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Abstract. In a recent paper the author has established an affirmative solution to a

well-known and previously unsolved problem raised by R. H. Bing in 1951 concerning

whether or not the pseudo-circle is topologically unique. Now in this present paper,

as the natural culmination of the study initiated in the earlier paper, complete

topological and mapping classification theorems are established for all hereditarily

indecomposable circularly chainable continua. The principal topological classification

results of this paper are the theorems that hereditarily indecomposable circularly

chainable continua are characterized set-theoretically by their equivalence classes of

fundamental sequences and are characterized algebraic-topologically by their Cech

cohomology groups. These topological classification theorems are then used in

establishing mapping classification theorems for all hereditarily indecomposable

circularly chainable continua and in proving that the mapping hierarchy of here-

ditarily indecomposable circularly chainable continua constitutes a lattice. Among

the consequences of the foregoing primary results of the paper are the additional

theorems that two hereditarily indecomposable circularly chainable continua are

topologically equivalent if and only if each of them is a continuous image of the other,

and that every ¿-adic pseudo-solenoid is topologically unique.

1. Introduction. In a recent paper in this journal [10], a research announcement

of which was published in [8], this author has given an affirmative solution to a

well-known problem concerning limit spaces originally raised by R. H. Bing in

1951 in [3, p. 49], regarding whether or not all pseudo-circles are topologically

equivalent. Now, in this present paper, as the natural culmination of the study

initiated in the above paper of Fearnley [10], complete topological and mapping

classifications will be established for all hereditarily indecomposable circularly

chainable continua.

First, in §3, two topological classifications of all hereditarily indecomposable

circularly chainable continua are established in terms of set-theoretic and algebraic

topological characteristics, respectively. Then these topological classifications are
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used in proving the uniqueness of certain major subclasses of the class of all

hereditarily indecomposable circularly chainable continua. Among the results

established in this category is the theorem that all &-adic pseudo-solenoids are

topologically unique.

Next, in §4, necessary and sufficient conditions are established for the deter-

mination of whether or not an arbitrary hereditarily indecomposable circularly

chainable continuum is a continuous image of another continuum in this category

of continua. This mapping classification of all hereditarily indecomposable circu-

larly chainable continua is then used in the development of a hierarchical lattice of

all generalized pseudo-circles.

Finally, in §4, consequences of the combination of the topological classifications

of all hereditarily indecomposable circularly chainable continua established in §3

and the mapping classification of all hereditarily indecomposable circularly chain-

able continua established in §4 are developed. In particular, necessary and sufficient

conditions are established in terms of the mapping characteristics of two arbitrary

hereditarily indecomposable circularly chainable continua L and M in order for

L and M to be homeomorphic.

2. Preliminaries. The special terms and notations used in this paper will be

primarily the same as those introduced by this author in [6], [7], [9] and [10]. In

general these terms and notations were suggested by those used by Bing in [2], [3]

and [4]. In addition we shall define a number of further terms and notations which

will be of particular use in the development of the classification theorems of this

paper.

First let M be a circularly chainable continuum and let Cx, C2, C3,... and

/,/,/,... be sequences of circular chains and cyclic /--patterns, respectively,

having the following properties:

(a) Each circular chain C¡ of the sequence Cx, C2, C3,... covers M and the

closures of nonadjacent links of C¡ are mutually exclusive.

(b) The mesh of C¡, i=l, 2, 3,..., approaches zero as /increases without bound.

(c) The pattern/, i= 1, 2, 3,..., is a cyclic /--pattern of Ct+1 in C¡ such that the

winding number vv(/) of/ is greater than 1.

(d) The closure of each link of Ci + 1 is a subset of the link of C¡ to which it

corresponds under/, i'=l, 2, 3,....

The system of circular chains C\, C2, C3,... and cyclic /--patterns/,/,/,...

will be said to be multicyclically associated with M and will be denoted by

(Cx,fii, C2,f2, C3,f3,...). The term "multicyclically associated" is chosen to

distinguish the properties (a), (b), (c) and (d), above, from those described in the

definition of "cyclically associated" in [7] where it was required that all cyclic

/■-patterns considered be monocyclic /--patterns.

Next let (Cx,fx, C2,f2, C3,/3,...) be a system of circular chains and cyclic

/■-patterns multicyclically associated with a circularly chainable continuum M and,
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for each positive integer i, let the winding number w(f¡) of/ be represented as a

product of primes by a relationship of the form

w(fii) = x(1xf2- ■ -xin¡.

