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A GENERALIZED AREA THEOREM FOR HARMONIC

FUNCTIONS ON HERMITIAN HYPERBOLIC SPACE
BY

ROBERT BYRNE PUTZ«

Abstract Let D be the noncompact realization of hermitian hyperbolic space.

We consider functions on D which are harmonic with respect to the Laplace-

Beltrami operator. The principal result is a generalized area theorem which gives a

necessary and sufficient condition for the admissible convergence of harmonic

functions.

1. Introduction. Let D = {z = (zu ..., zn)e Cn : Im z1 — Ji2\zk\2>0}, which is

the Cayley transform of the unit ball 3¡ in Cn. The basic machinery for studying

harmonic analysis on D was developed in [3], [4], and [5]. In [6] Korányi defined

the notion of admissible convergence in 3) and D and proved the following Hp

result :

Theorem (1.1). IffeL"(8D),p^ 1, and Fis its Poisson integral, then F converges

to f admissibly almost everywhere.

The main object of this paper is to prove a generalized area theorem for har-

monic functions in D and 2. For n= 1, this is due to Marcinkiewicz and Zygmund

[7] and Spencer [10]. This was extended to n real dimensions by Calderón [2] and

Stein [11] for euclidean harmonic functions, and by Widman [13] to solutions of a

large class of uniformly elliptic equations.

2. Statement of the theorem.    Write z e C as (z1;..., zn), zk = xk + iyk,

8        1 / Ô      .  d\       8       1(8      .  8\ ,    ,, . V i    is
^-ïfer'W    Wk = 2[Wk + l8y-J    and    *«T*-$W.

Then D = {zeCn : n(z)>0}, B = 8D = {zeCn : n(z) = 0}, and the Laplace-Beltrami

operator on D is

L = h{z)\4ylñ    a-+Zfl    a-+2'Zz*a    a--2'/Zfca-a    Y
y '   dz1 8z1    V 8zk 8zk        ¿z   K 8zx 8zk        -%<     8zx 8zk)
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Definition (Korányi). If u is in B,

[June

Aa(u) ze D i(zi-u1)-2^tukzk < (l+a)n(z),n(z) < 1

is a (truncated) admissible domain of aperture «>0.

A function / defined on D converges admissibly at u to / if, for some a>0,

\im^u.2eA¡iWf(z) = l.

There are two groups of holomorphic automorphisms of D which will be used:

N={(a, c) : ae R, c e C-1} acting by

(n n \

z1 + a + 2i^zkck + i^ \ck\2,z2 + c2,. ..,zn + cn\

and S={t : t>0} acting by

í-z = (fz1,í1'2z2,...,í1'2zn).

A^ acts simply transitively on B and N-S acts simply transitively on D. Thus if u

is in B and z is in D, u = (Reu1,tt)-0 and z = (xu z)-h(z)-(i, 0,..., 0) where

w = (w2,. . ., wn).

Let

IY/T = 4n ¥
dZi

+2 . -    5/     8f
2izk -¿r+tr-

8zx    ozk

Theorem (2.1). Let E be a measurable set in B and suppose f is a harmonic func-

tion on D.

(a) If f is admissibly bounded for each point of E then

(2.2) f      n(z)-"|V/|2^(z)

is finite for almost every u in E and a > 0, where pi is Lebesgue measure.

(b) If, for each point u of E, there exists an a > 0 such that the integral (2.2) is

finite, then f converges admissibly at almost every point of E.

The proof of (2.1 )(b) which is outlined in [8] is incomplete. The original method

shows that/is admissibly bounded at almost every point of fand then quotes the

following result of [6] which is the analogue of theorems of Privalov and Calderón

an, [HD.
Theorem (2.3). Let E be a measurable set in B and f harmonic in D. If for each

u in E there exists an a > 0 such that fis bounded in Aa(u), then f converges admissibly

at almost every point of E.

Korányi has pointed out that the proof of (2.3) in [6] is incorrect. Following a

suggestion of C. Fefferman, Korányi outlined an independent proof of the last

part of (2.1)(b) which he communicated to me, and that proof is included in the

present paper. Thus (2.3) is now a corollary of (2.1).
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3. Structure of admissible domains.    For  u e B there  exists g e N such  that

u=g-0. Let Bt(u) = g-Bt(0) where 5,(0) = {veB :Max rjRei^l,^ K\2]<t}.

