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LOCALLY UNIFORM SPACES
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Abstract. The axioms for a locally uniform space (X, %) may be obtained by locali-
zing the last axiom for a uniform space to obtainVx e X,VUe %,3Ve ¥ (Vo V)[x]
< U[x]. With each locally uniform space one may associate a regular topology, just as
one associates a completely regular topology with each uniform space. The topologies
of locally uniform spaces with nested bases may be characterized using Boolean alge-
bras of regular open sets. As a special case, one has that locally uniform spaces with
countable bases have pseudo-metrizable topologies.

Several types of Cauchy filters may be defined for locally uniform spaces, and a
major portion of the paper is devoted to a study and comparison of their properties.
For each given type of Cauchy filter, complete spaces are those in which every Cauchy
filter converges; to complete a space is to embed it as a dense subspace in a complete
space. In discussing these concepts, it is convenient to make the mild restriction of
considering only those locally uniform spaces (X, *°) in which each element of ¥ is a
neighborhood of the diagonal in X'x X with respect to the relative topology; these
spaces I have called NLU-spaces.

With respect to the more general types of Cauchy filters, some NLU-spaces are not
completable; this happens even though some completable NLU-spaces can still have
topologies which are not completely regular. Examples illustrating these completeness
situations and having various topological properties are obtained from a generalized
construction. It is also shown that there is a largest class of Cauchy filters with respect
to which each NLU-space has a completion that is also an NLU-space.

Preface. For any locally uniform space (X, ¥"), the sets of the form V[x], for
x € X and V € ¥, describe a neighborhood system for a regular topological space.
Conversely, the neighborhood system for any regular space X is generated by the
local uniformity consisting of all neighborhoods of the diagonal in X x X.

If a local uniformity has a nested base, then the generated topology is para-
compact. From this it follows directly that a local uniformity with a countable base
has a pseudo-metrizable topology. On the other hand, if the topology of a regular
space has a o-locally finite base, it is easy to construct from such a base, a local
uniformity with a countable base which generates this topology, thereby demon-
strating Nagata’s result that a regular T)-space whose topology has a o-locally
finite base is metrizable. In fact the condition needed for the construction is
somewhat weaker than o-local finiteness.

Using a localized form of écart space, Niemytski has proved a result which says
essentially that local uniformities with countable bases have pseudo-metrizable
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topologies; it is contained in a 1927 paper to which I was led by a series of accidents
after completing my own work. In view of the fact that Nagata’s result follows so
easily from Niemytski’s, it is surprising that the two results were separated by a
long period; and the connection does not seem to have been pointed out since.

1. Introductory concepts. When not otherwise specified, the terminology here
will be like that in Kelley [9]. It will be convenient to develop our ideas about
locally uniform spaces in terms of the more general class of semi-uniform spaces,
whose theory is presented in Cech [2]. A semi-uniformity on a set X is a filter ¥~
on X x X such that, for each Ve ¥,

1) A(X)={x,x) : xe X}<V and

Q) Vi={y,x) : {x,ppeVie?]

If 7" is a semi-uniformity on a set X, then a base (subbase) for ¥ is just a base
(subbase) for ¥* considered as a filter; the pair (X, ¥") is a semi-uniform space; the
elements of ¥~ are called semineighborhoods of the diagonal in X x X; and for each
xe X, N,={V[x]: Ve¥} is the semineighborhood system at x generated by V",
in case the family {4, : x € X} is a neighborhood system for a topology 4 on X,
we say that J is the topology generated by ¥ We shall call those semi-uniformities
which have generated topologies ropological.

1.1 THEOREM. Let (X, ?") be a topological semi-uniform space. Then for each
AS X and M< X x X, we have

A~ =N{V[A]: Ve?} and M- =N\ {VoMoV:Ve?),

where A~ and M ~ are the closures of A and M in X and X x X respectively, with
respect to the generated topology of V.

Proof. This is essentially Theorem 6.6 of Kelley [9]. [

DEeFINITION. We shall say that a subbase & for a semi-uniformity on a set X is
locally uniform iff VUe #B,Vxe X,AVe? : (Vo V)[xlesU[x]. If ¥ is a locally
uniform semi-uniformity, we shall call ¥~ a local uniformity, and call (X,¥") a
locally uniform space.

DErINITION. For any set X and any V= X x X, we let V2=V o V, and for each
new—{0}, let V*+i=pro V.

1.2 THEOREM. If (X, ?") is a locally uniform space, then Vne€ w—{0}, VU € ¥,
Vxe X,3Ve? : V'x]cU[x].
Proof. This follows directly from the above definition. [

1.3 LEMMA. FEvery locally uniform space is topological.

Proof. Let (X,7¥") be a locally uniform space; pick x € X. The collection of
all semineighborhoods of x is a filter since ¥ is. Pick Ue ¥ and let (U[x])°
={ye X :3Ve?; V[ylesU[x]}. Clearly x e (U[x])°’cU|[x], and it remains to
show that (U[x])° is a semineighborhood of each of its points. For any given
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ye(U[x])°, pick Ve? so that V[yl< Ul[x]; then choosing We?¥ so that
WIW(y)]=W?3[y]ls V[yl< U[x] shows that W[yl=(U[x])°; hence (U[x])° is a
semineighborhood of y. [

The converse of the above lemma is, incidentally, false; a topological space X
may be generated by a semi-uniform space if and only if Vx, ye X, x e{y}~ iff
y €{x}~, by Theorem 23B.3, p. 402 of Cech [2].

The following theorem is contained in the unpublished work of G. D. Richard-
son; similar theorems relating regular topological spaces to other generalizations
of uniform spaces have also been given by A. S. Davis [4, Theorem 4], S. A.
Naimpally [12, Theorem 2], and K. Morita [10, Part I, Theorem 1, and Part IV in
his discussion of ¢ Uniformities”” which ‘‘agree strongly with the topology].”

1.4 THEOREM. The topology of a locally uniform space is regular. Conversely, for
any regular space X, the set of all neighborhoods of the diagonal in X x X is a local
uniformity which generates the topology of X.

Proof. Suppose (X, ¥") is a locally uniform space. For any given x € X and
neighborhood V[x], with V e ¥ if U e ¥ is such that U%[x]< V[x], then (U[x])~
c U[U[x]]= V[x] by Theorem 1.1. Hence each neighborhood of each point has a
closed subneighborhood.

Now suppose X is a regular topological space and let ¥~ be the set of all neigh-
borhoods of the diagonal in X x X. It is clear that ¥ is a semi-uniformity, and for
given Ue?” and xe€ X, if A, B, and C are open neighborhoods of x such that
C-<B<B - cAcUJx], then V=(BxB)U[(A—C )x(A—-C )]V [(X—B7)x
(X—B7)] is an open neighborhood of the diagonal such that

V2[x] = V[B] = A< Ulx]. O

DEerINITION. For any set K, we shall abbreviate the product Kx K to K*2.
While this notation for Cartesian squares is only necessary for very long expres-
sions, it increases the readability of most; for consistency, we shall use it throughout.

DEerINITION. We shall say that a subbase & for a semi-uniformity ¥~ on a set X
has the neighborhood property ift VU e Z,¥x e X,V e ¥ : (V[x])*2cU.If ¥ is a
local uniformity with the neighborhood property, we shall call ¥" an NLU or
neighborhood local uniformity, and call (X, ¥") an NLU-space.

The following simple results are useful for identifying local uniformities and
NLU’s. The almost trivial proofs of 1.5, 1.6, and 1.9 have been omitted.

1.5 THEOREM. A subbase & for a topological semi-uniformity has the neighborhood
property iff each V € # is a neighborhood of the diagonal in X *2.

1.6 THEOREM. A semi-uniformity ¥~ on a set X is an NLU iff it has the property
that VU e ¥, Vxe X,3Ve? . (V3x])*2cU.
\

1.7 THEOREM. Let X be a regular topological space; suppose # is a collection of
symmetric neighborhoods of the diagonal in X *2 such that for each neighborhood M
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of x, there is a neighborhood N of x and an element V € & such that V[N]< M. Then
A is a subbase for an NLU generating the topology of X.

Proof. Let # and X satisfy the above condition. & is clearly a subbase for a
semi-uniformity. The condition shows as a special case that # generates the topology
of X. Hence # has the neighborhood property by Theorem 1.5. It remains to show
that # has the local uniform property. Given x € X and U € %, we may choose
V € # and a neighborhood B of x so that V[B]< U[x], then we may choose W € #
so that W[x]< B, so that (W N V)2[x]<c V[W][x]]< V[B]< U[x]. Consequently &
is a subbase for an NLU generating the topology of X. [

DEFINITION. If % and ¥~ are semi-uniformities on a set X, % is stronger than ¥~
iff 4=

1.8 THEOREM. If % is a local uniformity on a set X, then there is a strongest NLU
V" contained in U. U and V" have the same topologies.

Proof. Let % be a local uniformity on a set X, let # be the set of all neigh-
borhoods of the diagonal in X *2. We shall show that Z N #" is the required
structure: # N ¥ is clearly the strongest structure we might consider, and it has
the filter and symmetry properties to make it a semi-uniformity. It generates the
topology of (X, ) since for each x € X and neighborhood U[x], with U € %, we
may choose We# so that W[x]=U[x] by Theorem 1.4; so that (U U W)[x]
=Ul[x], with UU We ¥ NW. % N ¥ has the neighborhood property by Theo-
rem 1.5 and we show the local uniform property as follows: Pick x € X and
NeU NW, choose We# sothat W2[x]= N[x] and U € Z so that U?[x]< N|[x]
and U[x]< W[x], and W e # so that W[x]< U[x] and W< W, then

(W2U (WeU)uU (Ue W)U U?][x]
W2[x] v U2[x] < N[x],

(WL UyIx]

In

with Wou Ueunw. O

1.9 THEOREM. Suppose V" is a local uniformity on a set X and  is a topological
semi-uniformity on X which is stronger than ¥~ and has the same topology, then %
is a local uniformity.

DerFINITION. If ¥ is a local uniformity, then for each n € w—{0}, let
yr={Uc X*2:3Ve?: V"< U}.

1.10 THEOREM. For each local uniformity ¥~ and each ne w—{0, 1}, ¥™ is an
NLU with the same topology as V.

Proof. Let 7 be a local uniformity on a set X; it suffices to prove the theorem
for ¥°2. First, "2 is clearly a semi-uniformity. Pick W e ¥"2, pick x € X, and choose
Ve¥ so that V2< W, choose Ue ¥ so that U*[x]< V[x], then U%2€¥"? and
(U2 [x])*2<(V[x])*2< W, so that #"2 is a neighborhood local uniformity by



1972] LOCALLY UNIFORM SPACES 439

Theorem 1.6. The relative topology of 72 is of course weaker than that of ¥] and it
is also stronger since ¥~ is locally uniform. [J

Two other properties which one might require of a local uniformity are that it
have a base of open sets, or that it have a base of closed sets. I do not know
whether it is reasonable to make both requirements in the case where the topology
is not completely regular, but one can, however, say the following:

1.11 THEOREM. If (X, ¥") is an NLU-space and B={V° : Ve ¥}, then & is an
open base for an NLU % which is stronger than ¥~ and generates the same topology;
U is of course the weakest such structure having these properties.

Proof. Let (X, 7") and & be as above. & is obviously a base for a semi-uni-
formity % which is stronger than ¥~ and generates the topology of X. % has the
neighborhood property by Theorem 1.5 and is locally uniform by Theorem 1.9. []

1.12 THEOREM. If (X, ¥") is a locally uniform space and B={V ~ : V€ ¥}, then
A is a closed base for a local uniformity % which is weaker than ¥~ and has the same
topology; U is of course the strongest such local uniformity having these properties.