Then we define the sequence of primes

XXU *12> • • ■ > -Xln^ ^21> X22, . . ., X2n2, X31, X32, . . . , X3„3, . . .

to be a fundamental sequence of M. This sequence of primes will also be referred

to as aprime trace of the system (Cx,fx, C2,f2, C3,f3,...) or as aprime trace of the

sequence of cyclic r-pat terns /,/,/,....

An hereditarily indecomposable circularly chainable continuum which has the

same Cech cohomology characteristics as a £-adic solenoid is called a k-adic

pseudo-solenoid.

A generalized pseudo-circle is a nonsnakelike hereditarily indecomposable

circularly chainable continuum. The term pseudo-circle without modifying adjective

is reserved as in the usage of Jones [13] to identify the original nonsnakelike planar

hereditarily indecomposable circularly chainable continuum constructed by Bing

[3] and shown to be topologically unique by Fearnley [10].

The foregoing definitions are applicable in the study of nonplanar circularly

chainable continua. For the case of snakelike circularly chainable continua, certain

categories of which have been discussed by Burgess [5], associated systems of

circular chains and cyclic /--patterns can be chosen in which all cyclic /--patterns

have winding numbers equal to zero. For the case of nonsnakelike planar circularly

chainable continua, it is a consequence of the results of [4] that associated systems

of circular chains and cyclic /--patterns can be chosen in which all of the cyclic

/•-patterns have winding numbers equal to 1. Thus we define the fundamental

sequence of a snakelike circularly chainable continuum to be the sequence 0, 0, 0,...

and we define the fundamental sequence of a nonsnakelike planar circularly chainable

continuum to be the sequence 1, 1, 1,.... The pseudo-arc can be considered as a

0-adic pseudo-solenoid and the pseudo-circle can be considered as a 1-adic pseudo-

solenoid.

Now let N denote the set of all natural numbers. The group of definitions which

follow involves certain finite and infinite sequences of elements of N. If X=

(xx, x2, x3,...) is an infinite sequence of elements of N and & is a positive integer

then the subsequence (xk, xk+1, xk + 2,...) of Xis said to be a last section of X. The

ordered sum of a finite sequence X=(xx, x2,..., xn) of elements of N and a finite

or infinite sequence Y=(yx,y2,. ■-,ym) or Y=(yx,y2,y3, ■ ■ ■), respectively, of

elements of N is the sequence (xx, x2,..., xn, yx,y2,..., ym) or (xx, x2,..., xn,

yi, )>2, J3, • • •), respectively, obtained by the juxtaposition of A'and Y. The notation

{AJ + fy} will be used to indicate this ordered sum of Aand Y. If X^(xr,x2,.. .,xn)

is a finite sequence of elements of N, the product xxx2- • -xn will be referred to as

the product of X and will be denoted by TT {X}.

Next letp be an arbitrary element of A^ and let Xbe a sequence of elements of TV.
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Then the cardinal number corresponding to the number of occurrences of p in X

will be defined to be the multiplicity ofp in X and will be indicated by the notation

m(p, X). A sequence C is said to be a complement of a finite sequence Y of elements

of N relative to a finite or infinite sequence X of elements of N if, for each element

p of N, m(p, C) = m(p, X) — m(p, Y). A union U of two finite or infinite sequences

X and Y of elements of N is a sequence such that, for each element p of N,

m(p, U) = maximum (m(p, X), m(p, Y)).

An intersection I of two finite or infinite sequences X and Y of elements of N is a

sequence such that, for each element p of N,

m(p, I) = minimum (m(p, X), m(p, Y)).

While the complement, union and intersection sequences described in the preceding

definitions are not uniquely determined sequences, it will be convenient, where no

confusion is likely to arise, to indicate sequences of the types C, U and / by the

notations {X} - { Y}, {X} u {Y} and {X} n {Y}, respectively.

If X and Y are finite or infinite sequences of elements of N such that, for each

element p of N, m(p, X)-im(p, Y) then the sequence X is said to be contained in

the sequence Y. This relationship will be denoted by {X}^{Y}. The joint relation-

ships {X}<^{Y} and {Y}<={X} between finite or infinite sequences X and Y of

elements of A' will then be indicated by the notation {X}x{Y}. Two finite or

infinite sequences Y and Yof points of A^ will be defined to be equipotent if {X}x{ Y}.

Two fundamental sequences associated with circularly chainable continua will

be defined to be equivalent if these fundamental sequences are equipotent sequences

of natural numbers.