In this section we use the following alternative admissible domains. If a>0,

ra(0) = < z e D : Max fil, 2 W\ < ah(z), h(z) < 1 >>

ra(u) = ra(g-o) = gra(o).

The following two results are in [6].

Lemma (3.1). For a>0, Aa(u)<=ra+1(u) and Fa(u)<=A2a(u).

Lemma (3.2). Let E be a measurable set in B and u0 a point of density of E with

respect to the family of sets {Bt(u) : ue B, t>0}. Then for any a>0 and a0>0 there

exists an h0 > 0 such that

rao(u0) n {z : h(z) < h0) c u ra(«).
ueE

The next two lemmas enable us to interchange integration over admissible

regions and integration over unions of admissible regions.

Lemma (3.3). Let E<=B be compact and Wa(E) = {JueE Aa(u). Suppose f is non-

negative and locally bounded on D and that jWaiE) f dp. <co. Then jA (u) h ~nf dp. < oo

for all y > 0 and almost every u in E.

Proof. By Lemma (3.1) the result is equivalent if Ta(«) replaces Aa(u) and

Va(E) = {JueEra(u) replaces Wa{E). By Lemma (3.2) we may assume that y = a.

Thus it is sufficient to prove that /= Jus£ dß(u) J"r (u) h~nf dp. is finite, where

dß(u) = í/(Re i/j) í/(Re u2) d(lm u2) ■ ■ ■ ¿/(Re w„) d(\m un).

(Throughout the paper "almost everywhere" statements are with respect to the

measure ß.)

i = Í dß(u) f   xvaamz)-nf{z) dp.{z)
J E •>Va(.E)

= Í       Hz) - y(z) dyiz) \ Xra(u,(2) dß(u).
•>Va(.E) -]E

Now observe that

vra(u)(z) dß(u) = ß({u : z e ra(«)} n E) á ß({u : z € rB(«)})
.i

-Hi-Max Re Zi — Re «j + 2 Im 2 z)cW)c

2 iz* ~ m*i < an(z)
})

Thus IúC$Va

= C(n)«nn(z)n.

. f dp., which is finite by assumption.
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Lemma (3.4). Let E be a compact set in B and f a locally bounded nonnegative

function on D. Suppose that for each point u of E there exists an a>0 such that

$Aaiu) f dp. < co. Then ife > 0 and y>0 there exists a compact set F contained in E such

that ß{E — F) < s and §w (F) hnf dp. < oo.

Proof. Again we may replace Aa{u), Wa(E) by Ta(u), Va(E). We may assume that

a is fixed independently of u, and that jr Mfdp.SM, uniformly. Also, by Lemma

(3.2) it is sufficient to prove the result for 0<y<a/2. Given e>0 there exists a

compact set F contained in E and a /0>0 such that ß(E—F)<e, and if u e F and

0<íáí0 then ß(Bt(u) n E)^iß(Bt(u)). Now

/ =       dß(u) fdp. < CO,
•'e •>ra(u)

I =  |   dß(u) f        Xra(u,(z)/(Z) <W)
Je Jva(E)

= |       f(z) dp.{z) I   XVaW{z) dß(u).
Jv„(.E) Je

If z e Vr(F) there exists a v in /"such that

Max Re zx - Re i\ + 2 Im ^ zkik , 2 W - vk\ < yh{z);

for such a z and v,

f XraUz) dß(u) = ß(^u : Max

<{.,
Max

i/s({« : Max

Rez1-Rew1+2Im ^zkuk , ^ \zk~uk\
2 2

< an(z)ln£)

n n

Re t^ — Re Ux + 2 Im ^ PjA » 2 \vk~u*\2
2 2

<(«/2-y)n(z)jn¿r)

n n

Re t'i - Re Hj + 2 Im 2 *>Ä '2 I*'* ~ "*

< («/2-y)A(z)

(if (a/2-y)n(z) ^ r0)

= iC(«)(«/2-y)"A(z)».

