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ABSTRACT EVOLUTION EQUATIONS AND THE MIXED
PROBLEM FOR SYMMETRIC HYPERBOLIC SYSTEMS

BY
FRANK J. MASSEY HI(")

Abstract. In this paper we show that Kato’s theory of linear evolution equations
may be applied to the mixed problem for first order symmetric hyperbolic systems
of partial differential equations.

1. Introduction. This paper is concerned with the mixed problem for the
following symmetric hyperbolic system of partial differential equations:

z—l;+ Z a;(x, t)%+b(x, Hu = f(x, 1), xeQ, 0=5t=T;
(1.1) = ’
u(x, 0) = ¢(x), x€eQ;
u(x, t)ye P(x,t), xell, 02t=sT

The unknown u=(uy, ..., uy) is a real vector-valued function, the coefficients, a;
and b, are real N x N matrix-valued functions, and the a; are symmetric. We assume
a; and b are of class C2 and C' on Qx [0, T), respectively. Q is a bounded open
subset of R™ with boundary T of class C3.

The results are restricted to the regular case where the boundary matrix

a(x, 1) = 2 nxafx, 1), xel, 01T,

is nonsingular on I'x [0, T'). Here n=(ny, .. ., n,) is the exterior unit normal to €.
Limits of summation will be omitted when they are clear from the context.

The boundary subspace P(x, t) is a linear subspace of RY which varies in a C?
manner with (x, t) e I'x [0, T, and it is maximal nonnegative for each x, t. This
means

(a,(x, Du, u) = 0, ueP(x,t),

and P(x,t) is not contained in any other subspace of R" having this property.
Here (u, v) denotes the usual inner product of u, v € R".
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Symmetric hyperbolic systems have been studied by Friedrichs ([4], [5]), Lax
and Phillips [10], Cordes and Moyer [2], and others. Here we treat equation (1.1)
using Kato’s results [9] on linear evolution equations of the form

duldt+ A(t)u = f(2), 0=:=T,
where the linear operators — A(¢) are the infinitesimal generators of Cy-semigroups
in a Banach space. Kato established sufficient conditions for the existence of the
evolution operator {U(t,s) : 0=s<t=<T} for the family {4(¢)}, and he applied
these results to the equation (1.1) in the case where Q= R™ is the whole space. In
this paper we extend Kato’s method to the case where Q is a bounded domain.

Before proceeding further, we make some remarks concerning notation. We shall
reserve the terminology vector-valued function for a function u=(uy,..., uy)
which has N real-valued components. X and L2(Q2) will both be used to denote the
Hilbert space of square-integrable vector-valued functions on Q. H¥(Q), k=0, 1,
..., is the Sobolev space of those v € X whose partial derivatives of order up to k
also lie in X. H ~*(Q) is the dual space of H¥(Q), where HE(Q) is the closure in
H*(Q) of the set of C* vector-valued functions with compact support in Q. The
spaces L2(R™), H*(R™), H ~¥(R™) are the corresponding spaces on R™. L*T') is the
space of vector-valued functions on I which are square integrable with respect to
the natural surface measure on I'. The Sobolev space H*(I"), 0 <k <3, consists of
those vector-valued functions on I" which coincide on coordinate neighborhoods
with functions in H*(R™~?), and H ~*(T') is the dual space to H*(I"). Unless other-
wise stated, Sobolev spaces H* are of integral order k, so 0=k =<3, for example,
means k=0, 1,2,3. We use || | and (, ) to denote the norm and inner product
in X, L%(R™), or L¥T"), and | ||, to denote the norm in H*(Q), H*(R™), or H*(T').
The underlying space, Q, R™, or I', should be clear from the context.

If ue H*(Q), 1 £k <3, then uy € H*~Y(T") denotes the trace of u on I'. If P(x),
x e, is a linear subspace of RV which varies continuously with x, then H}(Q)
denotes the closed subspace of H*(Q) consisting of those u which satisfy the
boundary conditions u,(x) € P(x) for (almost all) x e I'. For basic properties of
Sobolev spaces, see Hérmander [6], Lions and Magenes [11], Morrey [12], and
Seeley [13].