Finally, to facilitate the presentation of arguments involving pairs of systems of

circular chains and cyclic /--patterns associated with circularly chainable continua

it will be convenient to extend the usage of the concept of cyclic /--pattern to include

the situation in which a cyclic /--pattern/has the sets of subscripts of circular chains

C and D as domain and range, respectively, whether or not there exist containment

relationships between the links of D and the links of C. Such a cyclic /--pattern will

be referred to as a cyclic r-pattern ffrom C to D and will be denoted by/: C ^ D

or CU D.

It will be assumed throughout this paper that all circularly chainable continua

considered are nondegenerate topological spaces and that all circular chains

considered have at least six links. The latter assumption will allow us to use the

techniques of earlier related papers of this author and to avoid the formal awkward-

ness of considering situations where the crookedness properties or winding charac-

teristics are trivial. It will be seen that these assumptions can be made without any

loss in generality in the results of this paper.

3. Topological classification of all hereditarily indecomposable circularly chainable

continua.    The purpose of this section is to establish two of the three principal
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topological classification theorems of this paper. In particular we shall prove that

hereditarily indecomposable circularly chainable continua are characterized

topologically by their equivalence classes of fundamental sequences and by their

Cech cohomology properties. A third topological characterization of this class of

continua will be presented in §4.

First we establish an important preliminary theorem that is a generalization of

[10, Theorem 6.1] and a partial generalization of [8, Theorem 2], the results of

which were established previously by this author.

Theorem 3.1. Let M be a nonsnakelike circularly chainable continuum, let

(Cx,fi, C2,f2, C3,f3,...) be a system of circular chains and cyclic r-patterns multi-

cyclically associated with M, and let D be a circular p-chain such that D is a principal

refinement of Cx with the property that the cyclic r-pattern f of D in Cx has positive

winding number. In addition, for each positive integer i, let f be a crooked cyclic

r-pattern. Then, if there is an integer m such that the winding number off divides the

winding number of the composite cyclic r-pattern fxf2 ■ ■ •/,, there exists an integer n

greater than m and a cyclic r-pattern t such that ft =// • • •/,.

Proof. Since each cyclic /--pattern of the sequence /,/2,/3,... has positive

winding number, we may assume, noting [7, Lemma 3.3.2] and the proof of

[7, Theorem 3.3], that each cyclic /--pattern/ of the sequence/,/,/,... has the

properties that/(0) = 0 and/ is properly left-normal. In addition, from conditions

(a), (b) and (d) of the definition of "multicyclically associated", it may also be

assumed without loss in generality that each cyclic /--pattern / of the sequence

fi, f2-.fi, • • • has rank greater than or equal to 2. In addition, for each positive

integer z' the cyclic /--pattern/ is crooked so that it follows by [10, Theorem 3.1]

that/ can be assumed to have the property that the length of the canonical linear

representation of/ is greater than or equal to twice the length of/.

Now there is an integer m such that the winding number of/divides the winding

number of the composite cyclic /--pattern /i/2---/m. Thus, we may follow an

argument similar to that given in the proof of [10, Theorem 5.1] to obtain an

integer n greater than m and a cyclic /--pattern / such that ft =// • • •/„. This

completes the proof.

It is observed that actually a stronger form of Theorem 3.1 can be established

which is a complete generalization of [8, Theorem 2] and which, in particular,

includes a uniformity conclusion similar to that of [8, Theorem 2]. Specifically a

similar argument to that given in Theorem 3.1 can be used to show that if the

additional condition is added to those conditions listed in the definition of "multi-

cyclically associated" that requires that all cyclic r-patterns considered shall have

rank greater than or equal to 2 then the integer n can be chosen uniformly in the

sense that the difference n — m depends only on/and not on the particular nature

of the cyclic /--patterns/m+1,/m+2,/m+3,....
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We now establish the first of the principal topological classification theorems of

this paper.

Theorem 3.2. In order that two hereditarily indecomposable circularly chainable

continua L and M be homeomorphic it is necessary and sufficient that L and M have

equivalent fundamental sequences.

Proof of necessity. Let L and M be homeomorphic and let h be a homeo-

morphism of L onto M. It will be assumed that L and M are nonplanar hereditarily

indecomposable circularly chainable continua since it has been shown by Bing [3]

that any two snakelike hereditarily indecomposable continua are topologically

equivalent and by Fearnley [10] that any two nonsnakelike planar hereditarily

indecomposable circularly chainable continua are also topologically equivalent.

