SEMIGROUPS SATISFYING VARIABLE IDENTITIES. II

BY MOHAN S. PUTCHA AND JULIAN WEISSGLASS

Abstract. The concept of a semigroup satisfying an identity xy=f(x,y) is generalized by considering identities in *n*-variables and letting the identity depend on the variables. The property of satisfying a "variable identity" is studied. Semigroups satisfying certain types of identities are characterized in terms of unions and semilattices of groups.

Introduction. Semigroups satisfying an identity of the form xy = f(x, y) have been studied by Tully [5] and Tamura [4]. In [2], we generalized Tamura's result. We considered semigroups S satisfying: for every $a, b \in S$ there exists a positive integer m such that $ab = b^{\lambda_1}a^{\mu_1} \cdots b^{\lambda_m}a^{\mu_m}$ where λ_i , μ_i are integers greater than one, $i = 1, \ldots, m$, and $\sum_{i=1}^{m} \mu_i \ge 2$. We proved that a semigroup S satisfies this condition if and only if S is an inflation of a semilattice of periodic groups. The purpose of this article is to consider semigroups satisfying the analogous condition for n variables.

1. **Preliminaries.** Throughout S will denote a semigroup and E = E(S) the set of idempotents of S and n will be an integer, $n \ge 2$. Let F_n denote the free (noncommutative) semigroup generated by the distinct letters x_1, \ldots, x_n . Denote by C_n the subsemigroup of F_n consisting of all elements $x \in F_n$ each of which is the product of all of the x_1, \ldots, x_n , allowing repeated use. Let R_n denote the semigroup ring of C_n over the integers Z. Thus R_n is the set of functions of finite support from C_n to Z. It is well known that R_n can be considered as the set of finite formal sums of elements in C_n and coefficients in Z.

DEFINITION. We define a subset \mathscr{V}_n of R_n by $\mathscr{V}_n = \{f \mid f \in R_n, f = f_1 - f_2, \text{ there exists } c_1, c_2 \in C_n, c_1 \neq c_2 \text{ such that } f_i(c) = 0 \text{ unless } c = c_i, f_i(c_i) = 1\}.$

Thus \mathcal{V}_n is the set of all $f \in R_n$ which are the differences of two different monomials. That is, $f \in \mathcal{V}_n$ if and only if $f = x_{k_1} \cdots x_{k_r} - x_{l_1} \cdots x_{l_s} \neq 0$, where each x_i (i = 1, ..., n) appears at least once in $x_{k_1} \cdots x_{k_r}$ and at least once in $x_{l_1} \cdots x_{l_s}$.

If $a_1, \ldots, a_n \in S$ there exists a homomorphism $\varphi \colon C_n \to S$ such that $\varphi(x_i) = a_i$. This homomorphism extends to a homomorphism φ' from R_n into the semigroup ring of S over Z. If $f = f_1 - f_2 \in \mathscr{V}_n$ and $a_1, \ldots, a_n \in S$ we say that $f_1(a_1, \ldots, a_n) = f_2(a_1, \ldots, a_n)$ if $f \in \ker \varphi'$. Thus $f_1(a_1, \ldots, a_n) = f_2(a_1, \ldots, a_n)$ if and only if considering f_1 and f_2 as monomials in f_1, \ldots, f_n when f_2 is substituted for f_1 and

Received by the editors April 19, 1971.

AMS 1969 subject classifications. Primary 2093.

Key words and phrases. Semigroups, variable identity, semilattice, inflation.

multiplication performed in S, we have $f_1(a_1, \ldots, a_n) = f_2(a_1, \ldots, a_n)$. We will use without further comment this characterization of $f_1(a_1, \ldots, a_n) = f_2(a_1, \ldots, a_n)$.

If \mathscr{X} is a subset of \mathscr{V}_n , we say that S is an \mathscr{X} -semigroup if for every $a_1, \ldots, a_n \in S$ there exists $f = f_1 - f_2 \in \mathscr{X}$ (depending on a_1, \ldots, a_n) such that

$$f_1(a_1,\ldots,a_n) = f_2(a_1,\ldots,a_n).$$

We prove a preliminary result for arbitrary subsets $\mathscr{X} \subseteq \mathscr{V}_n$.