Thus I>C 1Vymh(z)nf(z)dp.{z) where Ky(F) is truncated at (a/2-y)n(z)ár0. The

lemma then follows by the assumption that fis locally bounded in D.
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If/is harmonic in D then / can be pulled back to & by the inverse Cayley

transform. Thus if S>r = {zeC : 2" \zk\2<r2}, then the Poisson integral repre-

sentation of the pulled back function on 8£¿r can be lifted to subdomains of D. Let

<t> be the generalized Cayley transform <J>; Q¡ ̂ ¡* /_) where

0(z)
/. 1+Zt   /    z2 ^ i    zn\

\ l-Zi   \-zx        ' 1-zJ

If w e D, consider (Re wu w) = (Re wu (w2,..., wn)) and h(w) as elements of Nand

S respectively, and let <bM = (Re wu w) ° h(w) ° <I>. Then

<S>w{z\ = /«(w)|±fi + Re ̂ -^^Ä + 'l k*|2,
l— Zx 1— Zi    "j* ^

¿n(w)1'2
^OO* = -j—— zk + wk, 2 ^ k ^ n.

Then <DU)(^)=Z), <I>1J)(0) = H', and Q>w(0r) = Dr(w) is the domain we are seeking. A

direct computation gives

Dr(w) = <ze D : /(w1-z1)-2 2^^
< T3-/(Z)«W

Lemma (3.5). Let a>a'>0 and we Aa(u).

(a) There exists an r>0 such that if z e DT(w) and h(z)< 1, then z e Aa(u).

(b) There exists a constant M> 0, depending only on r, such that if z e Dr(w), then

{\¡M)h{w)úh{z)ú Mh(w).

Proof. We may assume that « = 0 since the domains Aa(u) and Dr(w) are per-

muted under the action of N.

(a) Suppose h(w) =\. Aa(0) is an open set containing the compact set

C = Aa.(0) n {w : h(w) = \).

For each w in C we can find an r such that Dr(w) is contained in Aa(0). By com-

pactness we can find an r>0 for all w in C. Now suppose 0</i(w)<l. Since

w e Aa.(0) and z e A-(w),

4
Ki I < (1 +a')rt(w)    and 'K-zil-î^v — h(z)h(w).

\—r

Consider / = (2n(w))  1 as an element of 5* acting on z and w. Then

\(jt-w)x\ < (l+a')h(t-w)   and

i((t-w)1-(t-z)1)-2j^(t-z)k(t-w)h <Y—rh(t-z)h(t-w).

Thus í• w e C and t-ze Dr(t■ w). By the above choice of r,

\(t-z\\  <(l+a)h(t-z).

Acting by r~\ \zx\ <(1 + o¡)n(z). Thus z e/*a(0) if n(z)<l.
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(b) Let C be the closure of \JweC Dr(w). Then C is compact and for z in C we

can find an M such that ( 1 ¡M)h(w) ^ h(z) ̂  Mh(w) for w in C. If h(w) > 0, z e Dr(w),

and t as above, then t-zeC' and f-weC. Thus (l¡M)h(t-w)^h(t-z)^Mh(t-w)

which gives (l/A/)n(w)^n(z)^ Mh(w).

4. Regions approximating Wa(E). Write z e Z) as z=[x,z,t] where x = x1;

z = (z2,..., zn), t = h(z). For compact £<= 7i, Et = {[x, z, t] : [x, z, 0] e £} is compact.

Let

Aa(u)f = {[x, z, r + t2] : [x, z, r] e Aa(u) and r + t2 < 1}.

Then {Aa(u)f n J^},,^ forms an open cover of £. Choose a finite subcover for

t = t0< 1, and then for each /</0 choose one in the following manner: If u1,...,

um) are the base points chosen for the cover of Et, and if t'< t"^ t0 then

{u\...,u«n} => {u\...,um"ï}.

Let Wt={jn\ M"1)?-

Lemma (4.1). (a) Wt=>Wt.ifÇ><t<t'St0,and{Jt>0Wt=Wa{E).

(b) 8Wt is a piecewise smooth surface.

(c) If ds is a surface measure then jdw ds^M independently of t.

