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ABSTRACT EVOLUTION EQUATIONS AND THE MIXED

PROBLEM FOR SYMMETRIC HYPERBOLIC SYSTEMS

BY

FRANK J.  MASSEY HI(l)

Abstract. In this paper we show that Kato's theory of linear evolution equations

may be applied to the mixed problem for first order symmetric hyperbolic systems

of partial differential equations.

1. Introduction. This paper is concerned with the mixed problem for the

following symmetric hyperbolic system of partial differential equations:

x e Û,   0 á t < T;

x e Q.;

xeY,   0 S t â T.

The unknown u = (u1,..., uN) is a real vector-valued function, the coefficients, a¡

and b, are real NxN matrix-valued functions, and the a¡ are symmetric. We assume

Oj and b are of class C2 and C1 on Q x [0, T], respectively. Q is a bounded open

subset of Rm with boundary Y of class C3.

The results are restricted to the regular case where the boundary matrix

an(x, 0 = 2 niix)alx, t),        xeY,    OáíáT,

is nonsingular on Fx [0, 77]. Here « = («i,..., nm) is the exterior unit normal to Ü.

Limits of summation will be omitted when they are clear from the context.

The boundary subspace P(x, t) is a linear subspace of RN which varies in a C3

manner with (x, t) e Y x [0, T], and it is maximal nonnegative for each x, t. This

means

(an(x, t)u, u) ê 0,       ueP(x, t),

and P(x, t) is not contained in any other subspace of RN having this property.

Here (u, v) denotes the usual inner product of u, v e RN.
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(1.1)
it
du     sr.    ,      .  du    ,,      . „.      .

+ Z flX-v> A -jr- +b(x, t)u = f(x, t),
j = i CJXj

u(x, 0) = c/>(x),

u(x, t) e P(x, t),
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Symmetric hyperbolic systems have been studied by Friedrichs ([4], [5]), Lax

and Phillips [10], Cordes and Moyer [2], and others. Here we treat equation (1.1)

using Kato's results [9] on linear evolution equations of the form

du/dt + A(t)u = f(t), 0 á ' â 7,

where the linear operators — A(t) are the infinitesimal generators of C0-semigroups

in a Banach space. Kato established sufficient conditions for the existence of the

evolution operator {U(t, s) : O^iá/^T} for the family {A(t)}, and he applied

these results to the equation (1.1) in the case where Cl = Rm is the whole space. In

this paper we extend Kato's method to the case where Í2 is a bounded domain.

Before proceeding further, we make some remarks concerning notation. We shall

reserve the terminology vector-valued function for a function u = (ux,. . ., uN)

which has A real-valued components. Zand L2(Q) will both be used to denote the

Hilbert space of square-integrable vector-valued functions on Í2. Hk(Q.), k = 0, 1,

..., is the Sobolev space of those u e X whose partial derivatives of order up to k

also lie in X. H~k(ü) is the dual space of //¿YQ), where H^(Q) is the closure in

Hk(Q.) of the set of C°° vector-valued functions with compact support in Q. The

spaces L2(Rm), Hk(Rm), H~k(Rm) are the corresponding spaces on Rm. L2(T) is the

space of vector-valued functions on Y which are square integrable with respect to

the natural surface measure on Y. The Sobolev space Hk(Y), Ofíkfí'S, consists of

those vector-valued functions on Y which coincide on coordinate neighborhoods

with functions in Hk(Rm~1), and H~k(Y) is the dual space to Hk(Y). Unless other-

wise stated, Sobolev spaces Hk are of integral order k, so 0g/cg3, for example,

means zV = 0, 1, 2, 3. We use || || and ( , ) to denote the norm and inner product

in X, L2(Rm), or L2(Y), and || ||fc to denote the norm in Hk(il), Hk(Rm), or Hk(Y).

The underlying space, Q, Rm, or T, should be clear from the context.

If « e Hk(QA, lá¿<3, then u0 e 77* ̂ (T) denotes the trace of u on Y. If P(x),

x e Y, is a linear subspace of RN which varies continuously with x, then Hp(Q.)

denotes the closed subspace of H1(Q.) consisting of those u which satisfy the

boundary conditions u0(x) e P(x) for (almost all) x e Y. For basic properties of

Sobolev spaces, see Hörmander [6], Lions and Magenes [11], Morrey [12], and

Seeley [13].

If ueRN, then \u\ denotes the usual Euclidean norm of u. If a is an Ax A

matrix, then |a| =sup {\au\ : \u\ = 1}, and la is the transpose of a.

If Xx, X2 are Banach spaces, then B(XX, X2) denotes the space of bounded

operators from Xx to X2, and B(XX) = B(XX, Xx).

Let A0(t) be the operator defined by

A0(t)u = 2 Oj(x, t)DjU+b(x, t)u,

with domain, D(A0(t)), equal to H£t(Q). Here Pt(x)=P(x, t) and Dj=d/dx¡. Let

A(t) denote the closure of A0(t) regarded as an unbounded operator in X. Fried-

richs [5] and Lax and Phillips [10] have shown that A(t) + ßt is zw-accretive if

(1.2) ßt = sxxv{\b'(x,t)\:xeil},
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where b' =:2-(b + tb — ]> x°>at¡dx¡). (Recall that an operator A in a real Hilbert space

X is accretive if (Au, w)^0 for all u e D(A). A is m-accretive if y4 + A has range X

for all A>0. This implies —A generates a C0-semigroup of contractions in X.)

Thus — A(t) generates a C0-semigroup in X.

The following are the main results.

Theorem 1. There exists an isomorphism S(t)from Hpt(Q) °nto X such that

SUWOSU)-1 = A(t) + B(t),

where B(t) is a bounded operator on X.

Remark. According to Proposition 2.4 of [9], Theorem 1 implies that the

subspace Hpt(Q) is admissible with respect to A(t). This means (see [9, Definition

2.1]) the semigroup generated by —A(t) leaves Hpt(Q.) invariant and forms a

Co-semigroup in this space.

Theorem 2. If P(x, t)=P(x) does not vary with t, then S(t) in Theorem 1 may

be chosen so that it is continuously differentiable on [0, T] to B(Hp(LÏ), X) and B(t)

is continuous on [0, T] to B(X).

Remark. Suppose that P(x, t)=P(x) does not vary with t so that Theorems 1

and 2 are true. Then Theorems 4.1 and 6.1 of [9] may be applied to the family

{A(t)}, taking H^(Q.) for the subspace Y in those two theorems. Note that the

stability condition (i) of Theorem 4.1 is true with M= 1 and (8 = sup¡ {ft}, since the

operators A(t)+ßt are «7-accretive. The condition (iii) of Theorem 4.1 is also easily

seen to be true.

We then have the following result for equation (1.1).

Theorem 3. Suppose cf> e Hp0(Q) and the map t ->/(-, /) is continuous on [0, T]

to H\Q) so that /(-, /) belongs to H^O.) for OS'^T. Then (1.1) has a unique

solution u(x, t) such that the map t —> u(-, t) is continuously differentiable on [0, T]

to Xandu(-,t) belongs to H^t(Q)forO^t^T.

Remark. If P(x, t) = P(x) is independent of t, then the conclusions of Theorem

3 follow directly from Theorem 7.1 of [9]. We shall show that the general case

where P(x, t) varies with / may be reduced to the case P(x, t)=P(x,0) by an

orthogonal transformation of the dependent variables.

The remainder of the paper is devoted to proving the above results. In §2 we

construct the operator S(t). §3 contains inequalities involving commutators.

These are used in §4 to show that S(t) is an isomorphism from Hpt(Q.) onto X and

to establish a regularity result for S(t). Theorems 1, 2, and 3 are proved in §5.

The author wishes to thank Professor T. Kato, who suggested this problem,

for his assistance and guidance in this research.

