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A GENERALIZED AREA THEOREM FOR HARMONIC
FUNCTIONS ON HERMITIAN HYPERBOLIC SPACE

BY
ROBERT BYRNE PUTZ(%)

Abstract Let D be the noncompact realization of hermitian hyperbolic space.
We consider functions on D which are harmonic with respect to the Laplace-
Beltrami operator. The principal result is a generalized area theorem which gives a
necessary and sufficient condition for the admissible convergence of harmonic
functions.

1. Introduction. Let D={z=(zy,...,2,) € C": Im z; — X% |z,|2>0}, which is
the Cayley transform of the unit ball 2 in C™. The basic machinery for studying
harmonic analysis on D was developed in [3], [4], and [5]. In [6] Kordnyi defined
the notion of admissible convergence in £ and D and proved the following H?
result:

THEOREM (1.1). Iffe€ L?(8D), p=1, and F is its Poisson integral, then F converges
to f admissibly almost everywhere.

The main object of this paper is to prove a generalized area theorem for har-
monic functions in D and 2. For n=1, this is due to Marcinkiewicz and Zygmund
[7] and Spencer [10]. This was extended to n real dimensions by Calderdn [2] and
Stein [11] for euclidean harmonic functions, and by Widman [13] to solutions of a
large class of uniformly elliptic equations.

2. Statement of the theorem. Write ze C" as (z4, .. ., 2,), Zx=Xi+ iV,

o 1{o .2\ & 1({a .0 L,
8——216—5('6—;;—16—))")9 5-2;—2(33(;‘4-15) and h(Z)—yl—Z |Zk|.

Then D={ze C": h(z)>0}, B=0D={z € C" : h(z)=0}, and the Laplace-Beltrami
operator on D is

2 L 2 RN RS 22
L= ”(Z){“yl 5z, 03, +Z a7, 0z, T 2 Z gy oz, 2 z 2k 73, azk}'
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DEerINITION (KORANYI). If u is in B,

Au) = {z €D :i(z;—u)—2 Z UpZ),
2

< (1+a)h(z), h(z) < 1}

is a (truncated) admissible domain of aperture «>0.

A function f defined on D converges admissibly at u to / if, for some «>0,
limz—ou:zeAa(u)f(z) =1

There are two groups of holomorphic automorphisms of D which will be used:
N={(a,c) : ae R, ce C"" '} acting by

n n
(a, C)'Z = (Zl+a+2iz Zk5k+iz Icklz, 22+C2, ey Zn+cn)
2 2

and S={r : t>0} acting by
t-z = (tzy, tY2z,, ..., t1%2).

N acts simply transitively on B and N-S acts simply transitively on D. Thus if u
is in B and z is in D, u=(Reuy, #)-0 and z=(xy, Z)-h(z)-(i, 0, ...,0) where
w=(W2, ceey Wn).

Let

2

oS

2
V[ = 4h o, oz,

2iz),

3f 2 n
o 2
THEOREM (2.1). Let E be a measurable set in B and suppose f is a harmonic func-
tion on D.
(a) If f is admissibly bounded for each point of E then

@2) j TP d)

is finite for almost every u in E and « >0, where p is Lebesgue measure.
(b) If, for each point u of E, there exists an «>0 such that the integral (2.2) is
finite, then f converges admissibly at almost every point of E.

The proof of (2.1)(b) which is outlined in [8] is incomplete. The original method
shows that f'is admissibly bounded at almost every point of E and then quotes the
following result of [6] which is the analogue of theorems of Privalov and Calderén

({11, (14]).

THEOREM (2.3). Let E be a measurable set in B and f harmonic in D. If for each
u in E there exists an o> 0 such that f is bounded in A (u), then f converges admissibly
at almost every point of E.