Proof. Let (X, ¥") and % be as above. # is obviously a base for a semi-uni-
formity % which is weaker than ¥°; by Theorem 1.1 it is stronger than ¥"3. By
Theorem 1.10 it must generate the same topology as ¥~ and #72. So by Theorem 1.9
% is a local uniformity. [

Finally, we shall consider some methods for comparing locally uniform spaces;
they will be used later for studying completeness.

DEFINITION. Two local uniformities 7~ and %~ are weakly equivalent if for some
n,mew—{0}, ¥"<W# and # "<¥.

.A local uniformity ¥~ is of course weakly equivalent to each ¥™. Moreover,
using the fact that for each ¥V e ¥; (V3)° is an open neighborhood of V, it is easy
to see that ¥~ is weakly equivalent to a local uniformity with an open base, and also
weakly equivalent to one with a closed base. Two weakly equivalent local uni-
formities generate the same topology by Theorem 1.10, and they tend to give the
same kind of information about the space; it is thus natural to consider as a
uniformlike structure for a regular space, equivalence classes of locally uniform
spaces; in which case the uniform spaces consist precisely of those equivalence
classes which contain only one element. Concepts defined in terms of such equiva-
lence classes suggest corresponding statements about the local uniformities
belonging to them, and we shall apply the terms ‘“weak” and ‘‘strong’’ to such
statements, according to what is appropriate.

DEFINITION. Suppose (X, %) and (Y, ¥”) are locally uniform spaces, a function
[ (X, %) — (Y, ) is uniform iff YVe¥, 3Ue: flUISV (where f(x,y)=
), fO)). fis weakly uniform iff for some ne w—{0}, f: (X, %) — (Y,¥™) is
uniform. fis a (weakly) uniform isomorphism iff f and f~! are one-to-one and onto
(weakly) uniform functions.
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With respect to these definitions, it is easy to see that the composition of (weakly)
uniform functions is (weakly) uniform, and that two local uniformities % and ¥~
on a set X are equal (weakly equivalent) iff the identity ¢: (X, %) — (X, 7?") is a
uniform (weakly uniform) isomorphism.

1.13 THEOREM. (Weakly) uniform functions on locally uniform spaces are con-
tinuous with respect to the relative topologies.

Proof. Let (X, %) and (Y, ¥") be locally uniform spaces; it suffices to show that
if for given n € w—{0}, f: (X, %) — (Y, ¥"™) is uniform, then f is continuous. Pick
x € X; for each neighborhood N of f(x) in Y, we may choose Ve?# and Ue %
so that V*[f(x)]= N and f{U]< V", so that

SV = fIUNS(0)] € VHf(0)] € N.

Hence fis continuous. []

If (Y,7") is a locally uniform space and X< Y, it need not be the case that
772 X=(?"| X)?; in fact the two local uniformities need not be weakly equivalent,
this being the case in Example 3.4; hence we make the following:

DEFINITION. A locally uniform space (Y, ¥7) is a strong extension of a subspace
(X, 7| X) iff Yn € w—{0}, #™*| X and (¥"| X)" are weakly equivalent.

1.14 THEOREM. (Y, ¥")is a strong extension of (X, %) iff Vn € w—{0}, Im € w—{0},
YUe,IVe?y : U2V N X*2,

Proof. This follows directly from the fact that for each n € w—{0}, ™| X must
be weaker than (V| X)"=%". O

2. Local uniformities with nested bases. Our first main task will be to show that
a locally uniform space (X, ¥”) with a nested base has a paracompact topology.
The strategy will be to show first that each neighborhood of the diagonal in X *2
is uniformizable, and next to show that ¥~ may be replaced by a uniformity with a
nested base which generates the same topology. Paracompactness then follows, in
the pseudo-metrizable case by A. H. Stone’s paracompactness theorem, and in the
non-pseudo-metrizable case from a result by E. Zakon. The nearly trivial proofs
of the following two lemmas are omitted.

2.1 LEMMA. If a local uniformity has a nested base, it has a nested symmetric base.

2.2 LeMMA. If Z is a nested base for a local uniformity ¥, then {V? : Ve %B}is a
nested base for the NLU ¥72.

The proof of the following theorem uses a technique introduced by Niemytski
[13, p. S511].

2.3 THEOREM. If a local uniformity % on a set X has a nested base, then the set
of all neighborhoods of the diagonal in X *2 is a uniformity.
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Proof. By the above lemma, we may assume that % is an NLU. It suffices to
show that for each symmetric neighborhood V of the diagonal there is a neigh-
borhood U of the diagonal such that U U< V; so choose V to be any symmetric
neighborhood of the diagonal. By Lemma 2.1, % has a symmetric nested base /.
Let B={V N U : Ue }. % is a nested collection of symmetric neighborhoods of
the diagonal. & generates the topology of %, and is a base for a semi-uniformity
stronger than %. Therefore by Theorems 1.5 and 1.9, # is a base for an NLU 77

Since V is an element of ¥, Vxe X,iWe¥ : (W[x])*?<V; and FUEe¥":
U3[x]< W[x], so that (U3[x])*2< V. Thus Vx € X, we may choose U, € # in such
a way that (U3[x])*2< V. Let U= {(U,[x])*? : x € X}. U is a symmetric neigh-
borhood of the diagonal.

Claim. Uo U< V. Pick x,y,z€ X so that {x, y), {y, z) € U, then there exist
points r, s € X such that x, y € U,[r] and y, z € U[s]. Since U,, U;e %, one is a
subset of the other. Suppose for instance that U,= U,. By assumption z € U[s].
On the other hand, using the symmetry of U, we have x € U,[r], r € U,[y], and
y € Ugs], so that x € U2[U[s]]< U2[s]. Thus

(x, 2> e Us]x Ud[s] < U3[s]x U3[s] =V.

Therefore Uo U V. [
DeriNiTION. For any semi-uniformity %, we shall define the cofinality of % to
be the least cardinal « for which % has a base of cardinality «.

2.4 THEOREM. Suppose that (X, %) is a topological semi-uniform space, and that
U has a nested base and has cofinality «. Then « has the property that for each
collection € of open subsets of X with cardinality less than «, (\ € is open. If X has
a nonisolated point, then « is the largest cardinal with this property. Also, for any
collection 2 of neighborhoods of the diagonal in X *2 of cardinality less than x, (" &
is a neighborhood of the diagonal.

Proof. The first statement differs little from Proposition 26, p. 133 of Isbell [8].
To prove the second, suppose that x is a nonisolated point of X, then the neigh-
borhood system at x has a nested open base of cardinality «, and its intersection X
is not open. This shows the maximality of «. Finally, let £ be a collection of
neighborhoods of the diagonal in X *2 of cardinality less than «. Pick x € X; for
each P e Zthereis aneighborhood Ny of xsuchthat Ny 2c P. Let K=\ {N, : Pe 7},
then K must be a neighborhood of x and K*2<(") £ Hence (") Z is a neighborhood
of the diagonal. [

2.5 THEOREM. An NLU with a nested base may be extended to a uniformity with
a nested base, which has the same topology and (at most) the same cofinality.

Proof. Let ¥ be an NLU with a nested base and with cofinality «, defined on a
set X. Let{V, : « € x} be a base for ¥ Let Uy=V, N V5. We proceed by induction
for each A € k to choose symmetric neighborhoods U, of the diagonal in X *2. If
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A€« and U, has been chosen, then by Theorem 2.3, there is a symmetric neigh-
borhood U, , of the diagonal in X *2 such that U, ;=S V,,;,and U,,, o Uy, 1S U,.
If A is a limit ordinal less than « and each U, for a<A has been chosen, let
U,=N{U, : «<A}; U, is a neighborhood of the diagonal by the above theorem.
By construction, {U, : A€ «} is a nested base for a uniformity generating the
topology of (X, ¥"). [

2.6 COROLLARY. A local uniformity with a countable base has a pseudo-metrizable
topology.

Proof. This follows directly from the above and Theorem 6.13 of Kelley [9]. [

Theorems similar to the above corollary have been given by Niemytski [13],
A. H. Frink [5, Theorem 4], J. Suzuki [15, Theorem 1], and K. Morita [10, §IV,
Theorem 4). The nice proof of the following result was suggested by the referee,
who noticed that, in view of the above theorems, most of E. Zakon’s results on
uniformities with quasi-nested bases [16] carry over to local uniformities with
nested bases.

2.7 THEOREM. Let (X, %) be a (locally) uniform space; suppose % has a nested
base and is not pseudo-metrizable; then every open cover of X has a discrete refine-
ment.

Proof. By Lemma 2.2 and Theorem 2.5 is suffices to prove the result for the
case where (X, %) is a uniform space. By Theorem 2.1d of [16], we may let
{V4 : @ € x} be a family of equivalence relations on X which generate the topology
of X, and are nested in such a way that V,<= V; iff 8= a. Let &7 be any open cover
of X. Let & be the set of all ¥,[x] for which x € X and A is the first ordinal such
that 34 € &7: V,[x]< 4. & clearly refines &7 and covers X. To see that & is discrete,
suppose for example that for ASn<«, V,[x], V,[y] €%, and V.[x] N V,[y]#2.
Using the fact that {V, : a<«} is a nested family of equivalence relations, we see
that V,[y] N Vi[x]#@, so that V,[x]=V,[y]= V,[y]. Then =2 because both are
the first ordinal « such that V,[y] is contained in some element of ./ Hence
Vilyl=Vilxl. O

2.8 CorOLLARY. Every (locally) uniform space with a nested base has a para-
compact topology.

Proof. This follows immediately from Stone’s paracompactness theorem for
pseudo-metric spaces [14] and the above result. [J

We now show how to construct local uniformities with nested bases for a certain
class of topological spaces:

2.9 THEOREM. Let (X, J) be a regular topological space, suppose {S, : « € k}
is a nested collection of families such that

(1) U{, : «€«} is a base for 7,

(2) Vaek, VB, (% and N\ {X—B : Be B} are open.
Then I is generated by a local uniformity with a nested base indexed by «.
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Proof. Let (X, ) and {&, : « € «} be as above. We may assume without loss
of generality that each ./, contains X and the empty set. Pick « € «; for each
x € X,

let Mi=N {4 : x€ A and 4 € &},

let Ni=N{X—A~ :xe X—A and 4 € &},

let V,=U{MEN N&H*2:xe X}.

Claim. {V, : « € k} is a nested base for an NLU generating the topology of X.
It is nested since Ve, B € «, if &4,c57, then V,2V, Each V, is symmetric by
construction, and from our assumption about .7, each MZ N N¢ is an open neigh-
borhood of x, so that ¥, is a neighborhood of the diagonal in X *2 as well. In order
to show that {V, : « € «} is a base for an NLU generating the topology of X, it is
thus sufficient by Theorem 1.7 to show that Vx € X, V neighborhood 4 of x, 3V, 3
neighborhood B of x: V,[B]= A. Pick x € X and 4 € |J &7, then we may choose
B €k, and B € s, so that x e Bc BS 4 and A € &; in which case

VBl = U{MEANS: MEANSNB # &, ye X).
Now if y € 4, then M{< A, if y ¢ A, then y ¢ B and N? N B=w. Hence
Val[Bl = U{My NNy :yedy =4. [

If in the above theorem each 7 is locally finite, then the space (X, ") will be
pseudo-metrizable, as we will soon show. In any case, if the index set « is countable,
we have immediately that (X, J) is pseudo-metrizable by Corollary 2.6. For any
locally finite family 27 and any subfamily % of &/, it is easy to see that () & is open
and that |J {B : Be %} is closed, so that (\ {X—B : Be %} is also open. Conse-
quently, the above theorem implies Nagata’s metrization theorem [I1] that a
regular topological space with a ¢-locally finite base is pseudo-metrizable.