If ue RY, then |u| denotes the usual Euclidean norm of u. If a is an Nx N
matrix, then |a| =sup {|au| : |u|=1}, and ‘a is the transpose of a.

If X;, X, are Banach spaces, then B(X;, X;) denotes the space of bounded
operators from X; to X,, and B(X,)=B(X,, X;).

Let Ay(t) be the operator defined by

Ao()u = a(x, 1)Dju+b(x, t)u,
with domain, D(Ay(t)), equal to H3,(Q). Here P(x)=P(x,t) and D;=0/dx;. Let
A(?) denote the closure of Ay(¢) regarded as an unbounded operator in X. Fried-
richs [5] and Lax and Phillips [10] have shown that A(¢)+ B, is m-accretive if

(1.2) B, = sup {|b'(x, )| : xe ),
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where b'=3(b+'b— &a;/0x;). (Recall that an operator A in a real Hilbert space
X is accretive if (Au, u) =0 for all u e D(A). A is m-accretive if A+ X has range X
for all A>0. This implies —A4 generates a Cy-semigroup of contractions in X.)
Thus — A(?) generates a Cy-semigroup in X.

The following are the main results.

THEOREM 1. There exists an isomorphism S(t) from H3(Q) onto X such that
S()A@)S()~* = A1)+ B(1),
where B(t) is a bounded operator on X.

REMARK. According to Proposition 2.4 of [9], Theorem 1 implies that the
subspace H3},(Q) is admissible with respect to A(t). This means (see [9, Definition
2.1]) the semigroup generated by —A(t) leaves H},(Q) invariant and forms a
Cy-semigroup in this space.

THEOREM 2. If P(x, t)=P(x) does not vary with t, then S(t) in Theorem 1 may
be chosen so that it is continuously differentiable on [0, T] to B(H}(Q), X) and B(t)
is continuous on [0, T'] to B(X).

REMARK. Suppose that P(x, t)=P(x) does not vary with ¢ so that Theorems 1
and 2 are true. Then Theorems 4.1 and 6.1 of [9] may be applied to the family
{A(t)}, taking H}(Q) for the subspace Y in those two theorems. Note that the
stability condition (i) of Theorem 4.1 is true with M =1 and B=sup, {B,}, since the
operators A(t)+ p, are m-accretive. The condition (iii) of Theorem 4.1 is also easily
seen to be true.

We then have the following result for equation (1.1).

THEOREM 3. Suppose ¢ € H} (Q) and the map t — f(-, t) is continuous on [0, T
to HY(Q) so that f(-,t) belongs to Hp,(Q) for 0St=<T. Then (1.1) has a unique
solution u(x, t) such that the map t — u(-, t) is continuously differentiable on [0, T]
to X and u(-, t) belongs to H3,(Q) for 0=t <T.

REMARK. If P(x, t)=P(x) is independent of ¢, then the conclusions of Theorem
3 follow directly from Theorem 7.1 of [9]. We shall show that the general case
where P(x, t) varies with t may be reduced to the case P(x, t)=P(x,0) by an
orthogonal transformation of the dependent variables.

The remainder of the paper is devoted to proving the above results. In §2 we
construct the operator S(¢). §3 contains inequalities involving commutators.
These are used in §4 to show that S(¢) is an isomorphism from H3},(Q) onto X and
to establish a regularity result for S(¢). Theorems 1, 2, and 3 are proved in §5.

The author wishes to thank Professor T. Kato, who suggested this problem,
for his assistance and guidance in this research.

2. Construction of the operator S. We first consider Theorem 1. Here the
variable ¢ is only a parameter, and we shall omit it in the discussion and simply
write a/(x), S, ..., for ai(x, t), S(¢t), etc.
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By the Stone-Weierstrass Theorem, the set of all real-valued functions of class
C® on T is dense in the Banach space of real-valued, continuous functions on T
It follows that, given any e>0, there exists a C?® vector field v such that
| —=n(p)—v(y)| Zeforall y e T, where n is the exterior unit normal to I. We choose
such a v so that this inequality is satisfied for some e < 1. Then v(y) points into the
interior of Q for each y € I, i.e. (v(y), n(y))<O.