2. Construction of the operator S. We first consider Theorem 1. Here the

variable t is only a parameter, and we shall omit it in the discussion and simply

write a¡(x), S,..., for a¡(x, t), S(t), etc.
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By the Stone-Weierstrass Theorem, the set of all real-valued functions of class

C3 on F is dense in the Banach space of real-valued, continuous functions on T.

It follows that, given any e>0, there exists a C3 vector field v such that

| —n(y) — v(y)\ Se for all y e Y, where n is the exterior unit normal to Y. We choose

such a v so that this inequality is satisfied for some e<l. Then v(y) points into the

interior of Q. for each y e Y, i.e. (v(y), n(y)) < 0.

Using this v, we introduce new coordinates near Y as follows. Let co=Yx [0, c],

where a is chosen small enough so that certain conditions stated below are satisfied.

Consider the mapping (u->/îm defined by

(2.1) (y, s)^y + sv(y),        (y, s) e w.

Using the fact that v(y) is nowhere tangential to T, it follows that the derivative

of (2.1) is nonsingular for 5 = 0. Using the inverse function theorem, one may then

show that (2.1) is a diffeomorphism if <j is chosen sufficiently small. Denoting the

range of (2.1) by Ü' (note that Q,'<=Q.), the inverse O' -> w has the form

(2.2) x->(y(x),s(x)),       xeQ.'.

Thus, y(x) e Y and s(x) e [0, o] may be thought of as new coordinates for x e D'.

The matrix

(2.3) c(x) = 2 at(x)(dsfdXf),       x e LT,

has the property that it is a strictly negative scalar multiple of the boundary

matrix an(x) for x e Y. This is because the vector (8s/8xx,..., 8sfdxm) is an interior

normal to Q, since Y = {x e Q' : s(x) = 0}. Since an is nonsingular, a may be chosen

so that c(x) is nonsingular for x e Í2'.

The spaces L2(ÍT) and Hk(Q') are defined in the same way as L2(Q) and Hk(il).

L2(oj) denotes the space of vector-valued functions on co=Y x[0, o] which are

square integrable with respect to the product measure on a>. We consider w as a

compact, C3 manifold-with-boundary, and we shall use the Sobolev spaces Hk(a>),

— 3a/c^3. For the definition and basic properties of these spaces, see Hörmander

[6].
Let the operators U0, U: L2(Q.') -> L2(co) be defined by

U0u(y, s) = u(y + sv(y)),        (y, s) e w,

(2.4)
Uu = U0hu,

for ueL2(Q.'). Here h{x)=\j(x)\~m, where j(x) is the Jacobian of the mapping

(2.2). Since the map (2.1) is of class C3, U0 is an isomorphism from Hk(Q.') onto

Hk(a>) for 0 g k S 3. However h is only of class C2, so U is an isomorphism between

Hk(iY) (resp. Hg(Q')) and Hk(w) (resp. H^w)) only for 0 g Arg 2. Using the change

of variables formula for integrals, one sees that U is unitary from L2(D') to L2(w).

By duality, U extends to an isomorphism between Hk(Q.') and Hk(co) for k= — 1,

-2.
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Let c/>i + xp'l= 1 be a C3 partition of unity for Rm with the following properties:

(i) 4>=l and xfj = 0 in a neighborhood of £2~Q'.

(ii) The support of <f> is compact in ¿i, so </> = 0 and </> = 1 near I\

(iii) For x e ÍY, cf>(x) and xfi(x) depend only on s(x). The reason for this last

assumption will be discussed in a moment.

In the definition of S we shall use certain matrix-valued functions defined on Y

which locally transform the boundary subspace P(y) into a subspace which does

not vary with y. To construct these functions, we shall use the following lemma.

Lemma 1. Given y0 e Y, there exists a neighborhood "7/ of y0 (with respect to Y)

and an orthogonal matrix-valued function r e C2(Y) such that, for y e °ll, r(y) maps

P(y) onto P = {u e RN : w1= • ■ • =up = 0}, where p is the common codimension of

P(y)for y belonging to the connected component of Y which contains y0.

Proof. Clearly there exists <?/ and r of class C2 on W with the property that

r(y)P(y) = P for y e<%. The problem is to extend r to all of Y. This can be done by

modifying r near d6?/ so that it is equal to r(y0) there. For example, by shrinking the

neighborhood ■?/, if necessary, and introducing local coordinates, we may assume

that we are working in Fm_1, y0 = 0, and °l¿ is the ball about y0 of radius 1. We

choose a Cœ real-valued function p on [0, 1] with the property that p(t)=\ for t

near 0 and p(/) = 0for 'near 1. Then r'(y) = r(p(\y\)y) has the desired properties.   D

Using this lemma, we can find an open covering ^¿u ..., <%K of F together with

orthogonal matrix-valued functions r1;. . ., rK e C2(Y) such that, for k= 1,. . ., K,

and y e °Uk, rk(y) maps P(y) onto

(2.5) Pk = {ueR>'iu1=--- = uPk = 0}.

(pk is the same for those °llk lying in the same component of Y.)

We choose a partition of unity for Y

(2.6) J II = 1
te-l

such that Ck has support in <?/k for each k.

Let Ar denote the Laplace-Beltrami operator on Y. This is a negative self-

adjoint operator in L2(Y) if we choose D(Ar) = H2(Y). Let Ar = (l - Ar)1/2. Then

Ar is an isomorphism from Hk(Y) onto Hk~1(Y) for lá/V^3. By duality Ar

extends to an isomorphism from Hk(Y) onto Hk~1(Y) for — 2g/cg0.

We shall frequently use the natural correspondence whereby a function u(y, s)

on w = Y x [0, a] is regarded as a function u( ■, s) on [0, a] whose values are functions

on T. Under this correspondence L2(co) is naturally isomorphic to L2([Q, a]; L2(Y)),

the space of square-integrable functions on [0, a] with values in L2(Y). We also

have

(2.7) Hk(co) ^ H°([0, a] ; Hk(Y)) n---n Hk([0, a] ; H°(Y)),
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for £=1,2,3. Using this correspondence Ar may be regarded as a bounded

operator from Hk(w) to Hk~1(co) for 1 ̂ /<^3. Ar maps //¿(co) into H^'1^), so,

by duality, Ar extends to a bounded operator from Hk(co) to Hk'1(oj) for — 2ja&

áO.
Let M=U~1ArU. Then A/ is a bounded operator from TT^ÍT) to //^(LV)

for — 1 ̂  /i: á 2. Since t/ is unitary, M is symmetric and bounded below by 1 if it is

considered as an operator in L2(Q.') by restricting its domain to H1(Q.'). If we

regard </> and \f> as functions on Q', then it follows from the assumption (iii) above

that M<fu = <f>Mu for u e //_1(Í2') and similarly for </>.

Let A = (l— A)1'2 where A is the Laplacian in the whole space Rm. A is an

isomorphism from Hk(Rm) onto Hk-\Rm) for all k.

The expressions u^<f>A<f>u and u^>p{,krk~1Mrk£,k>fu define bounded operators

from Hk(Q.) to Hk-\ü.) for -2^A:^3 in the first case and for -tgk£2 in the

second. We are regarding multiplication by ^ as a bounded operator from Hk(Q)

to Hk(Rm) and also from Hk(Rm) to Hk(Q) since it has compact support in Q. In

the second case i/j vanishes in a neighborhood of Í2~Ü' so that it is a bounded

operator from Hk(D) to Hk(iY) and also from Hk(Q.') to Hk(Cl).

The operator 5 is now defined by

(2.8) Su = (Ao + ß)u + 4>A*f>u + 2 +&¡;lMrJJu,

for u e D(S)= Hp(Q.). Here ß = ßt has the value given by (1.2). One sees that S is a

bounded operator from Hp(Q.) to X. We shall show in §§4 and 5 that S fulfills the

requirements of Theorem 1.