2.10 PROPOSITION. Suppose that X is a regular topological space and that
{, : « € T} is a nested collection of locally finite families whose union is a base for
X. Then X is pseudo-metrizable.

Proof. By Theorem 2.9 X has a local uniformity % with a nested base. Let « be
the cofinality of . If x=X,, then X is pseudo-metrizable by Corollary 2.6. If for
each x € X, {x} is open, then X is pseudo-metrizable by the pseudo-metric d given
by d(x, y)=0if x e {y}~, and d(x, y)=1 otherwise. So assume «> X, and that x
is a point of X for which {%} is not open, we shall derive a contradiction. Let
{o,, : new} be a countable subcollection of {<Z : « € '} such that for each
n € w, &, contains a neighborhood of x and &, contains a neighborhood of x
which is strictly smaller than any neighborhood of x in %7, . Let

N=N{des,, : xcAand ne w}.

N is the countable intersection of open sets and since «>,, N is an open neigh-
borhood of x. Let & be a family in {7, : « € I'} which contains a subneighborhood
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B of N. B does not belong to any 7, hence Vn € w, %22/, . But then Vn e w,
e, , —, xeAes; so that every neighborhood of x meets infinitely
many elements of %7, a contradiction. []

Theorem 2.9 gives a sufficient condition for the existence of a local uniformity
with a nested base on a topological space. The condition is given in terms of two
latticelike properties of families in a nested collection.

We shall now consider in more detail the relation between lattice properties of
open sets and local uniformities with nested bases. In the process we will derive a
converse for Theorem 2.9.

DEFINITION. An open subset of a topological space is regular iff it is equal to the
interior of its closure.

For any subset 4 of a topological space X, 4~° is a regular open set. Conse-
quently, if the topology of X is regular and has a base %, then {B=°: Be %} is a
base of regular open subsets of X. In any case, the family of all regular open subsets
of X is a complete Boolean algebra, where the operations of meet, join, and
complement are given by A &/=(N)"°, V &= H)"°, and ~A=X—A".
This result is presented in Halmos [6].

DErINITION. By a regular decomposition of a topological space X we shall mean
a pairwise disjoint family 7 of regular open sets such that | & is dense in X.

2.11 LemMA. If the intersection of a family of regular open sets is open, then it is
regular.

Proof. Let & be a family of regular open sets whose intersection is open; we
need to show that (\ Z=(" £)~°. First N Z=(N Z)°<(N &)~ °. On the other
hand, for each Pe %, (&) °cP °=P,so that (N #)°csNZ O

2.12 LEMMA. Every regular decomposition & of a topological space X is an
atomic generating set for a complete subalgebra % of the Boolean algebra # of all
regular open subsets of X. If </ is locally finite, then the meet operation in & is just
the set-intersection operation.

Proof. Let <7, %, and X be as above, and let \/ and ~ be the join and complement
operations in #. Let Z={\/ 2 : #<s7}. We shall show that £ is a complete sub-
algebra of #.

() VP, ~\) P=\ (Z—P): Since X— (U #)~°~=X—(J 2)", it suffices
to show (U (7 —2))"°=X—(UJ &) . Since | &7 is dense, we have

X=Uo) =U2)"vU-2)"
=U2)vUF-2)"%

so X—(U 2)" (U (& —2)"°. On the other hand, | (Z/—2)cX~J Z so

U =P s(X-U 2)°=X—(U )", and so (U (& —-2)°<(X—(J »)")"°
=X-(U2)".
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2) If {#, : « € T'} is any given collection of subfamilies of 27, then

VIVZ :ael} =V U{Z:eel}es:
First,

VVZ :ael}=U{UAR) 1 aelh°
2U{UZ:eel})™* = VU eell

But also, (U{(UZ) 1 aeT) =(U{UZ : «€T})7, so that

VIV Z:aeT) s (UIUZ) :ael)
= (UUZ el
=V U{&%: «eT},

(3) Suppose £/ is locally finite, then the meet operation in & coincides with set-
intersection: It suffices to show that the intersection of a collection of elements of
4 is open, and therefore regular, by the previous lemma. But this will follow
directly from the fact that for each x € X, there is a smallest element of Z containing
x. Given xe X, let o/, ={de o/ : xe A~}. Since &7 is locally finite, we have
x¢U{4": Ae A —}=( (& —,))" . Hence, using (1), we have

xeX—(U @ —L)” = ~(V (A -o)) =\ A
Clearly, &7, is the smallest collection for which xe \/ «Z,.. O

2.13 LEMMA. Let € be any locally finite cover of a topological space X by regular
open sets. Then € generates a complete atomic subalgebra & of the algebra of all
regular open subsets of X; the atoms of # form a locally finite regular decomposition
of X.

Proof As before, we let # be the algebra of all regular open subsets of X, and
VAe R, let ~A=X—A". Let I be the set of all functions ¢ from € to # such that
VA €%, either $(A4)=A or ¢(4)=~ A. Let o7 be the collection of all nonempty sets
of the form M) {#(A) : 4 € €}, with ¢ € I. We shall show that 7 is a locally finite
regular decomposition of X.

(1) Each given element A4 of 7 is open and therefore regular: Suppose x € 4 € .
Using the local finiteness of %, we see easily that there is a neighborhood N of x
which meets only those elements of € whose closures contain x. From the definition
of A, it follows that N A. Hence A4 is open.

(2) Each point of X belongs to the closure of some element of <7 so that | =/
is dense in X: First we prove the following fact. If 2 is a finite subcollection of ¥
and xe " {P~ : Pe#}, then for some ¢ €', xe (" {#(P) : P P})". Proof: if
has one element, the fact is trivial. Suppose we have shown the fact for n elements,
and suppose Z has n+ 1 elements, pick P € Z. We choose ¢ € I so that

xe(N{$(R) : Re Z—{P}})~;
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let Q=N {#(R): Re Z—{P}}. Claim: either xe (Q N P)~ or xe(QN~P)",
since otherwise there is an open neighborhood N of x such that NN Q9 N P=g
and NN Q N (X—P)~ =g, so that NN Q is a nonempty open subset of (X —P)
N P~, which is the boundary of P, a contradiction. Hence we may choose ¢’ € I so
that x € (Q N ¢'(P))” and YR € Z—{P}, ¢(R)=4'(R), so that

xe(N{$'(P): PeZ))".

If¢,={A €% : xe A}, then we may use the above fact to choose ¢ € I so that
xe(N{#(A) : A€%,})", and may further require of ¢ that V4 € € —F,, $(4)=
~ A, so that (") {¢(A) : A € €—F,}is aneighborhood of x by local finiteness. From
this we conclude that x e ("N {#(4) : A €F})".

(3) The local finiteness of € clearly carries over to %7, and &/ is pairwise disjoint
by construction. This together with steps (1) and (2) shows that &7 is a locally finite
regular decomposition of X. Hence by the previous lemma, there is a complete
subalgebra 4 of # for which &7 is an atomic generating set. From the construction
of &7 it is clear that any complete subalgebra containing € contains 7 also. Thus
we have left to prove only that ¥ = %. Claim: for each given C € €,

C=U{deA:4A=C)°=V{ded:4<C}e&
Clearly (U{4d e/ : A=C})"°<C~°=C; on the other hand, if x € C and
A, ={Ades :xc A},

then each A € &7, meets C, and must therefore be a subset of C, but then (| &7,)~°
is a neighborhood of x contained in \/ {4 e &/ : ASF}. O

2.14 THEOREM. A regular topological space X has a (local) uniformity with a
nested base iff its topology has a base which is the union of a nested collection of
complete atomic Boolean algebras of regular open sets whose meet operations
coincide with the set-intersection operation.

Proof. First suppose X is a regular topological space with a base which is the
union of a nest collection of complete atomic Boolean algebras whose meet opera-
tions are set-intersections. This collection clearly satisfies the hypotheses of Theo-
rem 2.9, and so X has a local uniformity with a nested base.

Now suppose X has a local uniformity with a nested base. We shall first consider
the case in which X is pseudo-metrizable. Let {%;, : n € w} be a nested collection of
locally finite open covers of X whose union is a base for the topology of X. Vn € w,
let €,={C~°: Ce%,}; then {%, : ne w} is a nested collection of locally finite
families of regular open sets and its union is a base for the topology of X. By the
above lemma, each %, generates a complete atomic Boolean algebra %,. Thus
{#, : n € w}is the required nested family.

We next suppose that X is not pseudo-metrizable. Let % be a (local) uniformity
for X with a nested base. By Lemma 2.2 and Theorem 2.5, it suffices to assume %
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is a uniformity. By Theorem 2.1d of Zakon [16], % has a nested base {V, : o € «}
consisting of equivalence relations. For each «, let &, ={V,[x] : x € X}. Then each
&7, is a discrete family of clopen sets, and the collection {&, : « € x} is linearly
ordered by refinement. For each a € «, let Z,={J ¥ : <s}. Each %, is, with
respect to intersection, union, and set complementation in X, a complete algebra
of clopen (and therefore regular open) sets. Hence {%, : « € «} is the required
nested collection. [J

2.15 COROLLARY. A regular topological space X has a (local) uniformity with a
nested base iff there is a refinement-nested collection of regular locally finite decom-
positions of X whose union is a basis for the algebra of all regular open subsets of X.

Proof. In view of the above theorem it suffices to mention that if for each « € «,
&, is an atomic basis for the complete algebras %,, and if | {%, : « € «} is a base
for the topology of X, then | {%, : « € «} and hence |J {&, : « € «} is a basis for
the algebra of all regular open subsets of X. []

3. Completeness. The possibilities for both “weak” and ‘“strong” com-
parisons which were given at the end of §1 also arise with Cauchy filters:

DEerINITION. For each ne w—{0}, a weak Cauchy filter of degree n on a semi-
uniform space (X, ?") is a filter & on X such that VVe¥,IFe F: FxF< V™
A Cauchy filter is a weak Cauchy filter of degree 1. A locally uniform space is
(strongly) complete iff every (weak) Cauchy filter on X converges with respect to the
relative topology of ¥7; a (strong) completion of (X,¥") is a (strongly) complete
locally uniform space (Y, #7) containing (X, ¥") as a dense subspace.

While the above definitions seem reasonable by comparison with the similar
concepts in uniform spaces, they do not represent the only possibilities, and study
of their failings will help motivate the additional Cauchy ideas which we will
consider in §6.

3.1 THEOREM. If (X, %) and (Y,?") are weakly uniformly isomorphic locally
uniform spaces, then (X, U) is strongly complete iff (Y, ¥") is. In particular, if % and
¥ are weakly equivalent structures on a set X, then (X, %) is strongly complete iff
(X, ) is.

Proof. Let f: (X, %)— (Y,7") be a weakly uniform isomorphism of locally
uniform spaces and suppose for example that (Y, ¥") is strongly complete, then
for some n€ w—{0}; YV e, U e «: flUI V™. If F is a weak Cauchy filter of
degree m on (X, %), then for each ¥ € ¥; we may choose U € % so that f{U]< V"
and choose Fe & so that Fx FEU™, so that f[Fx F]<(V*)"= V™. Thus f[F]
is a base for a weak Cauchy filter of degree nm on (Y, ¥"), and hence converges;
hence & itself converges since f is a homeomorphism, by Theorem 1.13. O

As a result of the following theorem, we shall often consider completeness
problems only for NLU-spaces.
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3.2 THEOREM. In a semi-uniform space with the neighborhood property, convergent
filters are Cauchy. If a weak Cauchy filter on a locally uniform space has adherent (*)
points, it converges to each of them.