Proof, (a) and (b) are obvious by the construction. For (c) we divide the surface

8Wt into two parts: 8WtA={z e 8Wt : h{z)=\), the upper boundary, and 8Wt_2

= {z e 8Wt : h(z)< 1}, the lower boundary. 8lVtA is contained in a bounded piece

of the surface h(z) = 1, and thus ¡SWt   ds â M. Let

<Pt{[x, z, 0]) = 0   if [x, z, r] is not in Wt for any r,

1
=    mm   --

i S ; S fc(() 1 + a

Then

8 Wt<2 = {[x, z, 9t{[x, z, 0])] : <pt([x, z, 0]) / 0}

= {(*i, yù zp ■ ■ -,zn) ■ yi = <pt([x,z, 0])+2 W\2, <pt ¥= o}.

For y^^x, z, 0]) + 2 kfcl2,

8yx =    1    Im [/(z! - u{) - 2 2 u'kzk] 8yx = -ü'k[i(z1-u{)-2Jiu'kzk]    ¿

8xx      1+a    \i(z1-u{)-22 ukzk\ 8zk \i(z1-u>k)-2Zu>kzk\ "'

On 8WU2, ds = (l + \8y1/8x1\2 + Z2- \Syi/8zk\2)112 dxt dx2 dy2- ■ ■ dyn. Thus

(4.2) dß <,ds <, Mdß

where ds is the surface measure on 8Wlt2 and dß is the measure on the projection

of 8Wti2onB.

i(Zl-u{)-22 u{zk + t2   otherwise.
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5. Green's theorem. Let R be a bounded domain in C with a smooth boundary

and M be a second order differential operator

m       V 8*M=   Z  a"8^i-'

Suppose 4>{z) is a real valued C00 function defined in a neighborhood of R such that

R = {z : </<(z)>0}. We now define

Pf=    \    ya.MÊL+^8l\,
J      |grad 0| Z a"\8z. SzjSzj 8zJ

'    \ -1     v / 8        84,     8        84>\
ô(z) = ̂ FadT] ¿ fe % ÏÏjfE. a>< W

where |grad </-| = [2ï |^/azfc|2]1/2.

We then have the following (see e.g. Smirnov [9])

Green's Theorem. Iff and g are smooth functions in a neighborhood of R then

f {gMLf)-fN{g)}dv. = f   {gP(f)-fP(g)+fgQ}ds.
JR jör

We will use the above with M replaced by (l/h)L, R replaced by Wt,f replaced

by/2, and g replaced by the function identically one. Since rVt = [Jk(l\ Aa(u'),a we

can write 8 Wt¡2 = Uf= i dAa(u')p<2 where 8Aa{u')pt2 is that part of 8Aa{u')p which is

contained in 8Wt¡2. Let

<p/z) = (l+a)(«(z)-i2)- i(z1-u{)-2^uikzk

Then y4a(w0i2 = {z : cpj(z)>0 and n(z)< 1} and

Let

&4a(w'> = {z : <p/z)^0 and n(z) = l}

union {z : ç>/z) = 0 and h(z) < 1}.

g(z) = ^    ifzeS^>.2,

8h(z)     .e
~8z7     líze8W"-
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This is well defined on 8Wt except for a set of surface measure zero. We then have

1       *(*£    ,.    d±\Qf_,       1       ^ /80 . ?.?  ty\ 8f
+ |grad <A| f \0ffc   Z'Zfc dzj 8zk+ |grad «£| 4 \8zk + Z1Zk 8z,) 8zk'

n(v\ -     ~2ni   i^--^f\
W}      Igrad^llöz!    8-zJ

Finally, we observe that if L(/) = 0,/real valued, then (l/h)L(f2) = 2[V/|2. We

thus obtain

Green's Theorem.   ¡w¡ 2|V/|2 dp.=¡iWt {P(f2)+f2-Q} ds.

6. Proof of Theorem (2.1)(a). We may assume without loss of generality that /

is uniformly bounded in Aa{u) for a fixed and all u in E, where E is compact. By

Lemma (3.3) it is sufficient to prove that jWa(E) |V/|2 dp.<co. By Lemma (4.1)(a)

it is sufficient to prove that J-^ |V/|2 4¿¿Mwhere Mis independent of t. Using the

formulation of Green's Theorem in §5, this is equivalent to showing that

i
{P(f2)+f2Q}dsú M.

Since/and Q are uniformly bounded, and j"gH, ds^M by Lemma (4.1)(c), it is

sufficient to show that

(6.1) f    P(f)ds

is bounded independently of t.