3. Inequalities involving commutators. This section contains results which will

be used later to prove Theorems 1 and 2. We begin with the following proposition

which is due to T. Kato (unpublished).

Proposition 1. Let A be a strictly positive selfadjoint operator in a Hilbert space

H, and let B e B(H) be such that B maps D(A) into itself with ABA " » e B(H). If

(3.1) \\[A,B]u\\ á C\\A"2u\\,        \\A-^[A, B]u\\ ï C\\u\\,

for u e D(A), with a constant C, then

(3.2) ¡[A1», B]u\\ S (C/2)\\u\\, u e D(A1'2),

(3.3) ¡M1'4, B]u\\ â (Cßy-^WA-^uW,        ueD(A1'i).

Here [A, B] = AB — BA denotes the commutator.

Proof. Using interpolation (see Kato [7]), one sees that B maps D(Aa) into

itself with AaBA~aeB(H) for OgaSl. Thus [A112, B]u and [AVi, B]u are well

defined for u e D(A112) and u e D(Ai:i) respectively.

We claim that (3.1) implies

(3.4) ¡A-^^B^W ¿ CM1/4ii||,       ueD(A).
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In order to see this, let Tu = A-ll2[A, B]u, ueD(A). By (3.1), Fand A1I2TA~112

extend to bounded operators on //with norm bounded by C. Using interpolation,

we obtain \AwTA-m\ gC, which implies (3.4).

We now consider [A112, B]. Since A1I2BA~112 belongs to B(H) and D(A) is a core

of A112, it suffices to prove (3.2) only for u e D(A). For such u, All2u is given by

/* co

Av2u = „-ii    x~ll2R(X)Au dX,
Jo

where R(\) = (X + A)~1 is the resolvent of — A. For fractional powers, see Kato

[8] and Yosida [14]. Since [R(X)A, B] = X[B, R(X)] = XR(X)[A, B]R(X), it follows that

[A112, B]u = rr-1 f X1I2R(X)[A, B]R(X)udX.

Here and in the following, integrals are from 0 to co. If v e D(A), then

([A112, B]u, v) = rr-1 f Xm(A-1H[A, B]R(X)u, AmR(X)v) dX.

Using (3.4), it follows that

\([A112, B]u, v)\ á rr-'C f Xll2\\A1'iR(X)u\\ ¡A^R^ii dX

^ tt^cI j* Xll2(R(X)2All2u, u) dX

[ Xll2(R(X)2All2v, v) dX
\ 1/2

Using the spectral theorem, one has j X1I2R(X)2 dX = (n/2)A   1/2. It follows that

\([A112, B]u, v)\ g(C/2)||w|| \\v\\, from which (3.2) follows.

The inequality (3.3) is proved in a similar manner. Starting from the formula

A^u = 2-1,27T-1 ^ X~3liR(X)Au dX,

one proceeds as before to obtain

([il1» B]u, v) = 2-1/27T-1 i X1'\R(X)u, [B, A]R(X)v) dX.

Using the first half of (3.1), one obtains

\([A111, B]u, v)\ S 2-1,27T-1cj Í Xll2(R(X)2u, u) dxX   j Í (R(X)2Av, v) dX)

= (C/2)Tr-1'2\\A-^u\\\\v\\,

from which (3.3) follows.    □
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Corollary. Let A be as in Proposition 1. Let T be an unbounded operator in H

with D(T)=D(A112) and TA'112 e B(H) and such that T maps D(A312) into D(A)

with ATA^312 e B(H). If

(3.5) \\[A,T]v\\ S C\\Av\\,        \\A^'2[A,T]v\\ g C\\All2v\\,

v e D(A312), with a constant C, then

\\[All2,T]v\\ ^(C/2)\\All2v\\, veD(A),

||L/11/4, T]v\\ S (Cßyn-ll2\\Awv\\, ve D(A3li).

Proof. This follows by applying Proposition 1 to B=TA~112.    □

The next theorem is a consequence of results from the theory of singular integrals

proved by Calderón [1], and it will be used frequently later.

Theorem (Calderón). Let A be the Laplacian on Rm and A = (l-A)1/2. If

a e C\Rm), then

\\[A,a]u\\ è CHICHI,        ueH\Rm),

with a constant C independent of a and u. If a e C2(Rm), then

|[A,aHi = C'lHcHMIi,       ueH2(R'A.

Here Ck(Rm), ¿=1,2, is the class of real NxN matrix-valued functions on Rm

which together with their first k derivatives are continuous and bounded on Rm.

¡c* is the usual supremum norm in this space. Also, ||   || and ||   jd are the norms in

L2(Rm) and H^R"1), respectively.

The following result is essentially due to Seeley [13], but we give another proof

here.

Lemma 2. Let Ar be the Laplace-Beltrami operator on Y and Ar = (l — Ar)1/2. //

a e C2(Y), then

(3.6) \\[Ar,a]u\\k Ú C\\a\\c*\\u\\k,       ueHk + 1(Y),   k = 0, 1,

with a constant C independent of a and u. Here C2(Y) is the Banach space of C2

matrix-valued functions on Y, and |[   ||fe denotes the norm in Hk(Y).

Proof. For k = 0 this can be established using Proposition 1 with H=L2(Y),

A = l — Ar, and B being the operator of multiplication by a. The hypothesis (3.1)

reduces to showing

(3.7) \\[Ar,a]u\\k-i g const. Hc*H*       ueH2(Y),   k = Q,l.

We have

[Ar, a]u = 2(grad (a), grad («)) + uAra,

and the inequality (3.7) follows from this. Therefore (3.6) is true for k = 0.



1972] SYMMETRIC HYPERBOLIC SYSTEMS 173

The case k= 1 may be proved from the case k = 0 using the relation Ar[Ar, a]u

-[a, Ar]w-[Ar, a]Aru.    D

Lemma 3. Let Ar, Ar be as in Lemma 2. If ae C2(Y), then

||[Ai'2,z7]Wj| S C\\a\y\\A^2u\\,       ueH^Y),

with a constant C independent of a and u. Here ||  || denotes the norm ofL2(Y).

Proof. This is proved using Proposition 1 in the same way that (3.6) was estab-

lished in the case k = 0.    □

The following lemma is again due to Seeley [13], but before stating it we make

some notational comments. If V is a vector field on Y and u is a function on T,

then Vu = (V, grad («)) is the directional derivative of u in the direction V. The set

of vector fields of class Ck on Y (k = 0, 1, 2) is a Banach space, and a norm for this

space may be defined as follows. Let {U¡} be a finite covering of Y such that each

U¡ is the domain of a coordinate chart which maps Ut onto the unit ball B^R™'1.

With respect to the local coordinates for í/¡ the vector field Kcan be represented as

(Vi¡x, ■ ■ -, Vi.m-i), where the Vuj are Ck real-valued functions on B. We define

i¡nic* = 2n,/'.7¡¡cw
i, i

Lemma 4. Let Ar, Ar be as in Lemma 2. If V is a C2 vector field on Y, then

(3.8) ||[Ar, V]u\\k.x ¿ C||Kic«Hte       ueHk + \Y),   k = 1,2,

where the constant C is independent of V and u.

Proof. For k=l the inequality (3.8) can be established using the Corollary to

Proposition 1 where one takes H=L2(Y), A = 1 — Ar, and Tu= Vu. The hypothesis

(3.5) reduces to showing

(3.9) fl[Ar, F]«lk_a = const. ||V\\c*\u\\k,       ueH3(Y),   k = 1,2.