Kordnyi has pointed out that the proof of (2.3) in [6] is incorrect. Following a
suggestion of C. Fefferman, Kordnyi outlined an independent proof of the last
part of (2.1)(b) which he communicated to me, and that proof is included in the
present paper. Thus (2.3) is now a corollary of (2.1).
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3. Structure of admissible domains. For u € B there exists ge N such that
u=g-0. Let B(u)=g- B,(0) where B,(0)={v € B :Max [|Re v4], >3 |v,|?] < ¢}.
In this section we use the following alternative admissible domains. If «>0,

r,0) = {z e D : Max [|x1|,§: |zk|2] < ah(z), h(z) < 1},

Ty(u) = T'o(g-0) = g-I'(0).
The following two results are in [6].
LeMMA (3.1). For «>0, A,(W)<T,, (4) and T (1)< Ag.(u).

LeEMMA (3.2). Let E be a measurable set in B and u, a point of density of E with
respect to the family of sets {B,(u) : u € B, t>0}. Then for any «>0 and oy>0 there
exists an hy>0 such that

Fo(uo) N {z : h(z) < ho} < UB ().

The next two lemmas enable us to interchange integration over admissible
regions and integration over unions of admissible regions.

LeEMMA (3.3). Let E< B be compact and W, (E)=\Uyeg A(u). Suppose f is non-
negative and locally bounded on D and that [y, g f du<co. Then [, ., h="f du<oo
for all y>0 and almost every u in E.

Proof. By Lemma (3.1) the result is equivalent if I',(x) replaces A,(u) and
VAE)=Uuyer Fa(u) replaces W,(E). By Lemma (3.2) we may assume that y=c.
Thus it is sufficient to prove that I={, ; dB(«) [y, h~"f du is finite, where

dB(u) = d(Re u;) d(Re up) d(Im uy) - - - d(Re u,) d(Im uy,).

(Throughout the paper ‘“‘almost everywhere” statements are with respect to the
measure B.)

1= [ a0 [ sl () dutz)
E Va(E)

= fv . h(z)~"f(2) du(z) L Xroaw(2) dB(u).

Now observe that

L Xroa(2) dB(u) = B({u : z € To(u)} N E) = B({u : z € To(w)})

- fu v

= C(n)eh(z)".
Thus IZC [, fdp, which is finite by assumption.

bl

n
R621 - Reu1 + Zlmzzkﬂk
2

g |z — uklz] < ah(z)})
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LeEMMA (3.4). Let E be a compact set in B and f a locally bounded nonnegative
function on D. Suppose that for each point u of E there exists an >0 such that
J auw S dir < 0. Then if ¢ >0 and y > 0 there exists a compact set F contained in E such

that B(E — F)<eand [y, o h"f du<oo.

Proof. Again we may replace 4,(u), W,(E) by I',(v), V.(E). We may assume that
« is fixed independently of u, and that fm(u) fdu= M, uniformly. Also, by Lemma
(3.2) it is sufficient to prove the result for 0 <y <ea/2. Given ¢>0 there exists a
compact set F contained in E and a t,> 0 such that B(E—F)<e, and if v € F and
0<t=t, then B(B,(u) N E)=4B(B,(u)). Now

1= e[ raw<e,

E Lg(w)

I= _L. dB(u) J;/a(E) XI‘,,(u)(Z)f(z) dp(z)
= f v, (E)f (2) du(z) L Xr,,(u)(z) dB(u).

If z € V(F) there exists a v in F such that

Max [

> Z |z — Uklz] < vh(2);

2

Rezl - Re1.?1 + 2Im22kﬁk
2
for such a z and v,
’ z Izk—uk|2]
2
< ah(z)} A E)
> z |vk—uk|2]
2
< (oz/2—'y)h(z)} N E)
s Z |Uk—uk12]
2 i

< <a/2—y)h(z)})

(if («/2=7)h(z) = 1)

Re ZI—RC u1+2Im 2 Zkﬁk
2

L Xrow(2) dB(u) = ﬁ({u : Max[

n
Rev;—Reu; +2Im Z Uyl
2

2 fu v
> Jfﬁ({u : Max[

Rev,—Rewu; +2Im Z Uyl
2

= 3C()(o/2—y)"h(2)".