Lemma (6.2). If f is  bounded and harmonic  in  Aa{0),  then  h(z) 8f/8zx  and

h(z)112 8f/8zk, 2^k^n, are bounded in Aa.(0)for a'<a.

Proof. By Lemma (3.5)(a), there exists an r>0 such that  Dr(w)<=Aa(0) if

w e Aa.(0). As noted in §3,/has a Poisson integral representation (see Hua [4]):

f° *»(/>) = f     &Á.q,P)f° *»(?) ds(q)
J?g,_

where

0Kq,p) - cr((r2-\p\2)/\r2-p-q\2r,        \q\ = r, \p\ < r.

Let p = *„(/>), l=«„(g), and Pr($, P) = ̂ (0-1(f), ^(pW^H&I Then

Pr(t,p)f(0ds($).f(p) = f
JdD,(w)
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Assume \p\^r/2; a straightforward computation then gives

\8PM, p)/8Pl\ á ch{p)-'PT{î, p),    \8PM, p)/8Pk\ ¿ ch{P)-™PM, P),   k à 2.

Thus

\8f(p)/8Pl\ S chip)"' sup l/l i        PM, P) ds(t)
dDr(W) JdDr(w)

and, for k^2,

\8f(p)/8Pk\ ¿ chip)""2 sup l/l | P<& p) ds(i).

The lemma now follows since dDr(w)<^Aa(0) and / is bounded in Aa(0), and

hDrMPr(LP)ds{0=L   ,

We return to the integral (6.1) which we write as }dWt P(f) ds + \Sw P(f) ds.

The first integral is uniformly bounded since 8Wtl is contained in a compact set

in D. As in §5 we write 8rVtt2 = {Jk(i\ 8Aa(u')t^i2. If n is an element of the group N

then n ■ 8Aa(u)f = 8Aa{n ■ u)f.

Claim. If Uj = n¡0 where n; e N, then \P{f-n,)\ ^ M on 8Aa(0)p. If we have the

claim, then

W-n,)\ ¡Jnr1] ds
1(8-4B(*,>I2.2>

km

/• Kit)     /• Kill    /-

\P(f)\ds = J I Wl ds = 2
•Wi.2 j, = l-'i.Mu,><2,2 i=lJnj-1

/£(!> /• /c(t)    /•

^ 2 M l/nf1!* = M 2 *

/I      ds ú M'

by (3) of Lemma (4.1). To complete the proof of part (a) we now verify the claim.

8AMt'.2 c {z : 9o(z) = (l+a)(h(z)-t2)-\Zl\ - 0},

and

d<Pa

8zx

8<Po

dzk

■i(l+a)     1       8<p0

2        ~2     dzx T- ±2'

=   -(l+ot)zfc, Í=-<'+•*••
In /iy(0), j'j á Mh(z) and |zfc| á Mh(z)112. Thus there exist constants m, M>0 such

that m^ |grad <po| ¿M, 18<pa/8z11 g M, and \8<p0/8zk\^Mh(z)112. Using these

estimates on the coefficients of P (see §5) we have

\P(f)\ á Af(h(z)

By Lemma (6.2), \P{f)\^M'.

8f_
8zx

+$H£D-
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7. Proof of Theorem (2.l)(b).    By Lemma (3.4) we have ¡w (f) |V/|2 dp.<<x>,

where ß(E\F)<e, with £>0 arbitrary. To show the admissible convergence of/for

almost every u in E, it is sufficient to show it for u in F. Define the regions Wt of

§4 with E replaced by F. By Green's Theorem we thus have

(7.1) f    [P(f2)+f2•W,
Q]ds < M

with the bound independent of t.

Lemma (7.2). If'¡Aai0)h{z)~n\Vf\2 dp.<co, 0<a'<« and e>0, then there exists a

f0>0 such that \h(z)(8f/8Zl)\<e and \h(z)ll2(8f/8zk)\<e, k^2, for z e /la,(0) and

h(z)^t0.

Proof. Choose r, as in §3, such that DT(w)^Aa(0) if w e Aa{0). Write

w = n-h(w)-(i, 0, ...,0)

where ne N and h(w) e 5". Then

KAM) = f      dp. = f 4< = f       |/n| |./n(w)| i//x.
J D,{w) Jn-MW)D,(0) JDr(0)

For ne N, \Jn\ = 1, and for / e S, \Jt\=tn + 1. Thus p.(Dr(w)) = Ch(w)n + 1. Let 8>0.