This inequality can be proved by showing that it holds in the domain of any

coordinate chart. When restricted to such a domain we may assume we are working

in Rm~l. The operators V and Ar become first and second order differential

operators respectively, and the inequality (3.9) is shown to be true. Thus (3.8)

holds for k= 1.

The inequality (3.8) for k = 2 follows from the case k= 1 together with (3.9) and

the relation Ar[Ar, V]u=[V, Ar]tz-[Ar, V]Aru.    □

Now we obtain formulas for the transformation of the differential operators

Dj = d/dXj under the mappings U, U0 defined by (2.4). Using these, we consider

commutators involving the operator M.

Let (y, s) —>y + sv(y), x -> (y(x), s(.x)), c(x), and h(x) be as in §2. Define

hj = hd(h~1)/Sxj, yj = dy/dXj, sj = 8s/dxj. Put <x¡(y, s) = a}(y + sv(y)) for (y, s) e w,
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and let y, S;, ct3, V¡ be defined in the same way from c, h¡, s}, y,, respectively. (Note

that Y, is a vector field on oz.) Let S = 2 «A and

(3.10) £fv = y 8v/8s + ^ ajVjV + Sv,       v e H\co).

Then we have

Lemma 5.

UoDjUöH = Vjv + otfvlds),       UDjU-H = Vjv + oj(8v/8s) + 8jv,

U^ajDjU-'v = 2v, \Vfi\ á C\\Arv\\,

v e //1(ct>). Here ||  || denotes the norm in L2(co).

Proof. In order to show the first relation, note that U0~1v(x) = v(y(x), s(x)).

Using the chain rule, we have DjUö1v= Vjv + (8v/8s)(8s/8xj), where Vp and 8v/ds

are evaluated at (y,s) = (y(x),s(x)). The formula for UoDjUo'1 then follows.

Since U=U0h, one may obtain the formula for UDjU'1 from the formula for

UoDjUö1- Using this and (2.3), one arrives at the third formula.

Note that the vector field V} is tangential to Y, i.e. V,(y, s) is a tangent vector to

T for each (y, s)eco. Therefore (Vjv)(s)=Vj(s)v(s) for se[0,a]. Here V¡(s)

denotes the vector field on Y defined by Vj(s)(y)= V¡(y, s), y e Y. It follows that

Il ̂ ;f(-s)||r = CII Arü(/j)||r, where C is a constant independent of s and || ||r is the

norm in L2(Y). Integrating from 0 to a gives the last inequality in the lemma.    □

Lemma 6. If a e C2(Q.'), then

\\[M,a]u\\k S C\\a\y\\u\\>c,       ueHk + 1(£l'),   k = 0, 1,

with a constant C independent of a and u. Here \\   \\k is the norm in Hk(Q.').

Proof. Under the mapping U this inequality corresponds to the inequality

||[Ar, a]tz||fc^C||a||ca||ij||fc, where a(y,s) = a(y + sv(y)), v=Uu, and the norms are

now with respect to id. This inequality follows from Lemma 2.    □

Lemma 7.

IIM.&M.áClHi,       ueH\Q.').

Here ||   || is the norm in L2(Q.').

Proof. Using Lemma 5 and transforming to co by the mapping U, one sees that

it suffices to prove

||[Ar, Vi + crj(8/8s) + 8í]v\\ ^ const. \\v\\u

where v= Uu. This inequality is easily obtained from Lemmas 2 and 4.    □

Lemma 8. If p is a C3 function with support in the interior of Q-', then

\\[pMp, A]«|| S CMu        \\[pMp, A1'2]«! á CIA1'2«!!,
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ue H2(Rm). Here || || and \\ \\x denote the norms in L2(Rm) and H\Rm). We are

regarding u ^- pMpu as a bounded operator from Hk(Rm) to Hk~1(Rm) for k=l,

¿ 2

Proof. Let M'= Uo~1ArUo = hMh~1. M' has the advantage that it maps H\£h')

into H2(Q.'), while M does not. Note that (M-M')u = h[h~\ M]u, u e H\Q!). It

follows from Lemma 6 that M—M' extends to a bounded operator on Hk(Cl'),

k = 0,1. Thus pMp — pM'p extends to a bounded operator on Hk(Rm), k = 0, 1. Using

interpolation, one sees that this is also true for k = ^. Consequently it suffices to

prove the inequalities in the lemma with M replaced by M'.

We can use the Corollary to Proposition 1 with H=L2(Rm), A = l— A, and

Tu = pM'pu. The hypothesis reduces to showing

(3.11) |[A,pA/VHfc-a = C||"IU>       ueH3(Rm),   k = 1,2.

One has

[A, PM'p]u = Y (DAD,, pM'P]u+[Dj, pM'p^u),
(3.12)

[Dj, pM'p]u = (dp/dXj)M'pu + p[Dj, M']pu + pM'(dp/8Xj)u

Using Lemma 5, we have

[Dj, M']v = Uo'HVi, A^UoV+Uo-1^-, Ar](8/8s)U0v,

v e H2(ü.'). It follows from Lemmas 2 and 4 that

\\[D}, M']v\\k.x S C\\v\\k,       veHk + \Q'),   k = 1,2.

Hence

\{D„ />M>]«|te_1 á CM*.       ueHk + \R™),   k = l,\

Using duality and the fact that (M'u,v) = (u,h~2M'h2v), u, v e H1(Qi'), one can

show that this inequality holds for k = 0. The inequality (3.11) can now be proved

by combining this with (3.12).    □

4. Properties of the operator 5.

Proposition 2. S is an isomorphism from Hp(£l) onto X.

In the proof of this proposition we shall use the operator R defined by

Ru = (A0+ß)u + <f>A</>u + 4>M'pu,        u e D(R) = D(S).

Lemma 9. 5— 1 and R— 1 are accretive when considered as operators in X, and

S— R extends to a bounded operator on X. It follows that Proposition 2 is true if and

only if R is an isomorphism from Hp(Q.) onto X.

Proof. If we expand (Su, u) using the formula (2.8), then ((A0 + ß)u, u) is non-

negative because A0 + ß is accretive, and (</>Acf>u, u) is bounded below by \\(/>u\\2

I
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because A is selfadjoint and bounded below by 1 when considered as an operator

in L2(Rm). We have

2 (Mrklk^u, rkt,k<f>u) § 2 ir^^u, rk£kif>u) = ||<Aw]|2.

The inequality on the left is a consequence of the fact that M is symmetric and

bounded below by 1 when considered as an operator in L2(Í2'), and the equality

on the right follows from (2.6) and the fact that the rk are orthogonal. Therefore

($u,ü)Z ¡|<H|2+|1H2= ll«ll2,       ueD(S).

Here we have used the fact that <f>2 + if2 ä </>4 +1/<4 = 1. The proof that R — 1 is accretive

is the same except the rk and £fc do not appear.

One has

(4.1) (S-R)u = 2 Hy^lM, rktk]tu,        u e D(S).

By Lemma 6, S—R extends to a bounded operator on X.

Since S— 1 and R—l are accretive, it follows that S has range equal to X pre-

cisely when 5— 1 is w-accretive and similarly for R. In general, if two accretive

operators differ by a bounded operator, then one is w-accretive if the other is.

Thus, Proposition 2 is equivalent to the range of R being X.    □

We prove that R has range equal to X by showing (1) R is closed when regarded

as an operator in X, and (2) its adjoint R* is one-to-one. The first assertion is a

consequence of the following lemma.

Lemma 10. The operator R satisfies

(4.2) \\u\\x S C\\Ru\\,        ueD(R),

with a constant C.

Proof. Since R—l is accretive, one has ||u|| á \\Ru\\, ueD(R). Therefore, it

suffices to show

(4.3) \\u\\2xúC(\\Ru\\2+\\u\\2),       ueD(R).

Here and in the following, C denotes a constant.