Proof. Suppose the filter # converges to a point x in the neighborhood semi-
uniform space (X, ¥°). Then for each V € ¥, we may choose U€e¥” and Fe % so
that (U[x])*2< V and FS U[x], so that Fx FS V.

If & is a weak Cauchy filter of degree n on the locally uniform space (X, ¥”) and
x is an adherent point of &, then for any neighborhood A4 of x, we may choose
Ve¥ sothat V"*1[x]€ 4 and Fe F so that Fx FS V™ Since x is an adherent
point, some y € X belongs to V[x] N F; consequently FS V*[y]S V**i[x]c4. O

Suppose (X, %) is a subspace of (Y, 7") and & is a filter on X. If & is weak
Cauchy on (X, %), then it is weak Cauchy in (Y, ¥") since necessarily VV € ¥,
Vnew—{0}, V"N X*22(V N X *2)". However, if # is weak Cauchy in (Y, ¥") it
need not be weak Cauchy in (X, %), a fact which will often be a nuisance.

3.3 THEOREM. If a local uniform space (Y, *") is a strong extension of (X, %), and
& is afilter on X which is weak Cauchy in (Y, ¥ ), then F is weak Cauchy on (X, %).

Proof. Let (X, %), (Y,?"), and & be as above. Suppose & is weak Cauchy of
degree n in (Y, ¥") and suppose m € w—{0} is such that for each given Ue %,
JVey: Ur2V* N X*2; if we then choose Fe & so that Fx F< V", we will also
have Fx F€ U™ Hence & is weak Cauchy of degree m on (X, %). O

3.4 Example of a ““bad” extension: Let R be the set of real numbers; we define
a base for a local uniformity ¥~ on Y=Rx{0, 1} as follows: Vn e w—{0}, let

Vo ={{x,y>€ X*2: |x;—y1| < I/nand x, = y,, or x1, y; > nand x; # y,}.

The collection {V, : n € w—{0}} clearly generates the expected product topology on
R x{0, 1}, and using Theorem 1.7, it is easy to see that it is a base for an NLU as
well. Let X=Rx{0}, and let F ={F< X : dnew: F2{xe€ X : x;>n}}, then F is
weak Cauchy in Y of degree 2, but is not weak Cauchy on X. Also, ¥"2| X is not
weakly equivalent to (¥7|X)%. [0

Finally, we shall give some simple compactness theorems for local uniform
spaces.

3.5 THEOREM(?). Let (X, ¥") be a strongly complete NLU-space, then a closed
subset A of X is compact iff every infinite subset of A has a limit point in A.

Proof. Suppose (X, ¥") is strongly complete, A4 is a closed subset of X, and every
infinite subset of A has a limit point, but 4 is not compact. We may let &# be an
ultrafilter on 4 which does not converge. If it were the case that VU € ¥ 3xy € 4:
Ulxy) € %, then & would be weak Cauchy of degree 2 in (X, ¥7). So we may choose

(1) The set of all adherent points of a filter # on a topological space Xis N {F~ : Fe #}.
(?) I suspect this theorem holds for complete spaces as well.
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a symmetric U € ¥ such that Vx e 4, U[x] ¢ % Pick x, € 4, and for each n=1,
pick x, € (4—Jrz¢ Ulx;]) € #. Then the set {x; : j € w} has a limit point y in 4.
Let ¥V €¥  be such that (V[y])*2< U, then for infinitely many distinct x; and x;,
{xiy X0 € (VIy)*2< U, contrary to the choice of the x,;’s. [

3.6 LEMMA. If X is a compact topological space and V is a closed subset of X *2,
then V2 is also closed.

Proof. Let X and V be as above. If {x, z> € (VV?)~, then for any neighborhoods
Nof xand Mof z, Nx M N V2@ and so V[N] N V~-[M]+# ; the collection
of all such sets V[N] N V~-1[M] is a filter base, which must have an adherent
point y, by compactness. For any neighborhoods N of x, K of y, and M of z, we
must have KN (V[N]N V- M])#z, so that (NxK)N V#g and (Kx M)
N V+#a. Hence <{x, y> and {y, z> belong to V™=V, so {x,z) € V2. Hence V2 is
closed. [

3.7 THEOREM. If X is a regular compact topological space, then there is a unigue
NLU which generates the topology of X.

Proof. Let X be a regular compact space. Since there is only one uniformity gen-
erating the topology of X, it suffices to show that if 7" is any given NLU generating
the topology of X, then ¥ is a uniformity: By Theorem 1.12, the closed elements of
¥ form a base for a local uniformity generating the topology of X, so that for each
given U e 7, and each x € X, we may let V, be a closed element of ¥~ such that
VZi[x]< U°[x]. Then Vy € X,

(N{Vz:xe XYyl = Vilyl = U°D]

Hence N {VZ: xe X} U°. Each V2 is closed and X*2 is compact, hence the
intersection of a finite number of the sets V2 is contained in the open set U°;
we have
n n 2
U=2NVi=2(N Vx,) >
j=1 ji=1
with (-1 V., € ¥~ Hence ¥" is a uniformity. []

4. Piecing together a locally finite collection. We shall now consider the follow-
ing type of problem: Suppose {C,} is a locally finite cover of a topological space X,
and for each «, 77 is a local uniformity generating the topology of C,. Is X locally
uniformizable, and under what conditions is there a local uniformity ¥ such that
each 7, is equal to ¥7|C,? As a special case we will get Nagata’s piecing together
theorem for metric spaces. By way of comparison, we shall consider in addition the
problem of piecing together a locally finite collection of uniform spaces.

4.1 LEMMA. Suppose we have the following things:
(1) X, a topological space;
(2) %, a locally finite closed cover of X;
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(3) for each C e €; V¢, a local uniformity on C,;
(4) T, a set of choice functions from € to \J {¥¢ : C € €} such that
(i) VC €%, T'[C] is a symmetric base for V;
(ii) Vf; g € T, f(N)g € T, where YC € €; (f(M)g)(C)=/(C) N g(C).
For each fe T, let U=\ f[€]. Then {U; : fe '} is a symmetric base for a local
uniformity which generates the topology of X.

Proof. Assume hypotheses (1) through (4): {U, : fe I'} is a symmetric base for a
semi-uniformity since it is clear that Vf, ge I'; A< U;, U, N U,= Uy, and Uy is
symmetric (since for each C € %, f(C) is).

To show that {U, : fe I'} generates the topology of X, pick x € X, and let
C,,..., C, be the elements of € which contain x; first, every neighborhood of x is
generated by {U, : fe I'}: Let N be any subneighborhood of (J?., C;. For each
Jj=1,...,n, pick V;e¥¢, so that V,[x]=N n C,. By making repeated use of the
fact that Vg, he I', g(M)h e I'; we may pick fe I so as to satisfy the finite number
of conditions f(C;))= V;, j=1,..., n. Then N2U}-; Vi[x]2Ur1 f(C)Ix]=U,[x].
Hence {U, : feI'} generates every neighborhood of x. Second, we show that
{U, : fe T'} generates only neighborhoods of x: Pick g € I; for each k=1, .. ., n;
let P, be a neighborhood of x such that P, N C,<g(C,)[x] and P,<J?.; C;. Then

n n n n
ol = O s 2 O (A7) ne = A 2
=1 i=1 \k=1 k=1

Finally, we show that {U, : fe I'} has the local uniform property; it suffices to
show that Vx € X, V neighborhood K of x, 3feI': U?[x]=K. To this end, we
assemble the following list, given x in X and any neighborhood K of x.

(i) C4,..., C, the elements of € containing x.
(i) For each j=1,..., n; V;, an element of ¥¢, such that V}[x]=K N C;.

(iii) N, a subneighborhood of | J}-; C; such that Vj=1,...,n; NN C;< V[x].

(iv) f, an element of I' such that Vj=1,..., n; f(C;)< V, and f(C,)[x]= N.

Now, U/[x]=U?-; f(C)Ix]=sNc U} C;. So that

U lUslxl = jL:Jl S]]
S jL:Jl f(C)IN] = ,Ul F(CHIN N C)]

= ,L:)l VitVilxll = K0 (J‘Ql C’). H

4.2 CorOLLARY. If a topological space has a locally finite closed cover of regular
subspaces, then it has a regular topology.

Proof. Suppose a space X has such a cover €. For each C €%, let 7 be the set
of all neighborhoods of the diagonal in C. Let I be all choice functions f from
to|J {#¢c : Ce%}suchthat VC e %, f(C)is symmetric; clearly I satisfies conditions
(i) and (ii) in the above lemma. Hence X is local-uniformizable, and therefore
regular. []
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4.3 CorOLLARY(®). If ¥ is a locally finite closed cover of a topological space X by
pseudo-metrizable subspaces, then X is pseudo-metrizable.

Proof. In the hypotheses for Lemma 4.1, we let each ¥ be a pseudo-metrizable
uniformity and let {V¢, : n € w} be a nested symmetric base for ;. For elements
of T, we choose the functions f, defined by VC €%, f,(C)=V,,. I has properties
(i) and (ii) since VCe ¥, I'[Cl={V;, : new} and Vf,, fn€ I, fu(D)fn="Smaxn.m-
We conclude that the sets U, = f,[%] form a countable base for a local uniformity
generating the topology of X. Hence X is pseudo-metrizable by Corollary 2.6. [J

In Lemma 4.1 we constructed a local uniformity ¥~ such that for each of the
given subspaces C € %, ¥"|C and ¥ had the same topology; however, in order to
construct ¥ so that 7'|C="7¢, it is necessary and sufficient that € be a compatible
collection in the following sense:

DEFINITION. A collection O of locally uniform spaces is compatible iff for any
two elements (X, %) and (Y,¥") of 0, #|Y=7"|X; © is strongly compatible iff
Ve w—{0}, {(X,?™) : (X, ?) € O} is compatible.

DErFINITION. A family € of subsets of a set is star finite iff each C € € meets only
finitely many elements of €.

4.4 THEOREM. Let X be a topological space, € a locally finite closed cover for X,
and {(C, ¥¢) : C€ ¥} a compatible collection of (neighborhood) locally uniform
spaces. Then

() there is a strongest (neighborhood) local uniformity % such that NC € ¥,
U|C="Y;. U generates the topology of X.

(I1) If, in addition, € is star finite, each V¢ is a strongly complete NLU, and

{(C, ¥¢) : CeE} is strongly compatible, then U is strongly complete.

Proof of I. In the hypotheses for Lemma 4.1, we take I' to be the set of all
choice functions f: € — \J {¥;: Ce ¥} such that YCe¥, f(C) is symmetric.
I' satisfies conditions (i) and (ii); hence the collection of all sets of the form
U,=f[¥] is a base for a local uniformity % generating the topology of X.

(1) % is the strongest local uniformity such that VC € 4, %|C=7;: Pick Ce¥.
First, #|C<7; since VgeI', U, N (Cx C)=2g(C) € ¥¢. Second, #|C=27;: Pick
Vo€ ?¢; for each De¥, we may, by compatibility, choose Ve ¥} so that
Vo N CxC=V:N DxD. Definege I’ by VD €%, g(D)=Vp. Then U, N (Cx C)
=V, Third, if #" is any local uniformity such that YC e #, #°|C=7¢, then
W <: For each symmetric We ¥ let ge I be given by g(C)=W N (CxC);
then U,= W. Hence # ' <%.