THEOREM 1.1. Suppose T is a semilattice Ω of semigroups T_{α} , $\alpha \in \Omega$, such that each T_{α} has an identity element. Then T is an \mathscr{X} -semigroup if and only if each T_{α} is an \mathscr{X} -semigroup.

Proof. If T is an \mathscr{X} -semigroup then each T_{α} is an \mathscr{X} -semigroup since subsemigroups of \mathscr{X} -semigroups are \mathscr{X} -semigroups. To prove the converse let $a_1,\ldots,a_n\in T$. Suppose $a_i\in T_{\alpha_i}$ and let $\alpha=\alpha_1\cdots\alpha_n$ (the product in the semilattice Ω). Then $a=a_1\cdots a_n\in T_{\alpha}$. Let e be the identity of T_{α} . Since $\alpha_i\alpha=\alpha\alpha_i=\alpha$ we have that a_ie and ea_i are in T_{α} , for $i=1,\ldots,n$. Furthermore $ea_i=(ea_i)e=e(a_ie)=a_ie$. Now applying the hypothesis to T_{α} , there exists $f=f_1-f_2\in \mathscr{X}$ such that $f_1(a_1e,\ldots,a_ne)=f_2(a_1e,\ldots,a_ne)$. Since each x_i appears at least once in f_1 and f_2 and since $\alpha_i\alpha=\alpha\alpha_i=\alpha$, it follows that $f_1(a_1,\ldots,a_n)$ and $f_2(a_1,\ldots,a_n)$ are in T_{α} . Hence $f_1(a_1,\ldots,a_n)=f_1(a_1,\ldots,a_n)=f_1(a_1,\ldots,a_n)=f_2(a_1e,\ldots,a_ne)=f_2(a_1e,\ldots,a_ne)=f_2(a_1,\ldots,a_ne)$. Therefore T is an \mathscr{X} -semigroup.

DEFINITION. Let S be a semigroup, T a subsemigroup of S. Then S is an nth inflation of T if there exists a homomorphism $\theta: S \to T$ such that θ is the identity map on T and for each $a_1, \ldots, a_n \in S$, $(a_1\theta) \cdots (a_n\theta) = a_1 \cdots a_n$.

REMARK. The 2nd inflation corresponds to the usual concept of inflation (cf. [1, p. 98]). If S is an *n*th inflation of T then $(a_1\theta)\cdots(a_m\theta)=a_1\cdots a_m$ for all $m \ge n$.

COROLLARY 1.2. Let $\mathscr{X} \subseteq \mathscr{V}_n$. Suppose S is an nth inflation of T, that T is a semilattice of semigroups T_{α} , and that each T_{α} is an \mathscr{X} -semigroup with identity. Then S is an \mathscr{X} -semigroup.

Proof. Let $a_1, \ldots, a_n \in S$. Then $a_1\theta, \ldots, a_n\theta \in T$ so by Theorem 1.1 there exists $f = f_1 - f_2 \in \mathcal{X}$ such that $f_1(a_1\theta, \ldots, a_n\theta) = f_2(a_1\theta, \ldots, a_n\theta)$. By the above remark, for $j = 1, 2, f_j(a_1, \ldots, a_n) = f_j(a_1\theta, \ldots, a_n\theta)$ since each x_i appears at least once in f_j . Thus $f_1(a_1, \ldots, a_n) = f_1(a_1\theta, \ldots, a_n\theta) = f_2(a_1\theta, \ldots, a_n\theta) = f_2(a_1, \ldots, a_n)$. Hence S is an \mathcal{X} -semigroup.

REMARK. The proof of Corollary 1.2 can be modified to prove that if S is an ideal extension of T by an \mathcal{X} -semigroup, then S is an \mathcal{X} -semigroup.