Thus I2C jvﬂ) h(z)*f(z) du(z) where V,(F) is truncated at (¢/2—y)h(z) <to. The
lemma then follows by the assumption that f'is locally bounded in D.
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If fis harmonic in D then f can be pulled back to 2 by the inverse Cayley
transform. Thus if 2,={ze€ C": 3} |z|?><r?}, then the Poisson integral repre-
sentation of the pulled back function on 8%, can be lifted to subdomains of D. Let
® be the generalized Cayley transform ®: 2 — D where

_ 1tz 0 zp 0z,
*@) = (’ T—z, 1-2, "~ 1—z1)

If w e D, consider (Re wy, w)=(Re wy, (w,, . .., w,)) and A(w) as elements of N and
S respectively, and let ®,=(Re w;, W) o h(w) o ®. Then

. 142 2w L
(I)w(z)l = lh(W)T_‘:;i'i'Re w;— 1(_21 szwk‘i‘lz |Wk|2,
2

k

ih(w)*/2
Z n.

(Dw(z)k = 1— 1

Then ©,(2)=D, ®,0)=w, and ®,(2,)= D,(w) is the domain we are seeking. A
direct computation gives

IA
IIA

Zpe+ Wy, 2

© < li_r h(z)h(w)}-

D,(w) = {ze D: li(Wl—zl)—Z i Z, W

LeEMMA (3.5). Let a>ca'>0 and w € A,.(u).

(a) There exists an r>0 such that if z € D(w) and h(z)< 1, then z € A,(u).

(b) There exists a constant M >0, depending only on r, such that if z € D.(w), then
(1/M)h(w) £ h(z) £ Mh(w).

Proof. We may assume that =0 since the domains 4.(x) and D.(w) are per-
muted under the action of N.

(a) Suppose h(w)=1. 4,(0) is an open set containing the compact set

C = A, 0)Nn{w: h(w) =1}

For each w in C we can find an r such that D,(w) is contained in 4,(0). By com-
pactness we can find an r>0 for all w in C. Now suppose 0<h(w)<1. Since
w € A, (0) and z € D(w),

< li_r Z)h(w).

[wi| < (14+a’)h(w) and ‘i(Wl—zl)—2szWk
2

Consider t=(2h(w))~* as an element of S acting on z and w. Then
[(2-w):] < (1+o)h(¢-w) and

e 4
< = ht- DAt w).

it =(1-2)) =2 2 (t-2)lt-wh
2
Thus ¢t-w e C and ¢-z € D,(t-w). By the above choice of r,
[(t-2)1] < (1 +)h(t-2).
Acting by 171, |z;| <(1+«)h(z). Thus z € 4,(0) if h(z)< 1.
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(b) Let C’ be the closure of | ,ec D,(w). Then C’ is compact and for z in C’ we
can find an M such that (1/M)h(w) £ h(z) £ Mh(w) for win C. If h(w)>0, z € D(w),
and ¢ as above, then ¢t-ze€ C’ and ¢t-we C. Thus (1/M)h(t-w)Zh(t-z) < Mh(t-w)
which gives (1/M)h(w) S h(z) < Mh(w).

4. Regions approximating W,(E). Write ze D as z=[x, Z,¢] where x=x,,
Z=(zg, ..., Za), t=h(z). For compact E< B, E,={[x, Z, t] : [x, Z, 0] € E} is compact.
Let

A)2 = {[x, 2, r+1t2] : [x,2,r) € A,(u) and r+12 < 1}.
Then {A,(4)2 N E},.x forms an open cover of E,. Choose a finite subcover for

t=1t,<1, and then for each ¢<t, choose one in the following manner: If u?, ...,
u*® are the base points chosen for the cover of E,, and if ' <t”" <t, then

Y. S A SO
Let W,=U¥f A.(4)p.

LEMMA (4.1). (a) WD W, if O<t<t'Zty, and U;> o W= W (E).
(b) oW, is a piecewise smooth surface.
(c) If ds is a surface measure then faw, ds < M independently of t.