(2) Assume now that each ¥¢ is an NLU; we shall show that there is a strongest
NLU %’ such that VC e %, %'|C="7¢: Let %' be the set of all neighborhoods of
the diagonal which belong to %. By Theorem 1.8, %’ is the strongest NLU

(®) This result is Nagata’s Theorem 2 of [11], stated for pseudo-metric spaces.



452 JAMES WILLIAMS [June

contained in %; so by the properties of % given in step (1), we have VC e €; %'|C<
V¢; and if 4'|C277¢, then 4’ is the strongest NLU with these properties. To show
for any given C € %, that Z'|C277¢, let V be any symmetric element of 7 ; choose
fel so that U nCxC=V; let W’ be an X x X-neighborhood of A(C), the
diagonal in Cx C,suchthat W' N Cx C=V;let W=W' U (X—C)*2 Then, since
C is closed in X, W is a neighborhood of the diagonal in X x X such that W N
(CxC)=V;sothen WU U, e %" and (WU U;) N Cx C=V. Hence %'|C27%.

Proof of II. Let % and %’ be as above. Assume that € is star finite, that each 7,
is strongly complete, and that {(C, ¥¢) : C € €} is a strongly compatible collection;
we need to show that %’ is strongly complete. Since 2% 22, % and %' are
weakly equivalent local uniformities. By Theorem 3.2, %’ is strongly complete iff
% is; hence it suffices to show that % is strongly complete. Choose n € w—{0}
and let ¢ be a weak Cauchy filter of degree n on (X, %). If some extension & of ¥
converges to a point x € X, then x is an adherent point of ¢, to which ¢ converges
by Theorem 3.2. So let & be an ultrafilter which extends ¢; we shall show that
& converges.

Let Uy=UJ{CxC: Ce€}e¥. Choose Fe % so that Fx FS U}; pick x e F.
Then F< Ug[x]. By the definition of U, and the star-finiteness of €, U#[x] is the
union of finitely many elements of €. Since & is an ultrafilter, some given C of €
contained in U§[x] belongs to #. Then it is easy to see that #|C must be weak
Cauchy of degree n in UF[C). Let #={Be¥ : BcUZ[C]}; & is finite. Pick
Vo€ ¥¢. For each n-element sequence p=<{py,..., po_1» Of elements of &, we
make choices as follows: By strong compatibility we have that ¥ 2" _ |C=7"¢"|p, -1,
so we may choose V,_;,€7, so that V2, , N C*2c Vg N pr2 V&

Pn-1
Similarly, we choose V,_5 ,€ %, _, so that

2(n—-1 2 2, 1 x2 2 1
VESLR 0 pity S VALY O pi% € VEOLR,

and so forth until we choose V, ,€ ¥, so that V§, N pr2c Vi, N ps2cVE,.
For each B e % we now choose Wy e ¥% so that

We< O\ {Vj,:j<n pe® and B = p;}.

For each Be %, let Wye ¥, be such that VDe @B, Wy D*2<W,. Let U=
U{Ws: Be%}e¥. Then

Vpe @B Nj<n, Unpt=J{Wsnps?:BeCc W, <V,
Now pick Fe F||J Z so that FEC and Fx FEU"c U}. Pick x e F. For each
pE"A, let
S, ={yeF:3Ixp,...,qxs; X0 = X, X, = y,and Vi < n, {x;, x;,,> € U N pX2}.

Then F is represented as the finite union F=J {S, : p € "#}. Since F||J Z is an
ultrafilter, we may choose some p € "% so that S, e || %. Pick y, z€ S,. Then
there are sequences {yq, - . ., Yoy and <z, . . ., z,> wWith yo=z,=x, y,=y, and z,=z
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such that Vi<n, {y;, yiy1> €pi, and {(z;, z;,,> € p;. We may now estimate the
distance in C from y to z as indicated:

Hence S, x S,= V2" This shows & |C is a weak Cauchy filter of degree 2n on
(C, 7¢), and hence converges. []

In proving strong completeness in the above theorem, the assumption that
{(C, ?¢) : Ce¥} is strongly compatible cannot be dropped, as shown by the
following counterexample. Strong compatibility can, however, be replaced with
the following weaker condition: {(C, ¥¢) : C € ¢} is compatible and VC, D €%,
Vne w—{0}, Im € w—{0}: ¥ D27 3| C. The proof is similar to the one above, but
messier. I do not know whether the star-finiteness condition is needed or not. It is
perhaps worth mentioning that it may sometimes not be possible to choose %’ in
the above theorem so that (X, #’) is a strong extension of each (C, ¥¢), as is shown
in the proof of Proposition 4.6.

4.5 Example. Of two compatible strongly complete locally uniform subspaces
which cannot be pieced together to form a strongly complete locally uniform space.

Let P=w—{0}, let X=Pxw, let A=Px{0,1}, and let B=PxP, so that
X=A U B. We shall now define an NLU ¥~ on X whose relative topology is dis-
crete, and whose restriction to 4 or to Bis strongly complete. ¥~ will not be strongly
complete although it is the strongest local uniformity whose restriction to 4 or B
is ¥"|4 or ¥"|B: Define ¢: P — P inductively by ¢, =1 and ¢,,,=¢,+j. Let R be
defined as follows:

R ={41,00,<{p, D) : ¢; 2 y < ¢;+j,j€ P}
U{$i+j—1, 1), <$;+j—1,n)) :n 2 2,n, je P}
U{<<¢!+J_lan>’ <¢n+f—1+j_l5 1>> .] > 2a nsjEP}'
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For each ne P, let
Vo=[(RUYRYN{jew:jZmxw)*JUu{{x,x>:x€ X}

It is easy to see that {V, : n € w} is a base for an NLU ¥ on X which generates the
discrete topology. To see that ¥”|4 is complete notice first that (R U R™1)|4)? is
an equivalence relation for which each equivalence class is finite. Similarly, one can
show that ¥7| B is complete by first verifying that (R U R~!)|B)* is an equivalence
relation each of whose equivalence classes is made discrete by some V,. On the
other hand, ¥ is not strongly complete since {{¢;, 0> : j€ P} is a weak Cauchy
sequence of degree 4. Finally, ¥ is the strongest common extension of #7|4 and
¥’|Bsince Vne P, Vo=V, N A*3) v (V, N B*?). [J

The result for uniformities analogous to Theorem 4.4 is false, as is shown by
Proposition 4.6. It is curious, however, that in spite of this we still have the follow-
ing result:

4.5 PROPOSITION. If X=X, U X,, and (X1, %,) and (X, ;) are compatible
uniform spaces, then there is a uniformity U on X such that U| X, =%, and U| Xy =U,.

Proof. YU, € %,, VU, € Uy, let U, 0 Uy=U, U (U; 0o Uy) U (Uy ° Uy) U Us,. Let
B={U,0Q U, : Uy, €U, Uy, eU)}. Claim: # is a subbase for a uniformity of the
required type. Pick U, € %, and U, € %,; then it is clear that A(X)< U, O U,, and
if U, and U, are symmetric, so is U, O U,. In order to find U, € %, and U, € %,
such that (U, 0 U,)*>c U, O U,, we make the following choices for i, j=1, 2; i#j:
P, € %, so that P?c U;; Q, € % so that Q,<P; and Q; N X;2cP;; U, € %, so that
UZ< Q.. By definition, U, O U, is the union of four terms, and thus (U, O U,)?
will be the union of sixteen. It is a straightforward job to verify that each term is
in fact a subset of U, O U,. For example,

(01°U2)°(02001)§01°Q2001§ 01°P1°UIEP139 UIQUIDU2.

Finally, for i=1,2, 8|X, is a base for %;: Clearly, Z|X;=%,, so it suffices to
show that each U, € %, has a subset in #|X;. Pick U, € %,. Choose P, € %; so that
PZc U;; choose Q; € %, so that Q,<P; and Q; N X}2<P,. Then

(Q:O0Q0)N X 2= 0,V (Qi°(Q;N X))V (Q;N X e @)U (Q; N X3
< P2 c U.
Hence #|X; is a base for %,. [

4.6 PROPOSITION. Suppose that € is a closed three-element cover of a space X, and
that {(C, ;) : C € €} is a compatible collection of uniform spaces. There need not
exist any uniformity U such that VC € €, U|C=%,.

Proof by example. Let C be the complex numbers with the usual uniformity.
Let D be the unit disk minus the origin, assign it the relative uniformity of C. Let
Ay, By, Cy, Ay, By, C, divide D into six closed pieshaped pieces, as indicated.
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Cz A2

B,

Assign each piece the relative uniformity of D. Let (4, %,), (B, %s), and (C, %)
be the independent sum of the uniformities for 4; and A4,, B, and B,, and C; and
C,, respectively. {(4, %,), (B, %s), (C, %)} is a compatible collection since, for
instance, %,|B=%3s|A is the independent sum of the relative uniformities on
A; N B; and A, N B,. The collection is of course also strongly compatible since it
consists of uniformities.

Finally, if % is a uniformity which restricts to %,, %5, and %, then in particular,
%, viewed as a local uniformity, must be a strong extension of %,. Let ¥~ be any
local uniformity piecing together %,, %5, and %.. Let &% be the set of all deleted
neighborhoods of the origin. It is easy to verify that % must be a weak Cauchy
filter of degree <4 on (D, ¥"); but & |4 is not a (weak) Cauchy filter on (4, %,,).
Hence ¥ is not a strong extension of %, by Theorem 3.3. Hence no uniformity on
D restricts to %, Uy, and %.. [

S. Bridge spaces. Here we shall be concerned with local uniformities whose
topologies fail to be completely regular. Using results of the previous section, we
shall first give a generalized construction and then specialize in order to verify the
existence of particular kinds of locally uniform spaces, and to help show what
conditions regular topological spaces may satisfy short of being completely regular.

To show that the constructed spaces are not completely regular we introduce a
general class of topological spaces which we call bridge spaces, whose topology can
never be completely regular, and verify that our constructions produce bridge
spaces. Before going on, we shall show first that every regular space whose topology
is not completely regular is already, in effect, half of a bridge space.

DEerFINITION. By a bridge space we shall mean a regular topological space B
together with a pair of points a~ and a* in B which have disjoint closures, but are
Sfunctionally linked, that is, for any continuous real-valued function f on B, f(a~)

=f(a*).

5.1 Construction of a bridge space from a regular space which is not completely
regular. Let X be a regular, but not completely regular space. Choose a € X and
an open neighborhood N of a so that there does not exist a continuous real-valued
function on X which is 0 at a and 1 on X—N. Let X~ and X * be two distinct
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copies of X. Let B be the space obtained from X'~ U X * by identifying x~ and x*,
for each x in the closed set X— N. B is regular by Corollary 4.2.

Claim. B with a~ and a* is a bridge space. Suppose not, then there is a con-
tinuous function f on B such that f(a~)=0 and f(a*)=1. Define r: B— B by
Vx~eX ;r(x7)=x%;and Vx* € X*, 7(x*)=x". Let g(x)=1—f(v(x))+f(x). It
is clear that 7 is continuous, that g is continuous, that g(a~) =0, and that Yx € X— N,
g(x7)=g(x*)=1, but this is impossible by choice of a and N. Therefore B with
a~ and a* is a bridge space. [

5.2 Construction(*) of a bridge space Sy from a regular space T which is not
normal, using disjoint closed subsets A and B of T which are not normally separated
(that is, are not separable by disjoint open sets). Assume T, 4, and B are as above.
Let Z be the integers with the discrete topology; let Ry be the space obtained from
the product Tx Z by identifying for each ne Z, x € 4, and y € B, {x, 2n) with
{x,2n+1> and <{y,2n—1)> with {y, 2n). Ry is regular by Corollary 4.2, since
{[Tx{n}]~ : ne Z} is a locally finite closed cover of regular subspaces isomorphic
with T, where ~ denotes the quotient projection from 7 x Z onto Rjy.

