wlv[G]])x2

£Po[W/«,c7]= lA HencepAß'} is NLU-Cauchy on (A'«, Ya) and therefore converges

to some point xa e Xa. Consequently, & itself converges.

(IB) Suppose X {(Xa, Ya) : a e V} is NLU-complete. X {(Xa, Ya) : a e T} is a

conditions preserving extension of the essentially closed subspace if,a[Xa], so by

the previous theorem, if,a[Xa] with the inherited product structure is NLU-com-

plete. Hence so is the isomorphic space (Xa, Ytt).

(2A) Suppose each (Xa, Ya) is (strongly) complete. Let ÍF be a (weak) Cauchy

filter on X {(Xa, Ya) : aeT}; then for each aeT, the image pa[F] under the

projection pa is (weak) Cauchy and hence converges to some point xK. Hence ¡F

converges.

(2B) Suppose X {(Xa, Y'a) : a e T} is strongly complete. Then for each ß e T,

Lf.ß[Xß] is an essentially closed subspace of X {(Xa, Ya) : aeT} and hence is

(strongly) complete. Hence so is (X¡¡, Yß).    □
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