DEFINITION. Let n, i, α be positive integers $n \ge 2$, $1 \le i \le n$. Certain subsets of \mathcal{V}_n are defined by:

- (1) $\mathcal{L}_n = \{f \mid f = f_1 f_2 \in \mathcal{V}_n; f_1 = x_1 \cdots x_n; x_j \text{ appears at least twice in } f_2, j = 1, \ldots, n\}.$
 - (2) $\mathcal{M}_n^{i,\alpha} = \{f \mid f = f_1 f_2 \in \mathcal{V}_n, f_1 = x_1 \cdots x_n, x_i \text{ appears at least } \alpha \text{ times in } f_2\}.$

- (3) If $\mathscr{X} \subseteq \mathscr{V}_n$, then $\overline{\mathscr{X}} = \{f \mid f = f_1 f_2 \in \mathscr{X}, f_2 \text{ starts with } x_j; j \neq 1 \text{ and ends with } x_k, k \neq n\}.$
 - (4) S is an $\mathcal{M}_n^{i,\infty}$ -semigroup if S is an $\mathcal{M}_n^{i,\alpha}$ -semigroup for all $\alpha \ge 2$.

REMARK. Let $\mathscr{X}, \mathscr{Y} \subseteq \mathscr{V}_n$. Then $\mathscr{X} \subseteq \mathscr{Y}$ implies that: (i) every \mathscr{X} -semigroup is a \mathscr{Y} -semigroup and (ii) $\overline{\mathscr{X}} \subseteq \overline{\mathscr{Y}}$. Also subsemigroups and homomorphic images of \mathscr{X} -semigroups are \mathscr{X} -semigroups.

We will now prove several lemmas which are needed for the main theorems.

Let $a_1, \ldots, a_n \in S$ and suppose $x = a_{k_1}^{\mu_1} \cdots a_{k_t}^{\mu_t}$. We say that the length of x in the a_i 's is $\sum_{i=1}^t \mu_i$.

LEMMA 1.3. (i) Every \mathcal{L}_n -semigroup is an $\mathcal{M}_n^{i,\infty}$ -semigroup.

(ii) Every $\overline{\mathcal{M}}_n^{i,2}$ -semigroup is an $\mathcal{M}_n^{i,\infty}$ -semigroup.

Proof. (i) The proof follows by repeated application of the equation

$$a_1 \cdot \cdot \cdot a_n = f_2(a_1, \ldots, a_n).$$

- (ii) Since $\overline{\mathcal{M}}_n^{i,\alpha} \subseteq \mathcal{M}_n^{i,\alpha}$ it suffices to show that for $\alpha \geq 2$, every $\overline{\mathcal{M}}_n^{i,\alpha}$ -semigroup is an $\overline{\mathcal{M}}_n^{i,\alpha+1}$ -semigroup. Let $a_1,\ldots,a_n \in S$. Then by (2) $a_1\cdots a_n = f_2(a_1,\ldots,a_n)$, where each a_j appears at least once on the right-hand side and a_i appears at least α times. Since we can apply the hypothesis repeatedly, we may assume, without loss of generality, that the length of f_2 in the a_j 's is greater than $2n^2$. There are two possibilities:
- (i) $f_2(a_1, \ldots, a_n) = ua_i h_1 \cdots h_n$ with $u, h_j \in \langle a_1, \ldots, a_n \rangle$, a_i appearing in at least one h_j and the length of h_j in the a_k 's greater than or equal to n.
 - (ii) $f_2(a_1, ..., a_n) = h_1 \cdot \cdot \cdot h_n a_i u$, h_j , u as in (i).

We assume (i), the proof for (ii) being similar. Applying the $\overline{\mathcal{M}}_n^{i,\alpha}$ hypothesis to $(ua_ih_1)h_2\cdots h_n$ we have

$$(u_1a_ih_1)h_2\cdots h_n = f_3(ua_ih_1, h_2, \ldots, h_n) = h_{k_1}\cdots h_{k_s}ua_ih_1h_{k_{s+1}}\cdots h_{k_n}$$

= $g_1\cdots g_{i-1}a_ig_{i+1}\cdots g_n$,

where each g_i is a product of the a_j 's and a_i appears in at least one g_j . Again applying the $\overline{\mathcal{M}}_n^{i,\alpha}$ hypothesis we have $g_1 \cdots g_{i-1} a_i g_{i+1} \cdots g_n = f_4(g_1, \ldots, a_i, \ldots, g_n)$. Now since a_i appears in some g_j , a_i appears at least $\alpha+1$ times on the right-hand side. Hence $a_1 \cdots a_n = f_2(a_1, \ldots, a_n) = ua_i h_1 \cdots h_n = f_4(g_1, \ldots, a_i, \ldots, g_n)$ and the proof is complete.