Then there exist systems of circular chains and cyclic /--patterns

(Cx,fix, C2,fi2, C3,f3,...)   and    (Dx, gx, D2, g2, D3, g3,...)

which are multicyclically associated with L and M, respectively. The notations

h(C¡) and h~1(Dj), where /' and j are positive integers, will be used to denote the

circular chains covering M and L, respectively, whose links are the images under

the respective homeomorphisms h and h'1 of the links of C¡ and D„ respectively.

Now h is a homeomorphism with the compact domain L so that h is uniformly

continuous. In addition the mesh of C¡ approaches zero as i increases without

bound. Furthermore, since M is a compact continuum, each of the coverings

Dx, D2, D3,... of M has the Lebesgue number property. Thus there is an integer

«! such that h(CUl) is a refinement of Dx with the property that the closure of each

link of h(CUl) is contained in the link of Dx to which it corresponds under the

r-pattern of h(Cni) in Dx. We may assume that the cyclic /--pattern of h(C%1) in Dx

has positive winding number. Next, since the mesh of D, approaches zero as i

increases without bound and each of the open coverings h(Cx), h(C2), h(C3),...

of the compact continuum M has the Lebesgue number property, there is an

integer Wj greater than 1 such that Dmi is a refinement of h(Cni). In a similar

manner we may choose increasing sequences of positive integers nx, n2, n3,...

and mx, m2, m3,... such that, for each positive integer i, h(Cni + 1) is a refinement

of Dm( and Dm¡ + 1 is a refinement of h(Cn¡ + 1).

Hence there is a commutative diagram of the following form in which h* indi-

cates the cyclic /--pattern induced by h and the arrows indicate surjective cyclic

r-patterns under the convention described in §2.
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Then, noting the properties of the cyclic /--pattern of Cni in h~1(D1), the circular

chains and cyclic /--patterns identified on the upper of the two horizontal levels of

the diagram constitute a system which is multicyclically associated with L. In

addition, the circular chains and cyclic /--patterns identified on the lower of the two

horizontal levels of the diagram constitute a system multicyclically associated with

M. Hence, by [7, Theorem 3.2] together with the facts that h* has winding number

1 and that the diagram is commutative, we conclude that a fundamental sequence

of L obtained by a decomposition into primes of the winding numbers of the cyclic

/--patterns of the upper horizontal level of the diagram is a permutation of a

fundamental sequence of M obtained in a similar manner from the cyclic /--patterns

of the lower horizontal level of the diagram. Therefore, L and M have equivalent

fundamental sequences.

Proof of sufficiency. Let L and M have equivalent fundamental sequences

X=(xx, x2, x3,...) and Y=(yx, J2, y^, ■ ■ ■)■ It will be assumed that each member

of each of the sequences X and Y is greater than 1 in view of the result of Bing [3]

that any two snakelike hereditarily indecomposable continua are homeomorphic

and the result of Fearnley [10] that any two nonsnakelike planar hereditarily

indecomposable circularly chainable continua are also topologically equivalent.

Then there are systems of circular chains and cyclic r-patterns

(Cx,fx,C2,fi2,C3,f3,...)   and    (Dx, gx, D2, g2, D3, g3,...)

which are multicyclically associated with L and M, respectively, and which have

X and Y, respectively, as prime traces. In addition L and M are hereditarily

indecomposable circularly chainable continua so that, without loss in generality,

we may assume that each cyclic /--pattern of each of the sequences/,/,/,... and

gx, g2, g3,. . . is a crooked cyclic /--pattern. Furthermore if one of the circular

chains Cx and D± has more links than the other then links of this circular chain

can be combined and the cyclic /--pattern having this circular chain as range can be

correspondingly modified, so that we may assume that Cx and Dx have been

chosen to have equal numbers of links.

Now let e denote the identity cyclic /--pattern from Cj to Dx. Then, by Theorem

3.1, there is an integer vx and a cyclic /--pattern t% such that etx=gxg2- • *ff«i-i-

Furthermore, noting [7, Theorem 3.2], the winding number w(tx) of tx is equal to

the product of the winding numbers of gx, g2,.. .,gVl-x. We denote by YVl a finite

sequence of primes whose product is equal to w(tx). Then {YVl}^{ Y}~{X}. Hence,

again using Theorem 3.1, there is an integer ux and a cyclic /--pattern t2 such that

ht's~fifa- • 'fux-i- We denote by XUl a finite sequence of primes whose product is

equal to the winding number w(t2) oft2. It follows that {XUl}<={X— YVl}x{Y— YVJ.