Since </>4 + i/z4 = 1, we have

(4.4) \H\ ^ C(Wu\\2x + Wu\\ï),       ueH\Q.).

Using Calderón's theorem, it is not hard to show

(4.5) \\<t>2u\\2xSC(\\<t>A<f,u\\2+\\u\\2),       ueH\QA.

For the term ift2u, we shall establish the following estimate:

(4.6) ||« = C(|KW|!2+||^MH|2+H|2),       ueH\Q),
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where sé denotes the formal differential operator 2 a,D,. In order to show (4.6),

we first note that

Hi = C(||aw/&||-r-||Arw|| + ||vv||),        weH\a>),

where || || and || \1 are the norms in L2(co) and H1(w). This inequality follows from

(2.7) and the fact that Ar is an isomorphism from H1(Y) onto L2(Y). Now let Jif

be the operator defined by (3.10). Since y is nonsingular, one has

||Sw/oí|| á cí|árV|+2 II Ml + Ml).       weH\w).

If one combines this with the preceding inequality and uses the fact \V¡w\

íSC]|Arw¡|, proved in Lemma 5, one obtains

Hi è C(\\J?w\\ + || Arw|| + HI),       w e H\w).

Using the formula Ustf' = A£U, proved in Lemma 5, it follows that

Hi = C(\sáv\ + \Mv\ + \v\),       veH\Q.'),

where the norms are with respect to í¿'. Putting v = xji2u and using the fact that M

commutes with multiplication by x/>, one obtains (4.6).

Combination of (4.4), (4.5), and (4.6) leads to

(4.7) H2 á C(\séu\2+ \\i,A^uf+\\x/>Mx/su\2+ H2),

u e H1(ü). Keeping this in mind, we expand ||F«||2. Note that in proving (4.3), we

may ignore terms in R which act as bounded operators on X. Thus we may assume

without loss of generality that zj = 0, ß = 0. Then

(4.8) \\Ru\\2 = \\s¿u\\2+\\c¡>Acbu\\2+\\xf>Mx¡Ju\\2 + 2(s¿u, Ku) + 2(cbAcf>u, xf,Mxf>u),

where Ku = <bAc/>u + x/jMxf>u. In a moment we shall prove

(4.9a) -(</,Ac/,u,x/jMx/>u) ^ CJHIiHI,

(4.9b) -(sáu,Ku) g C (I m II il m II,

u e D(R). Combining (4.7), (4.8), and (4.9ab), one arrives at

HW||! â c(||FM||2 + HiH|).

Since 2H|i[|w]|gC-1H[2 + CH2, one obtains (4.3).

We now show (4.9a). Let p be a C3, real-valued function on Rm such that (1)

p(x) = x/i(x) for x belonging to the support of </>, and (2) the support of p is contained

in the interior of £2'. Then cj>x/i = </>p. It follows that c\>x/¡Mx/¡u = pMpcf>u since cb and M

commute. Therefore, it suffices to show — (Aw, pMpw) í£C||w||i||m'||, where

w = cj>ue H1(Rm) and the inner product and norms are with respect to Rm. We may

assume w e H2(Rm) since this set is dense in H1(Rm). We have

-(Aw, pMpw) = -(PAll2w, MpAll2w)-([PMp, A1/2]A1,2w, w).
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The first term on the right is nonpositive since M^l. Using Lemma 8, one sees

that the second term is bounded in absolute value by C || wJlilJwH.

Finally we show (4.9b). We may assume u e H2(Q) n Hf,(Q.) since this set is

dense in Hf>(Q). Since K is symmetric, one has (stfu, Ku) = (s/Ku, tt) + ([K, s#]u, u).

If one integrates the first term by parts, one obtains (s/Ku, u)= —(Ku, (s/ + e)u)

+ ((Ku)o, anv)r, where e = 2 8a¡/dXj. Here v = u0 and (Ku)0 are the traces of u and

Ku on T, and ( , )r denotes the inner product in L2(Y). Since t/> = 0 on Y, we have

(Ku)0 = (</iM4>u)0. Using the fact that Mu = h'1U0~1ArUQhu, one can show (Ku)0

= h0~1Arh0v, where h0 is the restriction of h to T. It follows that

273/77, Ku) = ([K, s#]u, u)-(Ku, eu) + (höA\rh0v, anv)r.

Using Calderón's theorem and Lemmas 6 and 7, one can show

(4.10) \\[K,^]w\\iC\\w\\x2ny,       weH2(Cl).

Therefore, in order to finish the proof of (4.9b), it suffices to show

(4.11) -(zVArV^r S CMiH-

Let rr(y), y e Y, be the orthogonal projection of RN onto P(y). Then rr(y)v(y)

= v(y) since u e D(R). Thus

(Ao 1ArA0», anv)v = (Ar», av)r+(käxlAr, h0w]v, anv)r,

where a = nanTr. Note that a(y)^0 for y e Y. By Lemma 2, the second term on the

right is bounded in absolute value by C||t>||r, where || ||r denotes the norm in

L2(Y). For the first term on the right we have

(Arv, av)r = (Ahl2V, aAhl2v)r + ([a, A^A^hi, v)r.

The first term on the right is nonnegative since a^O, and the second term is

bounded by C||t>||2, by Lemma 3. This proves -(hö1Arh0v,anv)r^C\\v\\2. In

order to complete the proof of (4.11), it suffices to show ¡7'||^gCj|z77||w||. Using a

partition of unity and change of variables, this inequality can be reduced to the

case where LÏ = {xeRm : xm>0} and Y = {xeRm : jrm = 0}. Using integration by

parts, we have (v, v)r= — 2(Dmu, u), and the desired inequality follows from

this.    D

In order to finish the proof that the range of R is X, it remains to show that

R* is one-to-one, where R* is the adjoint of R regarded as an operator in X.

The formal adjoint of A0 is given by

B0v = -2 DfifV + 'bv,        v e D(B0) = H&(Q),

where Q(x) = (an(x)P(x)y, x e Y, is the boundary subspace formally adjoint to P.

The formal adjoint of R is then defined by

Tv = (BQ+ß)v + 4>Acl>v + >l>M4>v,        v e D(T) = H^(Q).
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R and T are formally adjoint to each other, i.e. (Ru,v) = (u,Tv), u e D(R),

v e D(T). It follows that T is closable when regarded as an operator in X and

TzR*, where f is the closure of T.

The operator B0 + ß is accretive; this is proved by Friedrichs [5]. Using the

argument in Lemma 9, one sees that T— 1 is accretive. Hence ||w|| ¿ \\Tu\\, u e D(T),

and Fis one-to-one. In order to show R* is one-to-one (and to complete the proof

of Proposition 2), it suffices to prove the following lemma.

Lemma 11. f=R*.

Proof. In the terminology of Friedrichs [3], T is the strong extension of T and

R* is the weak extension of T, so the proposition asserts the equivalence of the

weak and strong extensions of F. Friedrichs ([3], [4], [5]) and Lax and Phillips [10]

have shown the identity of weak and strong extensions of first order partial differ-

ential operators, and this proof is an extension of their methods to the case at hand.

Let |2 + 272= 1 be a C3 partition of unity for Rm with the following properties:

(i) rf=l and 7) = 0 in a neighborhood of the support of </>, so that %</> = </>,

rjc/> = 0, and 7)x/i = r¡.

(ii) The support of f is relatively compact in fi; in particular, | = 0 and 77=1

near Y.

(iii) For x e LY, rf(.v) and ^(.v) depend only on s(x). This implies that M^u = ^Mu,

u e //_1(Q'), and similarly for r¡.

Since the inclusion FçF* has already been shown, it remains to prove the

opposite inclusion. Let v e D(R*) with R*v=f We shall show £2v, ifv e D(f).