LEMMA 1.4. Suppose that S is a semigroup with zero and that S is an $\mathcal{M}_{n}^{i,\infty}$ -semigroup with no nonzero idempotents. Then $S^{n} = \{0\}$.

Proof. Let $s \in S$. Letting $a_1 = a_2 = \cdots = a_n \in S$, we have from (2) that $s^n = s^k$, with k > n. Hence $s^m \in E(S)$ for some m, $n \le m \le k$. Thus $s^m = 0$ and hence $s^n = s^k = 0$. Let l be the least positive integer for which $S^{i-1}s^lS^{n-i} = \{0\}$. We prove that the assumption l > 1 leads to a contradiction. Let $t_1, \ldots, t_n \in S$. Let $\alpha = n+1$ and define

$$a_j = s^{l-1}t_j$$
 if $1 \le j < i$,
= $s^{l-1}t_is^{l-1}$ if $j = i$,
= t_js^{l-1} if $i < j \le n$.

Since S is an $\mathcal{M}_n^{i,\alpha}$ -semigroup we have $a_1 \cdots a_n = f_2(a_1, \ldots, a_n)$ with a_i appearing at least $\alpha = n+1$ times on the right. It follows that s^l appears at least n times on the right. Isolating the *i*th s^l we see that $f_2(a_1, \ldots, a_n) \in S^{i-1} s^l S^{n-i} = \{0\}$. Thus $s^{l-1}t_1 \cdots s^{l-1}t_i s^{l-1} \cdots t_n s^{l-1} = f_2(a_1, \ldots, a_n) = 0$. But the t_i 's are arbitrary in S. Hence $(s^{l-1}S)^{n+1} = 0$. Now apply the $\mathcal{M}_n^{i,\alpha}$ condition with $\alpha = 2n+2$ to the elements $a_j = t_j$, $j \neq i$ and $a_i = s^{l-1}$ where the t_j are arbitrary elements of S. We have

$$t_1 \cdots t_{i-1} s^{l-1} t_{i+1} \cdots t_n = f_2(t_1, \dots, t_{i-1}, s^{l-1}, t_{i+1}, \dots, t_n) \in S^1(s^{l-1} S)^{n+1} = \{0\}.$$

Since the t_j are arbitrary, we conclude that $S^{i-1}s^{l-1}S^{n-i}=\{0\}$, a contradiction. Hence l=1 and $S^{i-1}sS^{n-i}=\{0\}$, for every $s \in S$. Thus $S^n=\{0\}$.

COROLLARY 1.5. Let S be a semigroup with zero and no nonzero idempotents. If S is either an \mathcal{L}_n -semigroup or an $\overline{\mathcal{M}}_n^{i,2}$ -semigroup then $S^n = \{0\}$.

DEFINITION. Let S be a semigroup. $I = I(S) = \{x \mid x \in S, x^l = x \text{ for some positive integer } l \ge 2\}$. $E = E(S) = \{x \mid x \in S, x^2 = x\}$.

LEMMA 1.6. If S is an \mathcal{L}_n -semigroup or an $\overline{\mathcal{M}}_n^{i,2}$ -semigroup then $SE \cup ES \subseteq I$.