Thus we may again apply Theorem 3.1 to obtain an integer v2 and a cyclic /--pattern

t3 such that t2t3=gVlgVl + 1- • -gv2-i- Proceeding in this manner we obtain a com-

mutative diagram of circular chains and surjective cyclic /--patterns with the

following form under the convention of §2.



394 LAWRENCE FEARNLEY [June

/1/2 •■•/,-! /«,/«,+»" 7ua - 1

ßi <- /)B1 "- A.2 «

Therefore, from the relationship of this diagram to a corresponding inverse limit

diagram as described in [10, §6] and from the properties of the resulting system [1]

or [14], we conclude that L and M are topologically equivalent.

The theorem which follows constitutes an algebraic-topological classification of

all hereditarily indecomposable circularly chainable continua which will be used

subsequently in establishing the uniqueness of each of the pseudo-solenoids. This

algebraic-topological classification is surprisingly elegant in view of the local

complexity [3] and global nonhomogeneity [9] of nonsnakelike hereditarily

indecomposable circularly chainable continua.

Theorem 3.3. In order that two hereditarily indecomposable circularly chainable

continua L and M be homeomorphic it is necessary and sufficient that the one-

dimensional Cech cohomology groups of L and M be isomorphic.

Proof. In view of the topological invariance of the Cech cohomology groups it

will be sufficient to consider the situation in which L and M are not homeomorphic

and prove that then the one-dimensional Cech cohomology groups H\L) and

HX(M) of L and M, respectively, are not isomorphic. In addition, as in the case of

Theorem 3.2, the desired result for snakelike hereditarily indecomposable circularly

chainable continua follows from the results of Bing [3] and the result for non-

snakelike planar hereditarily indecomposable circularly chainable continua is a

consequence of the results of Fearnley [10] so that we shall assume that L and M

are nonplanar hereditarily indecomposable circularly chainable continua.

With the foregoing assumptions we show now that there exist two fundamental

sequences X and Y of L and M, respectively, such that either no last section of X is

contained in For no last section of Fis contained in X. Suppose that there do not

exist such fundamental sequences and let A and B be any two fundamental se-

quences of L and M, respectively. Then we may choose a last section Ax of A which

is a fundamental sequence of L and a last section Bx of B such that {B1}c{Ax}':z{B}.

Furthermore, by Theorem 3.2 together with the fact that L and M are not homeo-

morphic, both of the inclusion relationships of the preceding expression are proper

inclusions. Then, for each prime p which is not a member of B— Bx, m(p, Ax)

= m(p, B). In addition B — Ax is a nonempty finite sequence. Thus, if (Cx, fix, C2,f2,

C3,fi3,...) is a system of circular chains and cyclic /--patterns having a prime trace

Ax and being multicyclically associated with L, there is a circular chain C and a

cyclic /--pattern/of Cx in Csuch that the winding number of/is equal to \~\ {B — Ax}.

Therefore, the system (Cx,fx, C2,f2, C3,f3,...) is multicyclically associated with L
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and has a prime trace equivalent to B which involves a contradiction to Theo-

rem 3.2.

Now let Xand F be fundamental sequences of L and M, respectively, such that

no last section of X is contained in Y and let

(Cx,fi, C2,f2, C3,f3,...)   and    (Dx, gx, D2, g2, D3, g3,...)

be systems of circular chains and cyclic /--patterns multicyclically associated with

L and M, respectively, having X and Y as prime traces, respectively. Next, noting

the argument given in [11, Theorem 5.2], we may assume that H1^) is the additive

group of all rational numbers of the form u/dxd2- ■ -dr, where d¡ is the winding

number of/, i=l,2,..., r, /•= 1, 2, 3,..., and that H1(M) is the additive group

of all rational numbers of the form v/exe2- ■ -es, where e,- is the winding number of

g}, j= 1, 2,..., s, s= 1, 2, 3,.... Suppose that there is an isomorphism 6 of H1^)

onto HX(M) and let ö(l) = t'1/e1e2- • -eSl. We choose A to be a finite sequence of

prime integers whose product is equal to vx. Then X can be expressed as an ordered

sum {U} + {V} such that {A} n {X}<={U}. Hence, since no last section of X is

contained in Y, there is a prime p such that m(p, V)>m(p, Y). Thus V can be

expressed as an ordered sum {Vx} + {V2} such that m(p, Vx)>m(p, Y) and such

that there is an integer z with the property that \~[{{U} + {Vx}} = dxd2- ■ -dz. In

addition, since 6 is an isomorphism,

6(l/dxd2- --dz) = 6(l)/dxd2- ••«/,= Vx/exe2- ■ -eHdxd2- • •</.