Proof. (a) and (b) are obvious by the construction. For (c) we divide the surface
oW, into two parts: 0W, ,={z € 0W, : h(z)=1}, the upper boundary, and oW, ,
={z € oW, : h(z) <1}, the lower boun‘dary. oW, , is contained in a bounded piece
of the surface h(z)=1, and thus I6W¢,1 dss M. Let

el[x, 2,0]) = 0 if [x, Z, r] is not in W, for any r,

+1t2 otherwise.

i(Z,—ul)— 2Zukzk

min
1555k 1 +a

Then
OW,.2 = {[x, Z, ¢u([x, Z, 0D)] : @([x, Z, 0]) # O}
= {(-xb J’1, Z2y . v ey Zn) : }’1 = q’t([x$ Z’ OD+Z |Zlc|2’ Pt # 0}'
For }’1-—-%([3‘, z, 0])+Z Izklza

oyr _ 1 Im[iZ —ui)—2 3 ujZ] 223 _ —ﬁ)jc[i(fl—u{)—zzuifk]_'_z-
ox;  l+a [i(Z—ul)—2 2 ulzy| ’ azk i —ul)—2 2 uiz,| "

On oW, ,, ds=(1+|0y,/0x,|2+ 2% |0y1/0z,|>)V'2 dx, dxy dy; - - - dy,. Thus
4.2) dB < ds £ MdB

where ds is the surface measure on W, , and dB is the measure on the projection
of oW, , on B.
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5. Green’s theorem. Let R be a bounded domain in C" with a smooth boundary
and M be a second order differential operator

n
M = Zl %1 7.0z, 32,32f

i

Suppose ¢(z) is a real valued C * function defined in a neighborhood of R such that
R={z : J(z)>0}. We now define

62
Nf = D —=(ayf),
/= 2 52z, @)

__1 op of opof
= |grad ¢| Z G (62‘ 6z,+6z, 62)

o, 0 ¥
Q) = Igradsblz( RN ’5)

where |grad ¢| =[>7 |0¢/0z,|2]*/2.
We then have the following (see e.g. Smirnov [9])

GREEN’S THEOREM. If f and g are smooth functions in a neighborhood of R then
| teM() N du = [ (ePOH-1P(@)+720) ds.
R R

We will use the above with M replaced by (1/h)L, R replaced by W,, f replaced
by f2, and g replaced by the function identically one. Since W,=J¥9, A,(v’)z2 we
can write OW, ;=¥ 04,(v')z 5 where 04,(1/)2 4 is that part of d4,(u’),z which is
contained in oW, ,. Let

?/2) = (1+a)(h(2)—1%) -

n
i(fl—u{)—Z z u{‘fk *
2

Then A,(w)2={z : ¢(z)>0 and h(z)<1} and

04,()2 = {z : ¢(z)20 and h(z)=1}
union {z : ¢,(z) = 0 and A(z) < 1}.

Let
o\ _ 92) . ;
oz, (2) = oz, if z€ 04,(W)3 5,

_ oh(z)
=22

k

if ze oW, ;.
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This is well defined on @W, except for a set of surface measure zero. We then have

_ 1 1 o <

P(f) = |grad ¢] ( 71, 0z, +212 Zkazk) 0z, Igrad | ( oz, —2i Z 6zk) 0z,
'/'
0z

gradzplz(azk "‘6;/})62 grad |Z( ) f
00~ faayl (65~ )

Finally, we observe that if L(f)=0, f real valued, then (1/A)L(f?) = 2|Vf|%. We
thus obtain

GREEN’S THEOREM. [, 2|Vf|? du= o, {P(fH)+/?- Q} ds.

6. Proof of Theorem (2.1)(a). We may assume without loss of generality that f
is uniformly bounded in A4,(u) for « fixed and all u in E, where E is compact. By
Lemma (3.3) it is sufficient to prove that wae | V|2 du<oo. By Lemma (4.1)(a)
it is sufficient to prove that th | Vf|? du = M where M is independent of ¢. Using the
formulation of Green’s Theorem in §5, this is equivalent to showing that

{P(f3)+f%Q}ds = M.
ow,

Since f and Q are uniformly bounded, and faw, ds<M by Lemma (4.1)(c), it is
sufficient to show that

(6.1) P(f) ds
oW,

is bounded independently of ¢.