Tx{2n+1}
Ax{2n} Ax{2n+2}
Ax{2n+1} Ax{2n+3}

Bx{2n+1} B x{2n}
Bx{2n+2} Bx{2n—1}
T x{2n} Tx{2n+2}

From now on, we shall use the points {x, n) of T'x Z to represent the corre-
sponding points {x, n)>~ of Ry, and dispense with ~. Let S; be Ry with two new
points a~ and a* added, and having, for each k € w, the basic neighborhoods

Ni ={a}u{{x )y :xeT,y < —k},

N ={a*} V{{x, ) xeT,y > k}.
Sy is regular because first Ry is and second Sy is regular at @~ and a*, since for
each k € w, the Sy-closure of N &, , is contained in NgF.

(*) The method used here generalizes an example credited by Hewitt to Tychonoff and
Arens; he describes the example in [7].
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The fact that Sy is really a bridge space will follow easily with the help of the
next theorem. Like Berri and Sorgenfrey [1], we shall say that a filter is regular iff it
has a base of open sets and a base of closed sets. The following two results generalize
Propositions 4 and 5, p. 457 of [1].

5.3 THEOREM. Let T, A, B, and Sy be as in the above construction. Suppose F
is a regular filter on Sy such that for some ne€ Z and each Fe &, (Ax{n}) N F~
and Bx{n} are not normally separated in Tx{n}. Then a~ and a* are adherent
points of F.

Proof. Let T, A, B, Sy, %, and n be as above. We shall show that a* is an adherent
point of &, the proof for a~ being similar. Because of the identifications in Sy, it
makes no difference to assume that n is odd, for if n were even, then (4 x{n}) N F~
=(Ax{n+1}) N F~, so that (Ax{n+1}) " F~ and Bx{n+1} must be non-
separated in Tx{n+1}, for each Fe %. It suffices to show by induction on odd
integers that for each odd m2n, and each Fe % (4 x{m}) N F~ and B x{m} are
not separated in Tx{m}. For each je Z, let +;: T— Tx{j}< Sr be the obvious
embedding; then for each open P< Sy, ¢j![P] is open in T. For each Fe % we
have that 4 N «;[F~] and B are not separated in 7. By induction we assume for
some odd integer j=n that VFe % A Ny [F~] and B are not separated. Pick
Fe %, choose G, He & so that H-=G°=G~ <= F°. To show that 4 N H[F ]
and B are not separated, we first establish that 4 and B N ¢;;},[G~] are not separ-
ated: Suppose to the contrary that M and N are disjoint open neighborhoods of
A and B N ;7 4[G™). Then we have the following:

N2 BN h[GT] = A6 n (Bx{j+1})]
=G N (Bx{j}] =[G ]NB.
B=BnNjYG DU BN ;IS;—G ) € NU ;S —G].
AN GHH™] € M N GG
So M N G°] and NU . j}S;—G~] are disjoint open neighborhoods of
A N Y[H "] and B, contrary to assumption.
Finally, if 4 N7 %[F~] and B were separated, we could repeat the above

argument to obtain neighborhoods separating 4 and B N ;;[G ], which as we
have just seen is impossible. [J

5.4 COROLLARY. Let T be a regular space with disjoint closed subsets A and B
which are not normally separated; then the space St built from T using A and B in
Construction 5.2 is a bridge space.

Proof. Let T, A, B, and S; be as above. Suppose f is a continuous real-valued
function on Sy such that f(a*)=1. For each r<1, we may choose n e Z so that
Vmzn,V¥x eT, f(x, m)=r, by continuity at a*. For each s<r, let

Fs = {<X,j> :f(x,j) > S},
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then {F; : s<r} is a base for a regular filter % on Sy, by continuity of f. But for
each Fe &, (A x{n}) © F~=Ax{n}, which is not separated from Bx{n}. Hence
a~ is an adherent point of & ; so each neighborhood of a~ contains points whose
image under f is s, for each s<r<1. Consequently, f(a~)=1. Similarly,
f@)sl. O

5.5 Example of a bridge space Sy which is countably compact, and is such that no
NLU generating the topology of St has a completion. Assign the order topology to
the ordinals Q and Q+1. Let T=Q x (Q+ 1) be the product space. T is countably
compact since Q is countably compact and Q+1 is compact. But T is not normal,
and the following closed subsets are not separated in T; 4={{x, x> : x € Q}, and
B=Q x{Q} (proofs of these properties are outlined in [9, pp. 131-132, 162-163]).

Let Sy be the bridge space built from T in Construction 5.2. Sy is Hausdorff
since T is; therefore S will be countably compact iff every infinite subset of S; has
a limit point. Let F be an infinite subset of S, then one of the following must be
true:

(i) 3n € Z such that T'x {n} contains an infinite subset of F;

(ii) every neighborhood of a~ contains an infinite subset of F;

(iii) every neighborhood of a* contains an infinite subset of F.

Hence A must have a limit point in 7 x {n}, for some n, or at a~ or a*; so Sty is
countably compact.

Let ¥~ be an NLU which generates the topology of S;. (S7, ¥7) cannot have a
strong completion (S¥, ¥7*) since then Sy, being a countably compact subset of
the strongly complete space (S7, ¥'*), would be compact by Theorem 3.5, which
is impossible. By tracing down what is “wrong”’ with a specific Cauchy filter on
(St, ¥7), we can get the stronger result that ¥~ does not have a completion: We
begin with a filter on Q,

F ={F< Q:3xeQ,Vy > x;yeF}.

For each neighborhood U of the diagonal in Qx Q we have (according to [9, p.
204]) 3x € Q, Vy, z>x: {x, y> € U, so that # is a Cauchy filter on any NLU-space
(Q, %) which generates the order topology on Q. We transfer Z to a filter ¥ on S,
by means of the map « — (&, Q, 0>. The image of Q in Sy is isomorphic with Q;
hence ¢ is a Cauchy filter for any NLU 7~ which generates the topology of S;.
Now if (S7, ) had a completion, ¥ would converge in it to some point y. The
neighborhood system of y, restricted to Sy, would be a regular filter £ contained
in ¢. Each element of ## must therefore contain a set of the form {{e«, Q, 0> : a> oy},
for some «y € Q; this particular subset of 4 x {0} cannot be normally separated from
B x{0}. So by Theorem 5.3, a~ and a* are adherent points of 3£, but # cannot
converge simultaneously to a~ and a*, a contradiction. Hence (S, ¥”) cannot
have a completion. []

5.6 Construction of a strongly complete NLU-space of cardinality R,, whose
relative topology is separable and first countable, but not completely regular. Our
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technique will be to construct an appropriate local uniformity on a bridge space
obtained from Construction 5.2. Let (T, %) be a complete uniform space of
cardinality X; whose topology is separable and first countable but not normal (an
example of such a space is given at the end of this construction).

Use T in Construction 5.2 to get the bridge space Sy. S is the countable union
of the separable subspaces {a~}, {a*}, Tx{n}, for n € Z; hence S; is separable and
of cardinality X,. Also, Sy is first countable since the neighborhood systems at g~
and a* have countable bases, and R; =S, —{a~, a*} has the following locally finite
cover of first countable closed subspaces: {T'x {k} : k € Z}. This collection is also
star finite. For each n € Z transfer the complete uniformity % to an isomorphic
uniformity %, on Tx{n}. The collection {(T'x{n}, %,) : n€ Z} is obviously com-
patible by construction, and since each %, is a uniformity, the collection must be
strongly compatible as well. So by Theorem 4.4 there is a strongest NLU ¥~ on R;
such that Vne Z, ¥ |Tx{n}=%,. V" is also strongly complete.

Now define a semi-uniformity on Sy as follows: VVe?,Vkew, let V,=V
U (N7 x N7) U (N x Ni}). Let #” be the semi-uniformity for which {V : k € w,
Ve }is a base. Claim: W is a strongly complete NLU generating the topology
of Sy.

(1) #" is a local uniformity generating the topology of Sy: First, #'|R; is a
local uniformity generating the topology of Ry since for each x € Ry, the sets Ny
and N} may be taken small enough so that VZ[x]=V2[x], provided, for example,
that Vis a subset of

V* = J{{T*x{n,n+1})*2: ne Z}.

Also, it is clear that %~ generates the neighborhood systems at ¢~ and a*; #  is
locally uniform at a~ and a* as well, since Vk € w,

(Vg o ViEla*] = Vi o[NE ] = Ni.

(2) # is an NLU since each V, is a neighborhood of the diagonal in Sy x S7.

(3) # is strongly complete: Let & be a weak Cauchy filter on (S7, #7) of degree
nlIfdkew VFeF: FN (S;— (N7 U NJ))#3, then & restricts to a filter on a
subspace X, =Tx{jeZ: —k=<j=<k}, for some k €Z. But then F|X, is weak
Cauchy of degree n on the subspace X, 2,=(V*)"[X.]. Now #  was constructed
50 that (X, 4 2n, #7| X4 2n) is @ subspace of (R, ¥7); thus F| X, is weak Cauchy on
(Rz, 77) and hence converges. If Yk e w, IFe F: FN (Sr— (N U N}))=2, then
& is eventually in every neighborhood of a* or in every neighborhood of a~, and
therefore converges. [

5.7 Example of a complete uniform space of cardinality R, whose relative topology
is separable and first countable but not normal. We shall get our example by con-
structing a complete uniformity for the half-open rectangle space. Let  be the
usual uniformity for the unit interval [0, 1]. For each Ue % and x € [0, 1], let
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U,=Un ([0, x]*2 U (x, 1]*2). Let T be the set of all monotone nonincreasing
sequences on [0, 1]. For each «€l, let U,={U,: xea}. The collection
{U, : «€ T, Ue %} is clearly a subbase for a semi-uniformity. To show that itis a
subbase for a uniformity, pick U e # and « € I'; then if we choose V € % so that
V2c U, we have the following: Vx,yea; (V. N V,)2=VZN VicU, N U,. The
same is obviously true for arbitrary intersections, and hence VZ< U,.

Let ¥~ be the uniformity for which {U, : Ue %, « € T'} is a subbase. We may
show that the generated topology of ¥ is the half-open interval topology for [0, 1]
as follows: For each x € (0, 1], « € I, and U € %, we may choose y € (0, 1] N U[x]
so that y<x and Vx, € o, x,<x implies x,=<y; this assures that (y, x]< U,[x].
Hence the ¥ -topology is weaker than the half-open interval topology; and it is
clearly stronger as well. The topology of ¥, being the half-open interval topology,
is thus separable and first countable. ¥ is also complete: Let & be a ¥ -Cauchy
filter on [0, 1]. Then & is #-Cauchy, and so converges in the usual topology to
some point x € [0, 1]. Claim: [0, x] € # and consequently % converges to x in the
half-open interval topology. Suppose not; let « be a strictly decreasing sequence
which converges to x. Choose Fe &% so that Fx FSU,, then for some ne€ w,
F<(ay.1, @], contradicting the fact that & converges to x.