Therefore, from the characterizing properties of U and Vx we obtain the contra-

diction that this last expression does not represent any member of HX(M) and the

proof is complete.

The following theorem, Theorem 3.4, is an immediate consequence of Theorem

3.3 and is a generalization of the principal result of [10] that the pseudo-circle is

unique.

Theorem 3.4. For each positive integer k, the k-adic pseudo-solenoid is topologi-

cally unique.

4. Mapping classification of all hereditarily indecomposable circularly chainable

continua. In this section we establish necessary and sufficient conditions for an

hereditarily indecomposable circularly chainable continuum M to be a continuous

image of another hereditarily indecomposable circularly chainable continuum L

in terms of the topological classifications of such continua developed in the

preceding section. This result together with the topological classification results

of §3 will then be used to prove that the mapping hierarchy of hereditarily indecom-

posable circularly chainable continua has the properties of a lattice. Finally, the

topological classification theorems of §3 and the mapping classification result of §4

will be used to establish a further topological classification of all hereditarily

indecomposable circularly chainable continua.
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To facilitate the statement of the mapping classification theorem for all here-

ditarily indecomposable circularly chainable continua, we first define a relationship

"<" between ordered pairs of fundamental sequences in the following manner. A

fundamental sequence Y is said to be infrapotent relative to a fundamental sequence

Y, and this relationship is denoted by {X}<{Y}, if either

1. Y and Fare sequences of prime integers such that {X}<^{Y},

2. X is the fundamental sequence (1, 1,1,...) and F is a sequence of prime

integers, or

3. X is the fundamental sequence (0, 0, 0,...).

In this situation it is sometimes convenient to refer to F as being ultrapotent

relative to X and this latter relationship is denoted by {Y}>{X}. We note that if

X and Y are fundamental sequences then X and Y are equipotent if and only if

W<{F}and{F}<{Y}.

Theorem 4.1. In order that an hereditarily indecomposable circularly chainable

continuum M be a continuous image of an hereditarily indecomposable circularly

chainable continuum L it is necessary and sufficient that there exist funda-

mental sequences Xand Y of Land M, respectively, such that X is ultrapotent relative

to Y.

Proof of necessity. First we consider the case that L and M are nonplanar

hereditarily indecomposable circularly chainable continua. Then let t be a con-

tinuous transformation of L onto M and let

(Cx,fi,C2,fi2,C3,fi3,...)   and    (Dx, gx, D2,g2, D3, g3,...)

be systems of circular chains and cyclic /--patterns multicyclically associated with

L and M, respectively. Then, from the facts that t is uniformly continuous that the

mesh of C¡ approaches zero as /' increases without bound and that the open cover-

ings Dx, D2, D3,... of M have the Lebesgue number property, it follows that there

exists an increasing sequence of positive integers kx, k2, k3,... such that, for each

positive integer i,

1. there is a cyclic /--pattern /¡ from Ckt to Dt with the property that if c;

is any link of Ckl then t(c,) is contained in the link of D¡ with subscript t¡(j),

and

2. each link of D¡ corresponds under r¡ to at least one link of Ckr

Hence there exists the following commutative diagram of circular chains and

surjective cyclic /--patterns:
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In addition there is a circular chain E whose links are open sets of L with the

properties that Ckl has the cyclic /--pattern (1 in £ and

(E, tx, Ckl,jklfkl + X- • -jk2-i, Cfc2,/2/2+1- • 7ic3-i,...)

is multicyclically associated with L. We denote by X a prime trace of this latter

system and denote by Y a prime trace of (Dx, gx, D2, g2, D3, g3,...). Therefore,

from the commutativity of the above diagram, Y contains F so that {X}>{Y}.

For the case that either L or M is a planar hereditarily indecomposable circularly

chainable continuum the desired result follows from an argument similar to that

given above which shows that no nonplanar generalized pseudo-circle is a con-

tinuous image of the pseudo-circle together with the results of [12] that neither the

pseudo-circle nor any nonplanar generalized pseudo-circle is a continuous image

of the pseudo-arc.