- **Proof.** (i) Let S be an \mathcal{L}_n -semigroup. We will show that $SE \subseteq I$; the proof that $ES \subseteq I$ is similar. Let $a \in S$, $e \in E$. Then by (1), there exists f_2 such that $ae = ae \cdots e$ $= f_2(ae, e, \ldots, e) = e^k(ae)^l e^i = e^k(ae)^l$ where $l \ge 2$ and k = 0 or k = 1. If k = 1, $ae = e(ae)^l$ so that eae = ae. Hence $ae = e(ae)^l = (eae)(ae)^{l-1} = (ae)^l$. Hence, for either k = 0 or k = 1, we obtain $ae = (ae)^l$, with $l \ge 2$. Consequently $ae \in I$.
- (ii) Let S be an $\overline{\mathcal{M}}_n^{i,2}$ -semigroup. Let $a \in S$, $e \in E$. From (2) and (3) it follows that $ae = ae \cdots e = es$ for some $s \in S$. Hence ae = eae. Now letting $a_j = e$ for $j \neq i$ and $a_i = ae$ we have, again applying (2) and (3), that

$$e \cdots e(ae)e \cdots e = f_2(e, \ldots, ae, \ldots, e) = e^k(ae)^l$$

where k=0 or 1 and $l \ge 2$. Hence $ae = eae = e^k(ae)^l = (e^kae)(ae)^{l-1} = (ae)(ae)^{l-1} = (ae^l)$. Thus $ae \in I$ and so $SE \subseteq I$. Similarly $ES \subseteq I$.

LEMMA 1.7. Let S be an \mathcal{L}_n -semigroup or an $\overline{\mathcal{M}}_n^{i,2}$ -semigroup. Then $E \subseteq I$ and I is an ideal. In particular, the Rees factor semigroup S/I has no nonzero idempotents.

Proof. Either hypothesis implies that S is periodic and hence $E \neq \emptyset$. Clearly $E \subseteq I$. Let $a \in I$, $x \in S$. Then there exists $l \ge 2$ such that $a = a^l$. Hence $a^{l-1} \in E$. Consequently $ax = a^lx = a^{l-1}(ax) \in I$, by Lemma 1.6.

2. Main theorems.

THEOREM 2.1. Let S be either an \mathcal{L}_n -semigroup or an $\overline{\mathcal{M}}_n^{i,2}$ -semigroup. Then S^n is a disjoint union of periodic groups.

Proof. By Lemma 1.7, I is an ideal and S/I has no nonzero idempotents. Since S/I is a homomorphic image of S, S/I is either an \mathcal{L}_n -semigroup or an $\overline{\mathcal{M}}_n^{i,2}$ -semigroup. By Corollary 1.5, $S^n \subseteq I$. Hence for all $x \in S^n$, there exists $l \ge 2$ such

that $x^l = x$. It is well known (cf. [1, p. 23, Exercise 6a]), that this condition implies that S^n is a disjoint union of periodic groups.

REMARK. A semigroup S is an \mathcal{L}_n -semigroup if and only if S^n is a disjoint union of periodic groups. Theorem 2.4 shows that a union of periodic groups is not necessarily an $\overline{\mathcal{M}}_n^{1,2}$ -semigroup.

DEFINITION. A semigroup S is viable if ab, $ba \in E$ implies ab = ba. Idempotents are central in S if ae = ea, for every $e \in E$, $a \in S$.

- LEMMA 2.2. (i) If S is an $\overline{\mathcal{M}}_n^{i,2}$ -semigroup then idempotents are central in S.
- (ii) For any semigroup S, if idempotents are central in S, then S is viable.
- (iii) Let S be an \mathcal{L}_n -semigroup. Then S is viable if and only if idempotents are central in S if and only if idempotents commute in S.
- **Proof.** (i) Let $e \in E$, $a \in S$. By (2) and (3), there exists f_2 such that $ea = e \cdot \cdot \cdot \cdot ea = se$ for some s in S. Hence ea = eae. Similarly ae = eae. Thus ea = ae.
- (ii) Suppose ab, $ba \in E$. Then ab = (ab)(ab) = a(ba)b = (ba)(ab) = b(ab)a = (ba)(ba)= ba.
- (iii) By Theorem 2.1, S^n is a union of groups. If S is viable then S^n is viable. By [3, Theorem 13], idempotents of S^n are central in S^n . Let $e \in E$, $a \in S$. Then $e = e^n$; $ea = e^{n-1}a \in S^n$. Hence ea = e(ea) = (ea)e. Similarly eae = ae. Therefore ea = ae, showing idempotents are central in S. The converse follows from (ii). If idempotents commute in S then (cf. [1, pp. 126, 127]), idempotents are central in S^n . The above argument shows idempotents are central in S. The following lemma is Lemma 3 of [2].
- LEMMA 2.3. Let S be a semigroup with central idempotents. If $a_1, a_2 \in S$ and $e_1 \in \langle a_1 \rangle, e_2 \in \langle a_2 \rangle, e \in \langle a_1 a_2 \rangle$ where $e, e_1, e_2 \in E$, then $e_1 e_2 = e$.