LEMMA (6.2). If f is bounded and harmonic in A,0), then h(z) of/oz, and
h(z)''? of]oz,, 2 <k <n, are bounded in A,(0) for «’ <.

Proof. By Lemma (3.5)(a), there exists an r>0 such that D/(w)<=A,(0) if

w € A,(0). As noted in §3, fhas a Poisson integral representation (see Hua [4]):

fo@up) = | ZAq,p) S Pulg) ds(q)

09,
where

Z(q, p) = cr((r*—|p|®/Ir2=p-G»", gl =r|pl <r.
Let p=®,(p), £=D,(q), and P,(¢, p)=Z (D5 *(£), 5 (p))|J P (€)|. Then

1) = L P& p)f(©) ds(®).
Dy(w)
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Assume |p| =r/2; a straightforward computation then gives

[0P,(¢, p)[Ops| < ch(p) PuE, p), |OPU(E, p)|Opi| < ch(p) 2P, p), k 2= 2.
Thus

|2f(p)[0p1| = ch(p)~? Sup | f] o )Pr(«f, p) ds(§)
and, for k=2,
|9f(p)/0pk| < ch(p)=1'2 sup |f] P,(¢, p) ds(§).
dDy(w) ODy(w)

The lemma now follows since 9D, (w)<A4,(0) and f is bounded in A4,(0), and
Voo, Pr(é5 p) ds(§)=1.

We return to the integral (6.1) which we write as [5y, | P(f) ds+ [oy, , P(f) ds.
The first integral is uniformly bounded since W, ; is contained in a compact set
in D. As in §5 we write 0W, ,=J¥®, 04,(t)z2 .. If n is an element of the group N
then n-04,(u)2=0A4,(n-u)z.

Claim. If u;=n;-0 where n; € N, then |P(f-n;)] £ M on 94,(0);. If we have the
claim, then

k@)

k(t)
[ eoias=3>[ ieonas= 3| | PG 1 ds
oWe,2 i=1Y940ul)22 7=1Yn7 1@4a(uhi2,2)

1)

=M ds = M’

Wi,z

K(t),
|Jnyt| ds = Z f ds
0A4a(u?)2

7104w 2)

by (3) of Lemma (4.1). To complete the proof of part (a) we now verify the claim.
04,0)2,2 < {z : po(z) = (1 +a)((z)—1%)—|z:| = O},
and
Opy _ —1(1+a) 1 Opg _ i(1+a)+l

oz, 2 ty oz, 2 -2

90 _ _ 5 90 _ _
a2, (1+)z, 7, (1+ )z

In A4,(0), y; < Mh(z) and |z,| £ Mh(z)". Thus there exist constants m, M >0 such
that m<|grad po| S M, |99o/0z;| S M, and |0py/0z,| < Mh(z)'2. Using these
estimates on the coefficients of P (see §5) we have

)

+Z h(z)"?| 5

1) s M) | £

By Lemma (6.2), | P(f)| S M'.
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7. Proof of Theorem (2.1)(b). By Lemma (3.4) we have fwa(F) |Vf |2 dp < o0,
where B(E\F) <e, with e>0 arbitrary. To show the admissible convergence of f for
almost every u in E, it is sufficient to show it for ¥ in F. Define the regions W, of
§4 with E replaced by F. By Green’s Theorem we thus have

(1.1) L [P(f2)+12-Qlds| < M

with the bound independent of ¢.

LEMMA (7.2). If [, 0, h(z) ™| Vf|? du <0, 0<a' <« and £>0, then there exists a
to>0 such that |h(z)(8f]0z,)| <& and |h(z)2(0f]0z,)| <e, k22, for z € A,(0) and
h(z) < t,.