Since J^a(0) n(z)'n|V/|2 dp.<co, there exists r0>0 such that n(w)Si0, w 6/^.(0),

implies JDrU)) n(z)-"|V/|2 i//x<S. By Lemma (3.5) (b), (\¡M)h(w)^h(z)^Mh(w)

and, therefore,

(7.3) MW)L*,|V/l'*Sm

^)Ll<!W|!''''<z)'

For any harmonic function g, the mean value theorem and Schwarz's inequality

give

P-(Dr(,yjjjDAw}

Now define the first order differential operators:

8      _    8      1 J± I      8      _    8\ 8       8
D* = ^8r1+Zí8F1+2Í\Zk8rk+Zkwky    D* = w+w;

^-88 k       «,     88
Dk = -2^—+^,        Dk = 2izkWi+Wk-

A straightforward computation shows that these operators preserve harmonicity.

Thus

h{wj
8¿+8L

8wx    8wx

h{wf
MA(tf))Jfl,(II

M

P-\P>t\"'JJJd,(.w)

^ MS   by (7.3)

JDriw)  8z,    8Zl
dp.

%-¿ f      h(z)2 J£ * «//* =5   ,n, ^ f      A(z)l v/l* dp.
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Also

h{wj
8wx    8wx

1 <£
D0-^^(wkDk + wkDk)-Rew1Di f

S M \D0f\2 + 2h{w)\Dkf\2 + h{w)2\DJ\i

m__r
Dr(w))JDr{h

dp.

Ikz) dp.

<

p.(Dri

Combining the above two estimates, we have, if w e Aa-(0) and h(w)-¿t0,

8fh(w)
8wx

< MS.

The bound for h(w)ll2\8f/8wk\ is obtained by a similar argument.

In §6 the boundedness of h(z)\8f/8zj\ and h(z)ll2\8f¡8zk\ in Aa(0) was used to

show that §dw    \Pf\ ds^M. A repetition of that argument also gives

Í       \Pf\
*w,2

2ds < M.(7.4)

From §5 recall that

n( \ _    —Un   Í8ip    8ifj\ __       2n      di/J
y z) ~ |grad <p\ \8zx    SzJ ~ |grad 4¡\8yx

8% Re[i(z1-uj)-2 2n2u'kzk]

8yx       1+a+    \i(z1-u{)-2^2u'kzk\

Thus Q(z)^e>0 on 8wt¡2. Using the fact that Q is bounded away from 0 in (7.1)

gives

f     f2 ds S M f       |/P(/)| ds+M.
^Wli2 ^Wi.2

An application of Schwarz's inequality and the bound (7.4) gives

f      f2dsúM\\      f ; ds
1/2

+ M.

Thus

(7.5) f      f2ds ^ M       for t > 0.
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Let

/(«) = /([Re ux, ü, <pt(u)D   if cpt(u) ̂  0,

= 0 if 9t(u) = 0.

Then, using (4.2), (7.5) implies

(7.6) f{u)2 dß(u) S M.
Jb

Let Ft be the Poisson integral of |/|,

Ft(z) = f P(u, z)\f(u)\ dß(u)   (see [6]).

Claim (7.7). |/(z)| á MFt(z) + M' for zeWt where M and M' are independent

ofr.

By the maximum principle it is sufficient to prove this for z e 8Wt. Since 8Wt<1

and 8 Wt¡2 n {z : n(z)ä/0} are contained in a compact set in D, the inequality can

be made to hold there by choosing M' sufficiently large. Let z e 8Wt¡2, with

/¡(z) < t0. Define Bs([x, z, 0]) as in §3 and let

Es(z) = {[Re ux, ü, 9t(u)] : [Re ux, 0, 0] e Bs([x, z, 0])}.

Then there exists a S>0, independent of / and z, such that E6Uz){z)<^Dr{z) and

Lemma (7.8). If w e Dr(z) andh{z)^t0, then \f(z)-f(w)\£e.

Proof. First observe that, translating by an element of N, we may assume

z, w e Aa(0) and the hypothesis of Lemma (7.2) is satisfied. If h{z) = \ and w e D,(z)

then there exists a constant M such that \zx — wx\ < Mh(z) and |zfc — wk\ < Mh(z)112,

k^2. For /z(z)>0, let / = (2«(z))_1 act on z and w as an element of the group S.