We first show £.2v e D(f). Let JE = (l + «A)~\ e>0. For each k, /„ maps Hk(Rm)

into itself with norm uniformly bounded in e. If u e Hk(Rm), then Jeu -> u in Hk(Rm)

as e -> 0. Furthermore /, maps Hk(Rm) into Hk + 1(Rm).

Let Hsu=£Js£u, where we regard multiplication by f as an operator from

Hk(Q.) to Hk(Rm) and also from Hk(Rm) to Hk(Q), |A|j&3. Then, for [k\áX HE

maps Hk(Q.) into itself with norm uniformly bounded in e. If u e Hk(Q.), then

Hsu -> i2u in Hk(D.). (From now on we omit "*-r>ö" when it is clear from the

context.) For -3^k^2, H£ maps Hk(Q) into Hk + 1(Sl).

Let ve = Hev. Then ve e D(T) since f = 0 near Y. Also ve -> £2v in X. In order to

show <i2v e D(T), it remains to show Tvc converges in X.

Let Tx: X-* H'1^) be defined by

Fi« = -2 DjaJu + (tb+ß)u + <l>A<f>u+<liMipu,        ueX.

Note that Fj is an extension of F. It is not hard to see that T1v=f. Then we have

Tve = Hef+ [Tx, He]v. Since Hef^> |2/in X, it remains to show [Tu Hs]v converges

in X. In fact we shall show

(4.12) [Fj, HE]u converges in X   for all ue X.
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The first step is to show

(4.13) \\[Tx,H£]u\\ = CM.        ueX>    *>0,

with a constant C independent of e.

Let x be a C°° real-valued function with compact support in Q with the property

that x(x)= 1 f°r x belonging to the support of $. Then x£= £ ar>d

(4.14) [Tx, He]u = [Tx, faJJu+ebcTtf, J.]€u+€J,x\Ti, è]u.

In the first and third terms on the right we have

(4.15) \\[Tx,è]w\\èC\\w\\,       weHHQ).

This follows from Calderón's theorem and Lemma 6. In the second term we have

\xTiX,J,]w = «/.[A, xTixVe* = JAK xTlX]A-\l -Je)w,

weL2(Rm). It follows from Calderón's theorem and Lemma 8 that ||[A, xT^ji'H

úC\\v\\x, veH2(Rm). Therefore

\\[xTxx,JcM\úC\\w\\,       we.H^m,    e>0.

Since H\Rm) is dense in L2(Rm), this holds for zz e L2(Rm). Combining this in-

equality and (4.15) with (4.14) proves (4.13).

Having established the inequality (4.13), we can prove (4.12) using the following

well-known principle:

(4.16) Let Ae: Xx -> X2, e>0, be a family of continuous linear operators

between Banach spaces Xx and X2. Suppose the Ae are uniformly bounded in norm

with respect to e and Aeu converges in X2 as e -> 0 for all u belonging to a dense

subset of Xx. Then Asu converges in X2 for all u in Xx.

In the particular case of (4.12) one sees that [Tx, He]u converges in X for all

u e H1(Q.). Since H1(Q.) is dense in X, the assertion (4.12) follows. This completes

the proof that i2v e D(f).

In order to show -rfv e D(t), we transform from Ü. to o>. However, we first make

the following observation. Suppose C is a bounded operator on X. Then Lemma

11 is true if and only if (R+C)* coincides with the closure of T+C*. Thus we may

assume without loss of generality that b = 0, ß = 0 in R and T.

Let

(4.17) Eu = &u + Aru,

where the domain of E consists of those u e Hr(oS) which satisfy the boundary

conditions u(y, 0) e P(y), u(y, a) = 0 for a.a.yeY.lfue D(E), then tjU^ug D(R)

and

(4.18) RrlU~1u = -qU  1Eu + ^ atfri/oxAU -1».
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Here we have used Lemma 5 and the fact that r/c/> = 0. It follows that if E* is the

adjoint of E regarded as an operator in L2(w), then Ur¡v e D(E*) with

E*Uvv =/' = C/(,/-2 miBxiJàÀ.

The formal adjoint of E is given by Fw=Jtw + Avw, where

J(w = — (8/8s)yw— V VjCtjW + SxW,

with 8i = S —2 div (K;)ay. Here we are using the fact that if Fis a vector field on Y,

then V and — V— div (K) are formally adjoint as operators in F2(r). The domain

of F consists of those w e //1(«j) which satisfy the boundary conditions w(y, 0)

e Qiy) for a.a. jeT. We note that (Eu, w) = (w, Fw), u e D(E), w e D(F). Thus

F^E*. In a moment we shall show E* = F. Assuming this, it follows that there

exists a sequence {wn}<^D(F) with wn-^ U-qv and Fn/n->-/' in L2(«z). Then

7)z7-1w„e/)(F), 7?i/-1wn->,72u in X. Using the fact that U(~2 DjaAU~1=Ji,

one can show

Fr)[/-1wn = y)U-1Fwn-Jj(8T)l8x,)ajV^wn.

Thus Tr¡U~1wn converges in X We conclude 7;2y e D(T).

It remains to show E* = F. We first reduce the problem to the case where the

boundary subspace P(y) is independent of y. Let rk, ik be as in §2. Let v e D(E*).

In order to show v e D(F), it suffices to show t,kv e D(F), k = 1,. . ., K. Fix k and

let i = lk,r = rk and

Lu — yr'1 8u/8s + 2. ajr~1Vju+8r~1u+ Ar/-_1w,

with the domain of L consisting of those u e //1(a/) which satisfy the boundary

conditions

(4.19) u(y, 0) e Pk,       u(y, a) = 0,    for a.a. y e Y.

If u e D(L), then {/-'ae D(E) and

FC/""1« = ÇL«+ 2 «;Fy(z:/-->+[Ar, ^r-1«.

By Lemma 2, [Ar, £] extends to a bounded operator on L2(oz). It follows that

t,v e D(L*) with

L*iv = ÇrF*i/-2 F/£r>yo-r[Ar, Q».

The formal adjoint of F is

Mw = —(8/8s)ryw — 2. F,raiw + /-8iW-r-/-Arw,

where the domain of M consists of those w e H1(w) which satisfy the adjoint

boundary conditions w(y, 0) e Qk(y), where

QAy) = iriy,0)riy)-1Pk)\
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We have (Lu, w) = (u, Mw), u e D(L), w e D(M), so M^L*. In a moment we shall

show L*=M. Assuming this, it follows that there exists a sequence {wjcD(M)

with wn -*■ tv, Mwn -*■ L*lv in L2(cu). For y belonging to the support of £, we have

r-\y)Pk = P(y). For such y, one has Qk(y)=Q(y). Thus {£uy¡<= D(F). Also

£wn -> t,2v and

FZwn = íz-1Mwn-2 K,a/-7m,.wn + [Ar, Qwn,

which converges in L2(a>) since [Ar, £] extends to a bounded operator on L2(cu).

It follows that l2v e D(F).

We now show L* = M. By multiplying L by ry_1, we may assume L has the

form Lu = 8u/8s + Gu, where Gu='2.ajVjU + bu + cxAvc2u, where aj = ry~1ajr~\

b = ry~18r~1, cx = ry~1, and c2 = r~1. Then Mv= —8v/8s + Hv, where

Hv = - 2 Vj %» +1 lb - 2 div ( 17) «Oyb+'caAr ««?,o,

and the adjoint boundary conditions become v(y, 0) ePk.

To show L*^Al, we use the mollifier Ks = (l+eAr)~1, e>0. For -1^/cál,

AT£ maps Hk(Y) into itself with norm uniformly bounded in e. For u e Hk(Y),

Keu -> u in fffe(r). Furthermore Ke maps ff*(r) into Ärk+1(r) for k= - 1, 0.