Proof. Choose r, as in §3, such that D, (w)< 4,(0) if w € A..(0). Write
w=n-h(w)-@G0,...,0)
where ne N and h(w) € S. Then
w0 = [ = do = [ 1Im] |70 .
(W) n-h(w)-Dy(0) Dy(0)

D,
Forne N, |Jn|=1, and for ¢ € S, |Jt|=t"*1. Thus w(D,(w))= Ch(w)**1. Let §>0.
Since | auy P2 Vf|? du<oo, there exists 1,>0 such that h(w)<t,, w e 4,(0),
implies [p, o,y #(z)"|Vf|? du<38. By Lemma (3.5) (b), (1/M)h(w)= h(z) < Mh(w)
and, therefore,

_1
w(D,(w)) Dy(w)
For any harmonic function g, the mean value theorem and Schwarz’s inequality
give

(7.3) h@)|Vf|? dp =

2 1 2
lgw)|? < D) Dr(w)|g(2)| du(z).

Now define the first order differential operators:

b 9 7 b 2
DO =2z 5z—l-+21 621 22 (Zk 3 k+Zk 73 ) D1 = 6—21+8_21’
0 0 = .0 0
D, = =2z, — 7, +6 Z. D, = thka—zl+a—z_’~c-

A straightforward computation shows that these operators preserve harmonicity.
Thus

h( )2 af h(w)? o o
6w = :u'(Dr(w)) Dy(w) 621 aZl
M o U P M N
= WD o "2z | ¥ = WD "N

< M§ by (7.3).
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Also

o 3f ‘[Do——Z(kak+kak) Re wlDl]f {2

ow,

h(wy?| 5~

IA

M[IDof|2+; h(w)lef|2+h<w)2|DIf|2]
_M
(D (w)) Dy(w)
<_M
= (D (W) Jp, ey
M
w(D(w)) Dy(w)

Combining the above two estimates, we have, if w € 4,.(0) and A(w)=<1¢,,

IIA

[IDof I2+§ h(z)| Dy.f >+ h(z2)*| D, f|2] du
ARSZE AT

h(Z)|Vf|? du < M8 by (1.3).

[h(z)2

of <
The bound for h(w)'/?|0ffow,| is obtained by a similar argument.

In §6 the boundedness of h(z)|0f/oz,| and h(z)*'2|of]oz,| in A.(0) was used to
show that faw,,z | Pf| ds< M. A repetition of that argument also gives

(1.4) f |Pf2ds < M.
OW¢ 2

From §5 recall that

0(z) = _—2in_ (%_% __n 9
 lgrad | \oz; 0z,)  |grad | oy,
991 _ | 4oy REliG—u)—2 S5 uizi]
3y1 Ii(fl—u{)—Z 2'2' u{cfk|

Thus Q(z)Ze>0 on dw, 5. Using the fact that Q is bounded away from 0 in (7.1)
gives

fds < M |fP(f)| ds+ M.
aW¢,2 aW;_z
An application of Schwarz’s inequality and the bound (7.4) gives

frds < M[ r2 ds]”2+M.

OWy,2 oWy o

Thus
(1.5) f frds< M  fort>O.
OWy,2
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Let
JSiw) = f([Re uy, &, p(W)]) if (u) # O,
=0 if @, (u) = 0.

Then, using (4.2), (7.5) implies
(7.6) [ Sy sty < .
Let F, be the Poisson integral of | £,
Fi2) = [ P 10| dBw) (e [6D.

Claim (1.7). |f(2)| £ MF,(z)+ M’ for ze W, where M and M' are independent
of t.

By the maximum principle it is sufficient to prove this for z € 9W,. Since oW, ,
and oW, , N {z : h(z) = t,} are contained in a compact set in D, the inequality can
be made to hold there by choosing M’ sufficiently large. Let z € 0W, ,, with
h(z)<t,. Define By([x, Z, 0]) as in §3 and let

E(z) = {[Re uy, &, @(u)] : [Re uy, @ 0] € By([x, Z, 0])}.
Then there exists a >0, independent of ¢ and z, such that Ej,,.(z)< D,(z) and
Esny< W, .

LemMA (7.8). If w e D,(z) and h(z) £ ty, then | f(z)—f(W)| Ze.