Proof of sufficiency. The case in which Y is the pseudo-arc follows from

[7, Theorem 4.4] of this author, and the case in which Fis the pseudo-circle can be

established by an argument similar to the one to be given for nonplanar generalized

pseudo-circles. Thus we shall assume that L and M are nonplanar hereditarily

indecomposable circularly chainable continua. Let X and F be fundamental

sequences of L and M, respectively, such that X contains Y and let

(Cx,fx, C2,f2, C3,f3,...) and (Dx, gx, D2, g2, D3, g3,...)

be systems of circular chains and cyclic r-patterns multicyclically associated with

L and M, respectively, having prime traces X and F, respectively. Without loss in

generality we may assume that Cx and Dx have equal numbers of links. In addition,

since the circularly chainable continua L and M are hereditarily indecomposable,

it may also be assumed that each cyclic /--pattern of each of the sequences/,/,

/,... and gx, g2, g3, ■ ■ ■ is a crooked cyclic r-pattern.

We now develop a modified and strengthened form of Theorem 3.1. First it is

observed that Theorem 3.1 can be expressed solely in terms of/--patterns in the

following manner. Let rx, r2, r3,... be a sequence of crooked cyclic r-patterns

such that, for each positive integer /, the range of ri + 1 is identical with the domain

of rx and let r be a cyclic /--pattern with the properties that the ranges of r and rx are

identical and for some positive integer u the winding number of r divides the

winding number of the composite cyclic r-pattern rxr¿- • -ru. Then there is a cyclic

r-pattern t and an integer v greater than u such that rt = rxr2 ■ ■ ■ rv. We next strength-

en this latter form of Theorem 3.1 using the fact that the method of proof of

[10, Theorem 5.1] on which the proof of Theorem 3.1 depends may be followed

even if, for some positive integer k, the cyclic r-patterns r\, r2,..., rk are not

crooked. Thus we obtain the result that if rx, r2, r3,... is a sequence of cyclic

r-patterns such that the range of ri + 1 is identical with the domain of r¡, i=l, 2,

3,..., and all but at most finitely many members of the sequence rx, r2, r3,... are

crooked cyclic r-patterns and if r is a cyclic r-pattern with the properties that the

ranges of r and rx are identical and, for some positive integer u, the winding
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number of r divides the winding number of rxr2- ■ -ru, then there is a cyclic /--pattern

t and an integer v greater than u such that rt = rxr2- ■ -rv. This result will be used

in the succeeding portion of the proof in establishing the existence of the desired

continuous transformation of L onto M.

To do this, first let e denote the identity cyclic r-pattern from Cx to Dx and note

that then the sequence of cyclic r-patterns e,/,/,/,... has the property that the

range of each member of the sequence is identical with the domain of its predeces-

sor, if any, in the sequence. In addition X contains F and each of the cyclic r-pat-

terns/,/,/, ... is a crooked cyclic r-pattern. Hence, by the strengthened form of

Theorem 3.1 developed in the preceding paragraph, there is a cyclic r-pattern tx

and a positive integer vx such that gxtx = efxf2- ■ ■/„,. Next, let Xx, Yy and Ax be

finite sequences whose products are equal to the winding numbers of e//- • -fVl,

gx and rls respectively. Then, since {Y}=>{F}, it follows that

{{{X}-{Xx}} + {Ax}}^{{Y}-{Yx}}.

In addition each member of the sequence/1 + 1,/1 + 2,/1 + 3,... is a crooked cyclic

r-pattern whose range is identical with the domain of its predecessor in the aug-

mented sequence ri,/1 + i,/1 + 2,/1 + 3, •... From the foregoing relationships and

the strengthened form of Theorem 3.1 it follows that there is a cyclic r-pattern t2

and an integer i'2 greater than vx such that g2t2 = t1fVl + ifv1 + 2- ■ fiv2- Proceeding in

this manner we obtain a commutative diagram of circular chains and surjective

cyclic r-patterns having the following form:

Therefore, from the relationship of this diagram to a corresponding inverse limit

diagram as described in [10, §6] and from the standard properties of the resulting

system, we conclude that M is a continuous image of L.

To facilitate the formulation of the next theorem two additional special terms

will be defined. First let Jt be the class of all hereditarily indecomposable circularly

chainable continua. A majorant H of a pair L, M of members of J( is a member

of Ji such that

1. the continua L and M are continuous images of H, and

2. for each continuum K of the class JÍ which can be mapped continuously

onto each of the continua L and M, the continuum H is a continuous image of A'.

The minorant of a pair L, M of members of Jt is defined in a similar manner.