Using the natural correspondence (2.7), we shall regard Ke as mapping Hk(a>)

into itself for - 1 â zV â 1. Then, for w e Hk(w), Ksu -> u in Hk(w).

Given 7J e D(L*), let <;e = A"^'. Then De -> zj in L2(ctj). Since ATe maps H°(Y) into

77x(r), it follows that the first order derivatives of vc along directions tangential to

T lie in L2(io). In order to show vE belongs to H1(w), it suffices to show 8vJ8s

belongs to L2(oj).

If L*v=f then — dvfds + Hv =f when we regard 8vf8s and Hv as elements of

H-Xw). Then 8ve/ds = Ke(8/8s)v= -KJ+K£Hv. One has KsHveL2(ca), since AT£

maps // _1(r) and L2(T) and the operator // only involves differentiation in the y

component of a function v(y, s) on w. Thus ve e H^oj).

We claim vs satisfies the boundary conditions ve(y, 0) ePk. Suppose ue D(L).

Let m(0), (/¡Tet<)(0), denote the traces of u and Keu on T x {0}. Then (Keu)(0)

= Ke(u(0)). It follows that Keu satisfies the boundary conditions (4.19) and hence

belongs to D(L). We have

(4.20) (LKsu, v) = (Ksu,f) = (u, KJ),

since L*v=f. On the other hand, we have (LKcu, v) = (8u/8s, vs) + (GKsu, v), since

Ke and 8f8s commute. Integrating by parts, one obtains

(8u/8s, vs) = -(u, 8vJ8s)-(u(0), ve(0))r.

We use here the fact that u(y, <j) = 0 for a.a. y e Y. Thus

(LKeu, v) = -(«, 8vJ8s)-(u(0), ve(0))v + (v, KsHv) = (u, Kj)-(u(0), v£(0))r.
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Combining this with (4.20) gives (w(0), i7„(0))r=0, u e D(L). Since the values of

w(0) can be chosen arbitrarily subject to the restriction (4.19), it follows that v£

satisfies the boundary conditions ve(y, 0) eF¿. Therefore v£ belongs to D(M).

It remains to show A/t>e->/in L2(w). We have Mv£ = K£f+[H, KE]v. Since

fe L2(w), KJ->f in L2(oj). We claim [H, Kc]v -> 0 in L2(œ). In fact, we shall show

(4.21) [H, K£]w-^0   in L2(oz)   for all w eL2(w).

The proof of this is very similar to (4.12). The crucial step is to establish the

inequality

(4.22) \\[H,Ke]w\\ = CHI,        W6L»,    s > 0,

and then we can apply the principle (4.16). We have

[H, K£]w = K£[Ar, H]Af\l -K£)w.

Using Lemmas 2 and 4, one sees that ||[Ar, H]Af1v\\ ¿C\\v\\, veHl(a>). Using

this inequality, one easily obtains (4.22).

Since [H, K£]w —> 0 in L2(w) for w e H1^), and H1(w) is dense in L2(w), one

obtains (4.21). Thus Mv£ -^/and v e D(M).    Q

This concludes the proof of Proposition 2. We now prove a regularity result

for S.

Proposition 3. If ve H^il) then S~1v e H2(Q).

Proof. Let u = S'1v. Then u e H£(Q.), Su e /»"(ii), and we must show u e /72(Q).

(S—R)u is given by (4.1) and, by Lemma 6, [M, rklk] is a bounded operator on

H\n'). Therefore (S-R)u belongs to H\ù). Since Su e H^Q), it follows that

Fz/e//1^).

Let ¿r2 + 772=l be the partition of unity introduced in the proof of Lemma 11.

We must show £2u, r¡2u e H2(Q).

Let {Je : £>0} be the operators introduced in the proof of Lemma 11 and

G£u = e~1£(l — Je)£u. Note that e~1(l—J£) = AJs. We claim that in order to show

|2w e H2(Ci), it suffices to show G£u converges in Z/^Q). Suppose the latter is true.

Then

G.U-e-^l -JM2U = e-^J,, t](lt = JAZ, A]J,(U.

By Calderón's theorem, [f, A] is a bounded operator on H1(Rm), so the right side

converges in Hl(Rm). Therefore J£AÇ2u converges in H1(Rm). So A$2u e H^R™)

which implies £2u e H2((A). This proves the claim.

It remains to show G£u converges in //'(Q). Note that G£u e D(R) since f = 0

near F. By (4.2), we are reduced to proving RG£u converges in X. We have

RG£u = G£Ru+[R,G£]u.

Since Ru e &(£!), G£Ru -> ÇAÇRu in X.
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It remains to show that [R, G£]u converges in X. In fact we shall show that

[R, G£]w converges in X for all w e //^ii). (Note that in proving this we do not use

the fact that w satisfies the boundary conditions w0(y) e P(y), y e Y, so we shall

assume that P(y) = RN and D(R) = H1(Q.).) The proof is similar to the proof of

(4.12). We establish the inequality

(4.23) \\[R,G£]w\\ S CHIi.       ive/Z^ii),    e > 0,

and then apply the principle (4.16). Let x be the function introduced in connection

with the proof of (4.13). Then

(4.24) [R, G£]w = [R, Í]XAJAw+ÍJ£[xRx, A]Je£w + £AJeX[R, flw.

Application of Calderón's theorem and Lemma 6 shows thatrr

|[F,!Hteá CHU,       weHk + 1((A),   fe = 0,1.

Using Calderón's theorem and Lemma 8, one obtains

||[vFy, A]r|| è C\\v\\i,        veH2(R™).

Combination of these last two inequalities with (4.24) proves (4.23).

Note that if w e //2(ii), then G£w -» f A£w in Hl(Q.). Thus [R, G£]w -* [R, f A£Iw

in X for w e H2(Q). Since H2(il) is dense in #*'{QJ, it follows that [/?, G£]w con-

verges in A' for all w e /¡"(ii). Thus we have proved £2u e //2(ii).

We now show rfu e H2((A). It suffices to show Ur¡2u e H2(cj) which in turn reduces

to showing ArUr¡2u and (8/ds)Ur¡2u belong to H1(u>). To show this, we shall use

the operators {K£ : e>0} introduced in the proof of Lemma 11. In order to show

ArU-n2u e H1(w), it suffices to show K£ArUr¡2u = e~1(l—K£)Ur¡2u converges in

H1^). Since r¡ commutes with U~1K£U, it suffices to show e~1r¡U~1(l—K£)w

converges in //1(ii), where w= Ur¡u.

Let L£ = 2 ^rklKerktk. Using (2.6), we have

(4.25) e-\K£-L£)w = e-1 2 CtftHrJ* Ke]w.

Note that e"1^^, K£]w = K£[Ar, rklk]Kew. This converges in H1^) as £ -> 0 by

Lemma 2. Thus it suffices to show

(4.26) e~^U-\\-Le)w   converges in H1^).

We claim that e-^U'Al -L£)w belongs to 0(F). Since u e D(R), it follows that

w(y, 0) e P(y) for a.a. y e Y. Therefore rk(y%k(y)w(y, 0) e Pk for a.a. y e Y, which

implies (K£rkikw)(y,Q)e Pk for a.a. ye Y. From this one concludes (L£w)(y,0)

e P(y) for a.a. y e Y. The claim then follows.

Using (4.2), one sees that the assertion (4.26) reduces to showing

e~1Rr¡U~1(l — L£)w converges in X. We may assume without loss of generality

that b = 0, ß = 0 in R. Let E be the operator given by (4.17). Using (4.18), one sees

that it suffices to show £_1F(1 — L£)w converges in F2(czj). For this we do not use
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the fact that w satisfies the boundary conditions w(y, 0) e P(y), y e Y, so we shall

assume that P(y) = RN and D(E) = H1(w). Again using (4.25), one sees that it

suffices to show e~1E(l —Ke)w converges in L2(w). One has

e~xE(l-KAw = e'Xl-KAEw + e-'lK^Ety.