Proof. First observe that, translating by an element of N, we may assume
z, w € A,(0) and the hypothesis of Lemma (7.2) is satisfied. If A(z)=1% and w € D,(z)
then there exists a constant M such that |z, —w, | < MA(z) and |z, — w;| < Mh(z)*2,
kz2. For h(z)>0, let t=(2h(z))~* act on z and w as an element of the group S.

Then, as in the proof of Lemma (3.5), we obtain |z, —w;| < Mh(z) and |z, — w,|
< Mh(z)*'2. Let y be the line segment joining z and w.

3_f‘

23

o
|

|[f@—fW)] = w1~z sup aa—g +; [Wi — 2| sup

o
o,

The lemma now follows from (3.5)(b) and the estimates of (7.2).
We return to the proof of (7.7). Applying (7.8) to w € Ej,,(z) (= E(z)) we have

1
(1.9) @ = 5 f o) ot

By (42), |E@)|=]ygu d5Z (5, . dB=M8"h(z)". Thus, rewriting (7.9) as an
integral over By, ,(z) (=B(z)), we have

(7.10) 1@ S | 1) dB-+e.

B(z]

< Mh(z) sup
Y

Mh 1/2
+; (2)"% sup
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For u € B(z), P(u, z)= M/h(z)". Since P is invariant under the action of N, it is
sufficient to show this for z=[0, 0],,. Then it is immediate for

B(z) = {ue B : Max [|Re uy|, > |ux|?] < 8h(2)}
and

ch(z)" .
[(Re u)* +(A(2) + 2 |uil?)°]"

P(u, z) =
Thus from (7.10) we have
£ s M| P 1A di+e

and the claim follows.
Now, using the uniform bound of (7.6), there exists a sequence t,, — 0 such that
| fi.| converges weakly in L%(dB) to some function f; in L%(dB). Let

Fyz) = f P(u, 2)fo(u) dB.

Then by the claim, |f(z)| < MFy(z)+ M’ for z in W,(E). Since F, is a Poisson
integral it is admissibly bounded for almost every u in E by Theorem (1.1). Thus
fis admissibly bounded for almost every u in E.

It remains to be shown that f converges admissibly for almost every u in E. We
use the regions I'y(¥) and V,(E) of §3, and assume that fis uniformly bounded in
V(E). Let

Vt = {ZE Va(E) . h(z) > t}, th = th,l V) th'z V) 3V,'3
where

oV, ={zeodV,: h(z) =1}, Vo ={z€dV,: h(z) = t},
Vg ={ze€dV,:t < h(z) < 1}.
Let
E,={ueB:[Reuy,i,t]edV,,},
Su) = f([Reu,, &, 1]) ifuekE,
=0 otherwise,

F(z) = f P(u, 2)fi(u) dB(w),
we) = [ Pl 2) dBw)

u(z) = i P(u, z) df(u).
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Claim. If ¢>0 for ¢ sufficiently small,
(7.11) [u(2)f(2) — F(2)| = Mw(2)+M'h(z)"+

for all z in ¥, and some constants M and M’.

By the maximum principle it is sufficient to show this on 9V,. For z € 8V ;, the
inequality holds by setting M'=2sup{|f(z)| : z€ V,(F)} and observing that
O<u(z)<1 and 0<w(z). If z € oV, 5, then, as shown in [6], w(z)= C where C>0
depends only on «. Letting M= M'/C gives (7.11) for such z.

Now consider z € 0V;,,. Then

lu2)f(z)- Fi(z)| =

[ P2 dbe=[ P2 dew)

=), P(u, 2)| f(2) —f(w)| dB(u)

- f o P @]
+ j P(u, 2)| f(2)—fi(w)] dB(a)
E¢\Bkn(z)(?)
=L+1,

and we estimate each of these.