THEOREM 2.4. Let S be a semigroup. The following are equivalent.

- (i) S is an $\overline{\mathcal{L}}_n$ -semigroup.
- (ii) S is an $\overline{\mathcal{M}}_n^{i,2}$ -semigroup.
- (iii) S is an \mathcal{L}_n -semigroup and idempotents commute.
- (iv) S is an \mathcal{L}_n -semigroup with central idempotents.
- (v) S is a viable \mathcal{L}_n -semigroup.
- (vi) S is an nth inflation of a semilattice of periodic groups.

Proof. (i) \Rightarrow (ii) a fortiori.

- (ii) \Rightarrow (iii). By Theorem 2.1, S^n is a disjoint union of periodic groups. Let $a_1, \ldots, a_n \in S$. Then $a_1 \cdots a_n \in S^n$, so there exists $k \ge 2$ such that $a_1 \cdots a_n = (a_1 \cdots a_n)^k$. Consequently S is an \mathcal{L}_n -semigroup. By Lemma 2.2(i), idempotents are central in S so surely they commute.
 - $(iii) \Rightarrow (iv)$ follows by Lemma 2.2(iii).
 - (iv) \Rightarrow (v). By Lemma 2.2(ii). S is viable.
- (v) \Rightarrow (vi). By Theorem 2.1, S^n is a disjoint union of periodic groups. By Lemma 2.2(iii), idempotents are central in S, so certainly idempotents are central in S^n .

Hence (cf. [1, Theorem 4.11]), S^n is a semilattice of periodic groups. We show that S is an nth inflation of S^n . Define $\theta \colon S \to S^n$ by: $a\theta = ae$ where $e \in \langle a \rangle$. Clearly θ is the identity on S^n . Also if $a, b \in S$, $e_1 \in \langle a \rangle$, $e_2 \in \langle b \rangle$, then by Lemma 2.3, $e_1e_2 \in \langle ab \rangle$. Hence $(ab)\theta = abe_1e_2 = (ae_1)(be_2) = (a\theta)(b\theta)$. Hence θ is a homomorphism. If $a_1, \ldots, a_n \in S$, then $(a_1\theta) \cdots (a_n\theta) = (a_1 \cdots a_n)\theta = a_1 \cdots a_n$ since θ is the identity on S^n .

(vi) \Rightarrow (i). Let G be a periodic group with identity e and let $a_1, \ldots, a_n \in G$. There exist integers i > 1, j > 1, k > 1 such that $a_1^i = e$, $a_n^j = e$, $(a_1 \cdots a_n)^k = (a_1 \cdots a_n)$. Thus $a_1 \cdots a_n = a_n^j (a_1 \cdots a_n)^k a_1^i$. Consequently G is an $\overline{\mathscr{L}}_n$ -semigroup. Thus by Corollary 1.2, S is an $\overline{\mathscr{L}}_n$ -semigroup.

COROLLARY 2.5. Let $\mathscr{X} \subseteq \overline{\mathcal{M}}_n^{i,2}$. Then S is an \mathscr{X} -semigroup if and only if S is an nth inflation of a semilattice of \mathscr{X} -groups.

Proof. If S is an \mathscr{X} -semigroup, then it is an $\overline{\mathscr{M}}_n^{i,2}$ -semigroup. Hence S is an *n*th inflation of a semilattice of groups. Each of these groups, being a subgroup of S, is an \mathscr{X} -group. The converse follows from Corollary 1.2.