Let # =77(x)?" be the product uniformity on the unit square. #” is complete
by the product theorem for uniform spaces. The generated topology of #; which is
the half-open rectangle space topology, is separable and first countable since the
half-open interval space is. However, the generated topology of #" is not normal
(see [9, pp. 59 and 133] for a summary of half-open rectangle space properties). [

6. NLU-completeness. The examples and constructions of the previous section
show that although strong completeness is a reasonable property for an NLU-space
to have, one may not be able to construct a completion for some NLU-spaces.
Consequently, we shall have to content ourselves with something less than the
optimal completion result. It is still reasonable to ask, however, if one may easily
describe the spaces for which completions or strong completions exist, and if one
may always construct a ““partial completion” of a space in which some well chosen
class of filters converges. To discuss these questions we make the following

DEFINITION. For any NLU-space (X, ¥”), an NLU-Cauchy filter on (X, ¥") is a
filter which converges in some larger NLU-space containing (X, ¥"). (X, ?") is
NLU-complete iff every NLU-Cauchy filter on (X, ¥”) converges in (X, 7). An
NLU-completion of (X, ?") is an NLU-complete NLU-space containing (X, ¥") as
a dense subspace.

The above definition of an NLU-Cauchy filter is ““external” in the sense that the
local uniform structure of the space involved is not directly used; only its topologi-
cal properties and its relation to other NLU-spaces are involved. So one thing we
will need to find is an ““internal” characterization of an NLU-Cauchy filter, given
entirely in terms of the structure of the space involved.



1972] LOCALLY UNIFORM SPACES 461

6.1 THEOREM. Suppose that (X, %) is a dense subspace of an NLU-space (Y,?")
and that every NLU-Cauchy filter on (X, %) converges in (Y,¥"). Then (Y, ¥") is an
NLU-completion of (X, ).

Proof. Let (X, %) and (Y, ¥") be as supposed. Let # be an NLU-Cauchy filter
on (Y, ¥"). Let (Z, #°) be an extension in which # converges to some point z. We
may assume Z=Y U {z}. Let A" be the restriction to X of the neighborhood
system of z. A is a filter since X is dense in Z. A" is NLU-Cauchy since it converges
to z; hence it converges to some point y € Y. Let M be a regular open neighborhood
of y in Z (i.e. such that M=M ~°). Since M N X € A, there is an open neighbor-
hood N of z such that NN X=M N X. We have N - =(NN X)"=(M N X)~
=M ",sothatze NEN°=M~°=M. Hence M N Y € & since & converges to z.
Since the neighborhood system at y has a base of regular open sets, % converges
to y € Y. Thus (Y, ¥") is an NLU-completion of (X, ). [

6.2 LEMMA. Suppose & is an NLU-Cauchy filter on (X, ¥"); then F satisfies the
following condition:

* VVe?,3Ue¥,3Fe F: (U*[F])*2 < V.

Proof. Let (Y, #") be an NLU-space containing (X, ") in which & converges
to some point y. Pick ¥ e ¥#; let ¥ € # be such that ¥ n X*2< V. Choose U e #
so that (U®[y])*2< V, and choose F e # so that FE U[y];let U=U N X*2, Then

(Uz[F])xz c (Uz[F])“ﬁ X*2c (Ua[y])"zf\X"z c VN xXxe2 cV. O

6.3 LEMMA. Any NLU-space (X,7¥") may be embedded as a dense subspace of
another NLU-space (X*, ¥ *) in such a way that

(i) every filter on (X, ¥") satisfying (*) converges in (X*, ¥'*),

(i) (X*, ¥°*) is a strong extension of (X, ¥").

Proof. In giving the proof it will be convenient to use small Greek letters for
filters in place of the usual script letters. Let X* be the set of all those filters on X
which satisfy (*). We define a mapping o: X — X* by x?={F : x € F< X}, for each
x € X; in addition, if ASX or VS Xx X, we set A°={x°:xe A} and V°=
{£x%, y°> : (x,y) € V}. Define a map }: ¥ — Z(X* x X*) by

Vt = {(a, B> : 0, fe X*and 34 € o, 3B B: Ax BS V).

(1) First it is clear that o is one-to-one and that VV e ¥, V1 N (X x X9)=V".
(2) ¥t is a subbase for a semi-uniformity: First, each V" e ¥t contains the
diagonal in (X*)*2 since each filter « € X* satisfies (*) and so, in particular,
VVe?,3Aea: Ax A< V. Second, each V' € ¥t contains a symmetric element of
.77, since for each V' e ¥"" there is a symmetric U € ¥~ contained in V, in which
case Utc V' and U' is symmetric.
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() If V, We?, then Vto Wtc(V o W)': We have

Vie Wt = Ko, y) : 3PAA€a,IBeB: AXB < V)
and (3B'eB,ICey: B'xC < W)}
={{o,y):3B,I4€,IB"€B,3Cey : AXxB" < Vand B"xC < W}
c (Vo W)

(4) 7"t is a subbase for an NLU: We need to verify that Vae X* VV e 7,
e : (UH?[«])*2< V! By the previous step, it suffices to show that given
o€ X* and Ve? we may choose Ue?¥ so that (U?)'[«])*2< V*!. We choose
D € « and a symmetric U € ¥ so that (U2[D])*2< V. Now suppose 8, y € (U?)'[«];
then there exist 4 € «, B€ B,and C € y such that A D, A x B€ U2, and A x C< U2
Then B< U2%[A4] and C< U?[A4], so that Bx C<(U?[4])*2=(U?[D])*2< V; conse-
quently (8, y) € V*. This shows ((U?)'[«])*2< V",

(5) From the previous steps, we may let ¥™* be the NLU for which ¥ is a
subbase; it follows from (1) that o: (X, ¥7) — (X*, ¥™*) is a uniform embedding.
We next show that if « is a filter on (X, ¥”) which satisfies (*) then o’ ={4° : 4 € «}
converges to « € (X*, ¥"*); this will verify property (i) of the lemma and also show
that (X°, #79)is dense in (X*, ¥™*). Given V' € ¥™t, we pick 4 e asothat A x A<V
then Vx € A4, (x%, «) € V' since {x} x ASAx A< V; so A°< V'[«].

(6) Finally, (X*, 7™*) is a strong extension of (X7, ¥™): Pick n € w—{0}. Then
(77°)" has a base of elements of the form (V?)*, and (¥ *)" has a subbase of elements
of the form (V). By direct calculation we have (V)" N (X9)*22(Vt N (X))
=(V°)". Using induction we have first V*< V'*; then Vj e w—{0}, if (VY <(V7)1,
we have, using step (4),

(VY * = Vo (MY < Vo (W) < (VI* Y,
Hence
(VY A (X°)*2 < (VD' A (X0)*2 = (V) = (Vo)
Hence (¥*)"| X=(¥"°)"=(¥"* X)", which is actually more than we needed to
show. [
6.4 THEOREM. A filter & on a space (X, V") is NLU-Cauchy iff it satisfies (*).
Proof. This follows directly from the above two lemmas. []

6.5 THEOREM. Every NLU-space has an NLU-completion which is also a strong
extension.

Proof. Theorems 6.1 and 6.4 show that the extension given in Lemma 6.3 is the
required NLU-completion. []

A natural question is whether an NLU-space with a Hausdorff topology has a
unique Hausdorff NLU-completion. In general the answer is no, and the following
examples give two NLU-completions of the rational numbers, one of which is
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stronger than the uniform completion, the other weaker. Despite this, however,
there is a uniqueness condition one can give for spaces which have a base of
regular open sets.

6.6 Examples. Let (Q, %) be the rational numbers with the usual uniformity.
% has a base of sets U,={(x,y>e 0*2: |[x—y|<1/n,forne w—{0}}. Let R be
the real numbers; for each neighborhood N of the diagonal in R*2, let Vy,=U,
UNNN(R*2-0%2)). Let

¥ = {Vy. : n€w—{0} and N is a neighborhood of the diagonal in R*2}.
Let
W = {Vyn : n€w—{0}and for some finite open cover € of R, N = | J{C*2 : Ce¥}}.

Then ¥~ and #” are bases for NLU’s which give the usual topology on R, and so
every Cauchy filter on (Q, %) converges in (R, ¥") and in (R, #°). By Theorem 6.1,
(R,7?") and (R, #") are bases for NLU-completions of (Q, #). But the local
uniformity for ¥~ is strictly stronger than the usual uniformity, and that of #~
strictly weaker. [

6.7 LEMMA. Suppose X is a dense subspace of the topological space X and A is a
regular open set in X, then A="°" N X=A, where =" and °* denote the closure and
interior operations on X.

Proof. Let A4, X, X, =™, °~ be as above, let ~ and ° denote the closure and interior
operations in X. X—A4~" is open, hence

E=A)""=(X=4")NX)"" =(X—A4A")".
So
A = X—(X—47)"",
and

A AX=X—-(X-A) " NX=X-(X-A) =4"=4. 0O

6.8 THEOREM. Suppose (X, ?") is an NLU-space whose topology is Hausdorff.
Then any two Hausdorff completions of (X, ¥") have homeomorphic topologies. If, in
addition, (X, ¥") has a base of regular open sets, then it has a unique Hausdorff
NLU-completion with the same property.

Proof. Let (X, “/7) and (X*,7*) be two Hausdorff NLU-completions of an
NLU-space (X, ¥") which has a Hausdorff topology. Let ~ and °, =™ and °", and
-* and °* denote the closure and interior operators for the spaces (X, ¥"), (X, v ),
and (X*, ¥7*) respectively. Let «: X — X be the identity map; let ¢ be the closure
of it Xx X in X x X*. Then Vx € X— X, there is a filter # on X converging to x;
but & also converges to a unique point y€ X*—X. Hence the filter base
{AxB: A, Be #} converges to the unique point <x, y> € Xx X*. This shows
that ¢ is a function which is 1-1. Similarly, :~! is a function. By the above lemma,
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the complement of a regular open set in X has the form X—4-""=(X—4-")""
=(X—A")"",with A< X. Buti[(X—A4~)""]=(X—A4")"*is then the complement
of a regular open set in X *. We conclude that ¢ preserves regular open sets, and so
is open by regularity of X. Similarly, i=* is open. Hence i is a homeomorphism.

Now suppose ¥~ has a base of regular open sets. We will first show that there is
at most one Hausdorff NLU-completion with a base of regular open sets: Suppose
(X*,7*) is a Hausdorff NLU-completion with a base # of regular open sets.
If We# and V=W N X*2, then since X *2 is dense in (X*)*2, we have V ~*°*
=W **=J. W is thus determined by its restriction to X and the topology of
X*, which is unique as we have just seen. Hence #"* is unique.

To show the existence of such a completion, let (X, VA) be any NLU-completion
of (X, 7). Let # be the set of regular open neighborhoods U of the diagonal in
X *2such that U N X *2 e 7. Let ¥™* be the semi-uniformity for which Z is a base.
By the above lemma, each regular open element of ¥~ is the restriction of an
element of #. Hence ¥™*| X=7" For each Ve¥, V32V "2V -"°" e¥*; thus
¥"* is stronger than ¥ and so generates the topology of X. By Theorem 1.9, ¥*
is an NLU. Every NLU-Cauchy filter on (X, ¥") converges in (X, ¥ *). Hence
(X, ¥"*) is an NLU-completion of (X, ") by Theorem 6.1. []

We now return to the question of when an NLU-space has a completion or a
strong completion. Our discussion will involve the following two conditions on a
space (X, ¥"):

(i) Every weak Cauchy filter on (X, ¥7) is Cauchy;

(ii) every Cauchy filter on (XX, ¥") is an NLU-Cauchy filter.