Then, as in the proof of Lemma (3.5), we obtain \z1 — wx\ <Mh(z) and \zk — wk\

< Mh(z)112. Let y be the line segment joining z and w.

|/(z)-/(w)| á \wx-zx\ sup
8f

8ix
+2 K-Zfcl sup

8f

Mh(z) sup 8f
8SX

+ 2 Mh(z)112 sup

8L

8f
8ík

The lemma now follows from (3.5)(b) and the estimates of (7.2).

We return to the proof of (7.7). Applying (7.8) to w e Emz){z) ( = E(z)) we have

1
(7.9) \f(z)\ á

\£(z)\
f    l/(w)lds + i

By   (4.2),   \E{z)\=\Eiz)ds^lB6h^z)dß = MS»h{z)\   Thus,   rewriting   (7.9)   as  an

integral over Bm!!)(z) ( = B(z)), we have

(7.10) 1/001 AM5 f     |/i(«)l dß
Jb(z)

+ e.
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For u e B(z), P(u, z) ä M\h{z)n. Since P is invariant under the action of N, it is

sufficient to show this for z= [0, 0]h(2). Then it is immediate for

B(z) = {ueB : Max [|Re ux\, 2 |«fc|2] < Sh(z)}

and

ch{z)n

P{U> Z) = [(ReWl)2 + (n(z) + IK|2)2r

Thus from (7.10) we have

\f(z)\íM¡    P(u,z)\ft(u)\dß + e,

and the claim follows.

Now, using the uniform bound of (7.6), there exists a sequence tk -> 0 such that

l/J converges weakly in L2(dß) to some function/, in L2(dß). Let

F0(z) = f  P(u, z)f0(u) dß.
Jb

Then by the claim, \f(z)\^MF0(z) + M' for z in Wa{E). Since F0 is a Poisson

integral it is admissibly bounded for almost every u in E by Theorem (1.1). Thus

/is admissibly bounded for almost every u in E.

It remains to be shown that/converges admissibly for almost every u in E. We

use the regions Fa(u) and Va{E) of §3, and assume that/is uniformly bounded in

Va(E). Let

Vt = {ze Va(E) : h(z) > t},        8Vt = 8Vt,x U 8VU2 u 3K(,3

where

Let

art.i = & e SKt : A(z) = 1},       dK(,2 = {z e 8Kf : h(z) = ?},

SF(,3 = {zeSK(:/ < h(z) < 1}.

£t = {«e5: [ReWl,t?, t]e8Vt,2},

fi(u) = f([Re uu u, t])   ifwe£„

= 0 otherwise,

Ft(z) = f P(«, z)/(«) ¿p(«),

w(z) = f      P(u, z) dß(u),
Jb-e

ut(z) = f   P(«, z) rfj8(«).
JEt
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Claim. If e > 0 for t sufficiently small,

(7.11) \ut(z)f(z)-Ft(z)\ Ú Mw(z) + M'h(z)n + e

for all z in Vt and some constants M and M'.

By the maximum principle it is sufficient to show this on 8Vt. For z e 8Vt¡-¡, the

inequality holds by setting M' = 2 sup {|/(z)| : z e Va(E)} and observing that

0<wt(z)<l and 0<vf(z). If z e 8Vtf3, then, as shown in [6], w(z)^C where C>0

depends only on a. Letting M=M'/Cgives (7.11) for such z.

Now consider z e 3Kii2. Then

~lBicfi<2)te>

¿>(ii,z)l/(z)-/(M)|48(")
£(\Sfch(S)(2)

la^/M-fXz)! = If  P{u,z)f{z)dß{u)-[  P(u, z)f(u) dß(u
WBt Je¡

ú \  P(u,z)\f(z)-f(u)\dß(u)
JEt

= | P(u,z)\f(z)-ft(u)\dß(u)
J Etn

i

= h+h,

and we estimate each of these.

I2 ^ M' f P(u, z) dß(u) = M'[
Jb - BkMz){z) Jb -

and since

P(u, [0, 0, h(z))) = CA(z)"/((Re u,)2+ (a(z) + | kl2)2)"

and 7i-7ifcft(s)([0,0,n(z)]) = {weyi : Max [|ReWl|, 2 K|2]^«(z)},

72 ^ CAT/A;11.