It is not hard to show that Ru e Hl(Cl) implies Ew e H1(a>). Therefore the first

term on the right converges to ArEw in L2(w).

It remains to show e-1[A7 E]w converges in L2(w). We shall show that

e'^K^ E]v converges in X for all v e H\u>). We first establish the inequality

(4.27) \\e-i[Ks,E]v\\^ C\\v\\x,        veHXw),    . > 0,

and then apply (4.16). We have

(4.28) e^[Kc, E]v = KE[E, Ar]Kcv.

Using Lemmas 2 and 5, one sees that \\[E, Ar]w|| ^C||"||i, " e H2(oS). Combining

this with (4.28), one obtains (4.27). Since e~l[Kr, E]v = e~'í[(I-KA, E]v converges

to [Ar, E]v in L2(w) for v e H2(a>) and H2(oS) is dense in H1(w), it follows that

e-1[Ä7 E]v converges in X for all v e H\<a). This concludes the proof that

Ar£Vw 6 H\oj).

It remains to show (8/8s)Ur¡2u e H1^). It was noted above that Ew = EUr¡u

e Hl(co). It follows that EUrfu e H\w). Using the fact that A^Urfu e H\oS) and

the fact that the KjAp1 are bounded operators in H1(co), it follows that

y(8f8s)Uri2u e Hl(oJ). Since y is nonsingular, this implies (8/8s)Ut)2u e H\<a).    □

5. Proof of Theorems 1-3. In order to show that S defined by (2.8) satisfies the

requirements of Theorem 1, it remains to prove the following proposition.

Proposition 4. SAS~1 = A + B, where Be B(X).

Proof. We first show that u e H]¡(Q.) implies AS~1u e Hf¡(ü.). Let v-S'1«.

Then Sv = ue 77^(0) and, by Proposition 3, v e Hf,(£l) n /72(Q). We must show

Av e //¿(Q).

Note that </>A<f>v e Hp(Cl) since </> = 0 near Y. Next we claim

(5.1) Kifï*MrkM*> e //¿(Q),       k = l,...,K.

To prove this, note that v e Hf¡(ü) n H2(tt) implies rkCk<fv e H2(il') and

(rklk4>v)(y) e Pk for a.a. y e Y since rk(y) maps P(y) onto Pk for y belonging to the

support of ¿7 Therefore w= Urk£,k>pv e H2(oj) and w(y, 0)ePk for a.a. y e Y. It

follows that (Arvv)(y, 0) e Pk for a.a. y e Y and (Mrklktfv)(y) e Pk for a.a. y e Y.

The assertion (5.1) follows from this. We conclude Av e Hp(Q).

It follows that Hl(Ll)<=:D(SAS'1), and for u e Hf¡(ü.) we have

SAS^u-Au = [S, A]S-hi = [Z, A]S-xu,

with

Zv = zM<^+2 ^_1^A     v e H1(Q)-
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Note that Z is an extension of S—A—ß. We claim

(5.2) ||[Z, A]v\\ á CH1(2Hlc+ ||6||A       v e H^Q.) n //2(Q).

If Kv = cf>Achv + x(jMil)V is as in Lemma 10, then (Z-K)v = (S-R)v is given by (4.1)

with u replaced by v. We have already noted that S—R is a bounded operator on

both Zand H^Q). Therefore (5.2) follows from (4.10) since Av = ¿fv + bv.

It follows from (5.2) that B=[Z, A]SX extends to a bounded operator on X.

Thus we have SAS ~1u = Au + Bu for u e H¡¡(Q.). Since H¡¡(ü.) is a core of A, it

follows that this holds for ue D(A). So SAS'1 is an extension of A + B. It follows

that S(A + X)S~1=>A + B+X for all A. If A is large, the right side has range Ä'and

the left side is one-to-one. Therefore we have equality: SAS1 = A + B.    □

Theorem 1 is a direct consequence of Propositions 2 and 4.

Proof of Theorem 2. Let

S(t)u = (Ao^ + ß^ + ^Acbu + ^xh^r^'Mr^x/ju,

for ue D(S(t))=HP(Q). Here |S = sup({ft}, where ft has the value (1.2). The

matrix

c(x, 0 = 2 aÁx> 0 dsl8xi>        xeQ.',    0 á 1 if,

defined by (2.3), is now a function of /, as well as x. Therefore the value of o- in

(2.1) should be chosen so that c(x, t) is nonsingular for xe £i', Oáz-gF.

Note that the only part of S(t) which varies with / is A0(t). Thus S(t) is continu-

ously differentiable on [0, F] to F(//r(ii), X), since this is true for A0(t).

According to Propositions 2 and 4, S(t) is an isomorphism from Hp(Q.) onto X,

and 5'(/)^(05(/)-1 = /i(r) + F(/), where z?(i)ez5(I). It follows from the in-

equality (5.2) that the map t -> B(t) = [Z, AitflSit)'1 is continuous on [0, T] to

B(X).    □

Proof of Theorem 3. We noted in the remark after Theorem 3 that the conclu-

sions of Theorem 3 are true if P(x, t)=P(x) is independent oft. We turn now to the

general case where P(x, t) varies with /.

Suppose r(x, t) is an orthogonal matrix-valued function of class C2 on O x [0, F]

with the property that

(5.3) r(y, t) maps P(y, 0) onto P(y, t)   for y e Y,   0 á t g F.

If one makes the change of variables

v(x, t) = r(x, tY1u(x, t),        xeD.,    0 ^ t ^ T,

then equation (1.1) for u corresponds to the following equation for v.

8v/8t + Y, r~1ajr dv/8x¡ + b'v = r'fi,

v(x,0) = r(x,0)-1<j>(x),

v(x, t)eP(x, 0),       xeY,   0 S í á 7,
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where b' = r~1(8r/8t + '2. a, dr/8x¡ + br). In this equation the boundary subspace

P(x, 0) does not vary with /. We also note that the assumption f(-,t)e Hpt(Cl)

implies r(-,t)^1f(-,t)e HpAfA). Therefore, as noted above, the conclusions of

Theorem 3 hold for this equation. It follows that u = rv is the desired solution to

equation (1.1).

To complete the argument, one must show that there is a function r(x, t) with

the above properties. The condition (5.3) can be restated as

(5.4) r(y, t)e(y,0)r(y, t)"1 = e(y, t),       yeY,    0 g t < T,

where e(y, t) is the orthogonal projection of 7?" onto P(y, t). Such an r is called a

transformation function for e(y, t), and it may be constructed using Kato's method

(see [8, p. 99]). We take for r the solution of the differential equation

(8/8t)r(x, t) = q(x, t)r(x, t),        0 é t <, T,

r(x, 0)=1, where q=[de/8t, e]. Since q is antisymmetric, this r is an orthogonal

matrix-valued function of class C2 on Y x [0, T] which satisfies (5.4) with r(y, 0)= 1.

We must extend zto Ûx [0, T]. Let r'(y, s, t) = r(y, tp(s)), where p is a function

mapping [0, o] into [0, 1] with p(0)=l and p(s) = 0 for s^a/2. r' is defined on

T x [0, a] x [0, T] with r'(y, 0, t) = r(y, t) and r'(y,s,t)=l for s^o/2. Letting

y(x), s(x) be the coordinates in Ü' introduced in (2.2), one may change variables

to obtain r(x, t) = r'(y(x), s(x), t). This r is defined on Q' x [0, T] with r(x, t)= 1

if s(x)^o/2. r may then be extended to £2 x [0, T] by setting r(x, t)=l for x e Q.

~LT.    D
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