In Theorem 4.2 it will be established that the mapping hierarchy of hereditarily

indecomposable circularly chainable continua which is a consequence of Theorem

4.1 has the properties of a lattice in the following strong sense.
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Theorem 4.2. Every pair of continua L, M of the class JÍ of all hereditarily

indecomposable circularly chainable continua has a topologically unique majorant H

and a topologically unique minorant K.

Proof. Let L and M be nonplanar hereditarily indecomposable circularly chain-

able continua and let Xand F be fundamental sequences of L and M, respectively.

Then there exist hereditarily indecomposable circularly chainable continua //and K

which have fundamental sequences {X} u {F} and {X} n {F}, respectively. It will

be proved that H and K are the topologically unique majorant and minorant,

respectively, of the pair of continua L, M.

First, by Theorem 4.1 together with the fact that {X} u { F} contains each of {X}

and {F}, the continuum H can be mapped continuously onto each of L and M.

Next let A be any hereditarily indecomposable circularly chainable continuum

which can be mapped continuously onto each of L and M. Then it follows from

Theorem 4.1 that A has fundamental sequences U and V that contain X and F,

respectively. In addition, from the argument given in the third paragraph of the

proof of Theorem 3.3 together with the fact that the one-dimensional Cech co-

homology group representations of A generated by U and V as described in the

proof of Theorem 3.3 are isomorphic, there is a last section Ux of U contained in V.

Furthermore, we may assume without loss in generality that Ux has been chosen

to be also a fundamental sequence of A. Hence we may again use the preceding

method of argument to obtain the result that there is a last section Vx of V con-

tained in Ux. Thus {VX}^{UX}<^{V}. It follows that {V}-{UX} and {U}-{UX} are

finite sequences. Thus it is easily seen that a sequence U* which satisfies the

relationship

Í7* » {Vx} U {{V}-{Ux}} u {{U}-{Ux}}

is a fundamental sequence of A which contains each of t/and Fand hence contains

{X} u{F}. Therefore, by Theorem 4.1, H is a continuous image of A and we

conclude that H is a majorant of the pair L, M.

To prove that H is topologically unique suppose on the contrary that there

exists an hereditarily indecomposable circularly chainable continuum H* such that

H* is also a majorant of the pair L, M but H* is not homeomorphic with H. Then,

by Theorem 3.2, there do not exist fundamental sequences of H and //* that are

equivalent. Hence, by the argument given in the second paragraph of the proof of

Theorem 3.3, there exist fundamental sequences U and U* of H and //*, respec-

tively, such that either no last section of U is contained in U* or no last section of

U* is contained in U. Since similar procedures of proof can be followed in both

of these cases it will be assumed that no last section of U is contained in U*. Now

H and H* are majorants of the same pair L, M. Thus, in particular, the continuum

H is a continuous image of the continuum //*. Hence, by Theorem 4.1, there are

fundamental sequences Fand V* of Hand //*, respectively, such that V* contains



400 LAWRENCE FEARNLEY [June

V. Now U* and V* are fundamental sequences of the same continuum //*. Hence

by an argument similar to that described in the preceding paragraph, there is a last

section V* of V* such that V* is contained in U*. Next we choose Vx to be a last

section of V such that Vx is contained in V* and note that we may assume without

loss in generality that Vx is a fundamental sequence of H. Hence we may again

use a similar argument to obtain the result that there is a last section Ux of U such

that Vx contains Ux. Therefore, {U*}=>{V*}^>{VX}=>{UX} which involves a contra-

diction and we conclude that the majorant H is topologically unique.

In a similar manner it can be shown that A" is a topologically unique minorant

of the pair L, M.

Finally we note that in the case that either L or M is a planar hereditarily

indecomposable circularly chainable continuum the desired result follows from the

facts that the pseudo-arc is a continuous image of any generalized pseudo-circle,

Fearnley [7, Theorem 4.4], that, by Theorem 4.1, the pseudo-circle is a continuous

image of any nonplanar generalized pseudo-circle, and that the pseudo-arc and

pseudo-circle are topologically unique ([3] and [10]). This completes the proof.

Finally we obtain a further topological classification of all hereditarily indecom-

posable circularly chainable continua with the following interesting form.

Theorem 4.3. In order that two hereditarily indecomposable circularly chainable

continua L and M be topologically equivalent it is necessary and sufficient that M be a

continuous image of L and L be a continuous image of M.

Proof. This is a corollary to the proof of Theorem 4.2.
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