LsM P(u, z) dB(u) = M’ P(u, [0, 0, h(2)]) dB(u),

B = Bin(2)(2) B = Bp(2)([0,0,h(2)])

and since

P(u, [0, 0, h(z)]) = Ch(z)"/((Re )+ (h(z)+§ [uk|2)2)"
and B— B,,»([0, 0, h(z)])={u € B : Max [|Re u|, 3, |u|%] Z kh(z)},
I < CM'Jk»

Choose k sufficiently large so that I, < /2. We will now show that if ¢ is sufficiently
small, z, w € 0V5,, and [Re w,y, W, 0] € Byu(»(2), then | f(z) —f(w)| < /2. This gives
I, <¢/2. Translating by an element of the group N, we have z=[0, 0, ¢], and
[Re wy, W, 0] € By, implies Max [|Re w,|, 2% |wi|2] <kt. Since w € 0V, 5, w € T (1)
for some u in E, that is,

n n
Max [ Re w; —Re u1+21mz Wyl ,Z |wk—uk|2] < at.
2 2

Thus
Z Iuk|2 = 2(2 IWk|2+Z ]Wk—uk|2) < 2(kt+at)
2 2 2
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and
n n
|Re u;| < [Rew;—Reu;+21Im z Wil |+ |Re wy| +2 Z Wil
2 2
n 1/2 /n 1/2
< at+kt+2(z |wk|2)~ (Z Iuklz)
1 1

< at+kt+2k 222020k 4 o) 1212 < 4(a+ k).

Combining these inequalities, Max [|Re u;| >3 |u|2] <4(1 +k/a)at, that is,
[0, 0, 4(1 + k/o)t] € T(u).

We have thus shown that the path y lies in V,(E), where y consists of the two
straight line segments: y, connecting [0, 0, #] and [0, 0, 4(1 +k/a)t], and y, connect-
ing [0, 0, 4(1 +k/o)t] and [Re wy, W, t]. Now choosing ¢ sufficiently small and,
repeating the argument of Lemma (7.8), |f(z)—f(w)| <¢/2. This completes the
proof of (7.11).

The functions f; are uniformly bounded and therefore there exists a sequence
t, — 0 such that f; converges weakly to some function f, in L*(dB). Let

F, = J P(u, 2)fy(u) dB(w) and  wo(z) = J P(u, z) dB(u).

Then (7.11) implies
lug(2)f(2)— Fo(z)] = Mw(z)+ M h(z)".

The right-hand side converges admissibly to zero almost everywhere on E, u,
converges admissibly to one almost everywhere on E, and F, converges admissibly
almost everywhere on E by Theorem (1.1). Thus f converges admissibly almost
everywhere on E.

8. The area theorem for the unit ball. Theorem (2.1) is of local character, and
may be pulled back to 2 by using the Cayley transform.
For ue o9 let Ay(u)={z€ 2 : |1-z-u| < (1 +«)/2)(1—|z|?)} be an admissible
domain at u of aperture o> 0. Define the gradient on 2 as
n af n af‘ 2
Ll v e
V71 = Z 0z, sz oz, |
THEOREM (8.1). Let E be a measurable set in 02 and suppose f is a real valued

harmonic function on 2.
(a) Iffis admissibly bounded for each point of E then

2

¢2) [ a-pivrea

is finite for all «>0 and almost every u in E.
(b) If, for each point u of E, there exists an o>0 such that the integral (8.2) is
finite, then f converges admissibly at almost every point of E.
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Proof. Let @~ be the inverse Cayley transform. Then straightforward com-
putations give
(1) If ue D and « >0, there exist constants M, M’ >0 such that

AP Mu) < O A (u) < Apro( @)

Q) [V(fO P =|1-z[|VSf]2

(3) H(@@)=(1—|z[3)/[1 -z

@) |JO|=k|1l —z,|~@n+D,

Let g=f®~*. Then (8.2) may be rewritten as [, o h(z)~"| Vg|? du. By property
(1), Theorem (2.1) can be applied to g. Pulling back to 2 gives the result.

9. Remarks. The present paper follows the general outline of the corresponding
result in Stein [11]. Simultaneously and independently of the present work Stein
[12] in fact proved an area theorem for holomorphic functions on bounded
strictly pseudoconvex domains in C". The intersection of [12] and this paper is
Theorem (8.1) for holomorphic functions.
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