Choose k sufficiently large so that I2 á e/2. We will now show that if / is sufficiently

small, z, w e 8V2J, and [Re wx, w, 0] e Bkh(a(z), then |/(z)—f(w)\ <e/2. This gives

I1<e/2. Translating by an element of the group N, we have z=[0, 0, t], and

[Re wx, w, 0] e BknU) implies Max [|Re wx\, 22 |Wk|a]<Air. Since w e 8Vtt2, w e Fa(u)

for some u in E, that is,

P(u, [0, 0, h(z)]) dß(u),
JB-BkKÍÍ)ao,o.hU)i)

Max

Thus

Re Wi-Re «!+ 2Im2 wkuk ,^\wk-uk
2 2

2 i«*i" ̂ 2(2 ki2+2 k-«*i2) < 2(kt+at)
2 \ 2 2 /

< at.
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+ |Re Wil + 2 2^*"*
and

n

iReMil á   Rew1 — Reu1 + 2lm¿wkük
2

(n \ 1/2  / n

2i^i2) (2 k

< at + kt + 2kll2tll22ll2(k + afi2t112 < 4(a + k)t.

Combining   these    inequalities,    Max [|Re ux\ 25 K|2]<4(1 +k/a)at,    that   is,

[0, 0,4(1+k¡a)t]eFa(u)-

We have thus shown that the path y lies in Va(E), where y consists of the two

straight line segments: yx connecting [0, 0, t] and [0, 0, 4(1 +k¡a)t], and y2 connect-

ing [0, 0, 4(1 +k/a)t] and [Re wx, w, tJ. Now choosing / sufficiently small and,

repeating the argument of Lemma (7.8), |/(z)— f(w)\ <e/2. This completes the

proof of (7.11).

The functions / are uniformly bounded and therefore there exists a sequence

tk -*■ 0 such that/k converges weakly to some function/, in Ln(dß). Let

F0 = f P(u, z)f0(u) dß(u)   and    u0(z) = f P(u, z) dß(u).
Jb Je

Then (7.11) implies

| u0(z)f(z) - F0(z) | á Mw(z) + M 'A(z)».

The right-hand side converges admissibly to zero almost everywhere on E, u0

converges admissibly to one almost everywhere on E, and F0 converges admissibly

almost everywhere on E by Theorem (1.1). Thus / converges admissibly almost

everywhere on E.

8. The area theorem for the unit ball. Theorem (2.1) is of local character, and

may be pulled back to S> by using the Cayley transform.

For ue82) let A'a(u) = {zeS> : \\-z-u\ < ((1 +«)/2)(l - |z|2)} be an admissible

domain at u of aperture a>0. Define the gradient on 2> as

|V'/|2
8f
8z,

tz   VVk8zk

Theorem (8.1). Let E be a measurable set in 82¿ and suppose f is a real valued

harmonic function on 2.

(a) If fis admissibly bounded for each point of E then

(8.2)
j. ■J Aa(u)

V-\z\*y*\vf\*dvL

is finite for all a > 0 and almost every u in E.

(b) If, for each point u of E, there exists an a > 0 such that the integral (8.2) is

finite, then f converges admissibly at almost every point of E.
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Proof. Let O-1 be the inverse Cayley transform. Then straightforward com-

putations give

(1) If ue 8D and a>0, there exist constants M, M'>0 such that

A'm^-'u) c 0-Ma(i/) c A'u.a(<î>-'u).

(2) |V(/(D-l)|2=|l_Zl|2|V7|2_

(3) n(0>(z)) = (l-|z|2)/|l-z1|2.

(4) liO^/Vll-Zil-*2^2».
Let£=/0_1. Then (8.2) may be rewritten as )<HA-m)h(z)~n\Jvg\2 dp.. By property

(1), Theorem (2.1) can be applied to g. Pulling back to & gives the result.

9. Remarks. The present paper follows the general outline of the corresponding

result in Stein [11]. Simultaneously and independently of the present work Stein

[12] in fact proved an area theorem for holomorphic functions on bounded

strictly pseudoconvex domains in Cn. The intersection of [12] and this paper is

Theorem (8.1) for holomorphic functions.
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