Notice that if a space (X, ¥”) satisfies (i), then for each Cauchy filter # on X the
filter F'={V?2[F]: Fe % V e} is weak Cauchy, and therefore Cauchy; hence
& satisfies the condition (*) of Theorem 6.3, and is thus NLU-Cauchy. Therefore
(X, ¥") satisfies (ii). Condition (ii) is strictly weaker than (i) and in fact the space
(Y, 7") of Example 3.4 satisfies (ii) but not (i).

6.10 THEOREM. An NLU-space (X, ¥") has a strong completion iff every weak
Cauchy filter on (X, V") is Cauchy; in this case, if (X, ¥") is an NLU-completion
of (X, ¥") and is also a strong extension, then (X, 7)) is a strong completion.

Proof. If (X, 7") has a strong completion, then by definition, each weak Cauchy
filter is NLU-Cauchy and hence Cauchy. Now suppose each weak Cauchy filter is
Cauchy. By Theorem 6.5 there is an NLU-completion (X, VA) of (X, ¥) which is
also a strong extension. Let # be a weak Cauchy filter of degree & on (X, “/7); let
G={V[F]N X : Ve ¥, Fe F}. Then ¥ is a filter on X which is weak Cauchy of
degree k+2 in (X, 7). Since (X, ¥") is a strong extension, ¥ is weak Cauchy on
(X, ?") as well and thus converges in X to some point y. Then y is an adherent
point of & to which %, being weak Cauchy, must converge, by Theorem 3.3. Thus
(X, ¥) is a strong completion of (X, ¥"). [
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I do not know whether every NLU-space satisfying (ii) has a completion; the
following example, however, does answer a similar question.

6.11 Example of an NLU-space with a Hausdorff topology on which every Cauchy
filter is NLU-Cauchy, but whose strongest Hausdorff NLU-completion is not com-
plete. Let X=QxQ; let X=Qx(Q U {Q}). We assign X a topology as follows:
Let X have the discrete topology, and for each « € Q let the basic neighborhoods
of <a, Q> be of the form [u, «] x (A, Q], with A, pe Q, and u<a or u=0. This
topology for X is completely regular since the neighborhood system at each point
has a base of clopen sets. Hence the collection ¥ of all neighborhoods of the
diagonal in X *2is an NLU.

Let “//=“/71X; let A(X) be the diagonal in X *2, We shall now determine the
Cauchy filters on (X, ?"): Suppose & is a Cauchy filter on (X, ?") such that
N & =@. First, it is easy to see that VF e & sup {x, : x € F}=Q. Next suppose a,
is the least ordinal such that for some Fe & sup {x, : x € F} =0, If ¢y<Q, then
Lo, Q> € X must be an adherent point of # Hence &%, being Cauchy, converges
to {ag, Q. If =0, that is if VFe Z Vae Q, Ix € F: x, >«, we may derive a
contradiction as follows: Let

Vo = AX) U UA([0, o] x [e, Q)2 : « € Q}.

Then V, €% and we may choose Fe % so that Fx FSV,; pick x € F, choose
y € F so that y; > x,; then since <{x, y) € V,, there exists « € Q such that x,, y; S«
and x,, yo= « Thus x; =« 2y, > x,, a contradiction.

We have thus shown that every nonconvergent Cauchy filter on X converges to a
point in X, and is therefore NLU-Cauchy. Since X is dense in X, (X, ¥") is an
NLU-completion of (X, ¥") by Theorem 6.1. By construction, v generates the
order topology on X— X=Qx{Q}, and ¥ |(X— X) consists of all neighborhoods
of the diagonal in (X¥— X)*2. Consequently ¥"|(£— X) is the unique uniformity
which generates this order topology; (X — X, ¥ |(X— X)) thus has a nonconvergent
Cauchy filter & which would converge to the omitted point {(Q, Q>.

Finally, (X, ¥") is the strongest Hausdorff NLU-completion of (X, ¥"): Since
(X, ¥") has a Hausdorff topology, its topology must be the same as that of the
strongest Hausdorff NLU-completion by Theorem 6.8. But since ¥ consists of all
neighborhoods of the diagonal in X *2, it must be the strongest completion itself. []

We say that a uniformly continuous function f: (X, %)— (Y, ¥") preserves
NLU-Cauchy filters iff the image under f of each NLU-Cauchy filter on (X, %)
extends to an NLU-Cauchy filter on (Y, ¥"). Notice that the nonconvergent
Cauchy filter Z in the above example is an NLU-Cauchy filter in the closed sub-
space (X — X, ¥|(X— X)) since ¥ |(X— X) is a uniformity. We have just proved
the following unfortunate facts:

6.12 COROLLARY. An inclusion map from a subspace of an NLU-space need not

preserce NLU-Cauchy filters; a closed subspace of an NLU-complete space need not
be NLU-complete.
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In what cases, then, can one conclude that a closed subspace of an NLU-
complete space is NLU-complete? One somewhat restrictive possibility is the
following:

DEFINITION. Suppose (X, ) is a subspace of (Y, ¥"). Then (Y, ¥") is a conditions
preserving extension of (X, %) iff there is a subbase # for ¥~ such that Vx € X,
VO e BNV e, if (V2x])*2<U, then IV e B: (V2[x])*2cU and V N X*2=V.

6.13 LEMMA. Suppose (Y,?") is a conditions preserving extension of (X, %) and
F is an NLU-Cauchy filter on (X, ); then & is NLU-Cauchy in (Y, ¥").

Proof. Let # be a subbase for ¥~ such that Vx € X, VU € B,VV € ¥ if (V2[x])*?
c U, then 3Ve %: (V?[x])*2cU and VN X*2=V. Let & be an NLU-Cauchy
filter on (X, %). Pick U € #. By Theorem 6.4 we may choose V € % and Fe F so
that (V2[F])*2< U, and we may choose W e % and G € & so that (W?[G])*2< V
and W< Vand G x GS W. Pick y e G N F. We may choose P € # so that P N X *2
=V and (P2[y])*2c U. Then (W?[y])*2< P, and we may choose Q € Z so that
0N X*2=W and (Q[y])*2<P. Let W=P N Q; then WN X*2=V N W=W.
Since G x GS W, we have GS W[y]< W[y] and

(W2GD)*® = (W[y]D*2 = (P[Q?[yID*% = (P2[y])*2 = U

Hence & is NLU-Cauchy on (Y, ¥7), by Theorem 6.4. []

DEerINITION. We shall say that a subspace X of a topological space Y is essentially
closed iff for each y in the closure of X, the Y-neighborhood system of y restricted
to X converges in X.

6.14 THEOREM. Let (X, %) be a subspace of an NLU-space (Y,¥"). If (X, %) is
NLU-complete, then it is essentially closed. Suppose on the other hand that (X, %)
is essentially closed in (Y,7?"). If (Y,¥") is (strongly) complete then so is (X, %);
if (Y,¥") is an NLU-complete conditions preserving extension of (X, U), then (X, %)
is NLU-complete.

Proof. Let (X, %) be a subspace of (Y, ¥"). If (X, %) is NLU-complete, and if y
belongs to the Y-closure of X, then y generates an NLU-Cauchy filter on X which
converges in X. Now suppose (X, %) is essentially closed in (Y, ¥"). If (Y, %) is
(strongly) complete and Z is a (weak) Cauchy filter on (X, %), then Z is (weak)
Cauchy in (Y, 7"), and hence converges in the closure of X. Thus it also converges
in X. Hence (X, %) is (strongly) complete. If (Y, ¥") is an NLU-complete condi-
tions preserving extension of (X, %), then an NLU-Cauchy filter on (X, %) will be
NLU-Cauchy in (Y, ¥") and hence converge in the closure of X, and therefore in X
itself; thus (X, %) is NLU-complete. [J

Finally, as an application of our ideas about completeness, we shall consider
products of NLU-spaces. But first we shall sketch a few facts about products. As
with uniform spaces, one can easily verify that for any indexed collection
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{(Xy, ?,) : e €'} of NLU-spaces, there is a unique product space in the category
of NLU-spaces and uniform functions whose underlying set is X {X, : e« € I'}. Its
structure has a subbase of sets

Wey = {80 (X {Xy 1 aeTH*? : {f(e), g()> € V},

for € I' and V € ¥,. Just as with uniform spaces, the product of the generated
topologies of the (X,, ¥;) is the generated topology of the product

X {(X,, ¥2) : €T}
For each « € I" and each fe X {X, : « € I'}, we define a coordinate embedding
"f,a: (Xa’ ﬂ) - X {(Xm 1/4;) ca€ P}

by requiring that VB e T, ¢, ,(x)(B) equals x if B=«, and equals f(«) otherwise.
Each ¢, is clearly one-to-one, and it is an isomorphic embedding as well since for
each (x, y> € X2 and each Ve ¥,, {x,y> € Viff (i (), ;,(»)> € W, y; this is
true by definition of W,y and i ,.

The product X {(X,, ¥,) : «€ I'} is a strong extension of each ¢, ,[X,] since
Vn e w—{0}, Wiy=W,n, so that

z/,a[Vn] = Wa.V” N ("l,a[Xanz = Wiy 0D (‘f,a[Xa])xz'

Similarly, X {(X., ¥,) : «€T'} is a conditions preserving extension of each
i o[ X,] since if x € X, Ve ¥,, and Ue ¥, and

(Crol VD2l (D2 = (o VXD *2 & We,us
then (V2[x])*2< U, so that
W2yl e(X)D)*2 = Wou and  Wey N (y,o[X])*% =5 o[V]

Finally, ¢, .[X,] is essentially closed in X {X, : « € I'}: Suppose & is a filter on
t;.«[X,] which converges in (¢ ,[X,])~ to some point g. Then for each B#a, the
projection py[#] converges in {f(B)}~ to g(B), and hence to f(B); p.[#] converges
to g(«). Hence & converges to ¢, .(g(c)).

6.15 THEOREM. Let {(X,, ¥,) : « € I'} be an indexed collection of NLU-spaces;
then X {(X., ¥2) : « € T} is NLU-complete, complete, or strongly complete iff each
(Xas V2) is.

Proof. Let {(X,, 7;): «€I} be an indexed collection of NLU-spaces; let
{W.v:«el, Ve¥,} be the subbase for the product given above; let f be an
arbitrary element of X {X, : «eI'}. For each a €I let «;, be the coordinate
embedding defined above, and let p, be the projection map onto X,.

(1A) Suppose each (X,, ¥,) is NLU-complete. Let & be an NLU-Cauchy filter



468 JAMES WILLIAMS [June

on X {(X., ?5) : « € I'}. Then for each «, and each U € ¥, there is a V € 7, and
a G e & such that (WZ2,[G])*2< W, y. But then (V2[p,[G]]) *2=(p.[WEv[G]])*2
Spo[W,.u]=U. Hence p,[#] is NLU-Cauchy on (X,, ¥,) and therefore converges
to some point x, € X,. Consequently, & itself converges.

(1B) Suppose X {(X,, 7%) : € I'} is NLU-complete. X {(X,, ¥%) : «€T}is a
conditions preserving extension of the essentially closed subspace ¢; ,[X,], so by
the previous theorem, i, ,[X,] with the inherited product structure is NLU-com-
plete. Hence so is.the isomorphic space (X, 7).

(2A) Suppose each (X,, ¥5) is (strongly) complete. Let & be a (weak) Cauchy
filter on X {(X,, 72) : « € I'}; then for each « €I, the image p,[#] under the
projection p, is (weak) Cauchy and hence converges to some point x,. Hence #
converges.

(2B) Suppose X {(X,, ¥,) : « € I'} is strongly complete. Then for each fe T,
15[ X;5] is an essentially closed subspace of X {(X,, ¥;): «€I'} and hence is
(strongly) complete. Hence so is (X;, ¥3). O
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