COROLLARY 2.6. Let $\mathscr{X} \subseteq \mathscr{M}_n^{i,2}$. Then S^{n-1} is in the center of S for every \mathscr{X} -semigroup S if and only if

- (i) $\mathscr{X} \subseteq \overline{\mathscr{M}}_n^{i,2}$, and
- (ii) every \mathcal{X} -group is abelian.

Proof. The necessity of (ii) is clear. If (i) does not hold then there exists $f = x_1 \cdots x_n - f_2 \in \mathcal{X}$ such that f_2 starts with x_1 or ends with x_n . Let S_1 (respectively S_2) be a nontrivial right-(left-)zero semigroup. Then either S_1 or S_2 is an $\{f\}$ -semigroup and hence an \mathcal{X} -semigroup. But $S_1^{n-1} = S_1$ ($S_2^{n-1} = S_2$) which is not in the center of S_1 (S_2).

Conversely assume (i) and (ii) hold. By Corollary 2.5, S is an nth inflation of a semilattice of \mathscr{X} -groups G_{α} . By (ii) each G_{α} is abelian and hence satisfies every permutation identity in n-variables. By Corollary 1.2, letting \mathscr{X} be any single permutation identity in n-variables, S itself satisfies every permutation identity in n-variables. In particular S^{n-1} is in the center.

REMARK. In Corollary 2.6, we can replace the words " S^{n-1} is in the center of S" with "S satisfies every permutation identity in *n*-variables."

Theorem 2.4 and Corollary 2.6 yield the main theorem and corollary of Tamura [4], when n=2 and $\mathcal{X} = \{x_1x_2 - f(x_1, x_2)\}$, f a fixed monomial in x_1 and x_2 . In addition Theorem 2.4 generalizes the main theorem of [2].

3. Examples and problems.

EXAMPLE 1. Theorem 2.1 is not true for $\mathcal{M}_n^{i,\infty}$ -semigroups. Let S be the multiplicative semigroup of 2×2 matrices over GF(2) consisting of $\{[\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix}], [\begin{smallmatrix} 1 & 0 \\ 1 & 0 \end{smallmatrix}], [\begin{smallmatrix} 0 & 1 \\ 1 & 1 \end{smallmatrix}]\}$. Then S satisfies $x_1x_2 = x_1^{\alpha}x_2$ for all $\alpha \ge 2$ and hence S is an $\mathcal{M}_2^{i,\infty}$ -semigroup. However $S^2 = S$ is not a union of groups.

EXAMPLE 2. Theorem 1.1 is not true if the condition that every T_{α} has an identity is deleted. Let n=2, $\mathcal{X} = \{x_1x_2 - x_2x_1\}$. Let S be the semigroup given by:

Let $T_1 = \{0, a\}$, $T_2 = \{b\}$. Then T_1 and T_2 are \mathcal{X} -semigroups and S is a semilattice of T_1 and T_2 . But S is not an \mathcal{X} -semigroup.

PROBLEM 1. Theorems 2.1 and 2.4 characterize \mathcal{L}_n -semigroups and $\overline{\mathcal{M}}_n^{i,2}$ -semigroups. Characterize other \mathcal{X} -semigroups. Study semigroups which are $\{f\}$ -semigroups for some $f \in \mathcal{V}_n$.

PROBLEM 2. Is there a "nice" subset \mathscr{X} of \mathscr{V}_n such that S is an \mathscr{X} -semigroup if and only if S^n is a band of groups?

REFERENCES

- 1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*. Vol. 1, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R. I., 1961. MR 24 #A2627.
- 2. M. S. Putcha and J. Weissglass, Semigroups satisfying variable identities, Semigroup Forum 3 (1971), 64-67.
- 3. ——, A semilattice decomposition into semigroups having at most one idempotent, Pacific J. Math. 38 (1971).
- 4. T. Tamura, Semigroups satisfying identity xy = f(x, y), Pacific J. Math. 31 (1969), 513-521. MR 41 #5528.
 - 5. E. J. Tully, Semigroups satisfying an identity of the form $xy = y^m x^n$ (to appear).

Department of Mathematics, University of California, Santa Barbara, California 93106

Current address (Mohan S. Putcha): University of California, Berkeley, California 94720