Using this v, we introduce new coordinates near I' as follows. Let w=T1"x [0, o],
where o is chosen small enough so that certain conditions stated below are satisfied.
Consider the mapping w — R™ defined by

2.1 (y,s)=>y+s(y), (¥, s)€ew.

Using the fact that v(y) is nowhere tangential to T, it follows that the derivative
of (2.1) is nonsingular for s=0. Using the inverse function theorem, one may then
show that (2.1) is a diffeomorphism if o is chosen sufficiently small. Denoting the
range of (2.1) by Q' (note that Q'< Q), the inverse Q' — w has the form

2.2) x — (y(x), s(x)), xe Q.

Thus, y(x) e " and s(x) € [0, o] may be thought of as new coordinates for x € Q.
The matrix

(2.3) o(x) = > a(x)(@s/ex), xe,

has the property that it is a strictly negative scalar multiple of the boundary
matrix a,(x) for x € I". This is because the vector (0s/0xy, . . ., 0s/éx,) is an interior
normal to Q, since I'={x € Q' : s(x)=0}. Since a, is nonsingular, ¢ may be chosen
so that ¢(x) is nonsingular for x € Q'.

The spaces L2(Q') and H*(Q') are defined in the same way as L*(Q2) and H*(Q).
L?*(w) denotes the space of vector-valued functions on w=1I"x[0, ¢] which are
square integrable with respect to the product measure on w. We consider w as a
compact, C® manifold-with-boundary, and we shall use the Sobolev spaces H*(w),
—3=kZ3. For the definition and basic properties of these spaces, see Hormander
[6].

Let the operators Uy, U: L%(Q') — L%(w) be defined by

Ugu(y, s) = u(y+sv(y)), (3, 5)€w,

2.4
(2.4) Uu = Uyhu,

for u e L¥(Q’). Here h(x)=|j(x)| /2, where j(x) is the Jacobian of the mapping
(2.2). Since the map (2.1) is of class C3, U, is an isomorphism from H*(Q’) onto
H*(w) for 0k £3. However A is only of class C2, so U is an isomorphism between
H*(Q') (resp. H¥(Q')) and H*(w) (resp. H¥(w)) only for 0 < k £2. Using the change
of variables formula for integrals, one sees that U is unitary from L%(Q’) to L*(w).
By duality, U extends to an isomorphism between H*(Q') and H*(w) for k= —1,
-2
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Let ¢*+y*=1 be a C® partition of unity for R™ with the following properties:
(i) =1 and $=0 in a neighborhood of Q~Q’.

(i) The support of ¢ is compact in Q, so $=0 and )=1 near T.

(iii) For x e Q', ¢(x) and ¥(x) depend only on s(x). The reason for this last
assumption will be discussed in a moment.

In the definition of S we shall use certain matrix-valued functions defined on T’
which locally transform the boundary subspace P(y) into a subspace which does
not vary with y. To construct these functions, we shall use the following lemma.

LEMMA 1. Given y, e T, there exists a neighborhood % of y, (with respect to T')
and an orthogonal matrix-valued function r € C*(I") such that, for y € %, r(y) maps
P(y) onto P={ue R" : uy=---=u,=0}, where p is the common codimension of
P(y) for y belonging to the connected component of I which contains y,.

Proof. Clearly there exists % and r of class C? on # with the property that
r(y)P(y)=P for y € %. The problem is to extend r to all of I'. This can be done by
modifying r near 0% so that it is equal to r(y,) there. For example, by shrinking the
neighborhood %, if necessary, and introducing local coordinates, we may assume
that we are working in R™"~!, y,=0, and % is the ball about y, of radius 1. We
choose a C* real-valued function p on [0, 1] with the property that p(¢)=1 for ¢
near 0 and p(¢)=0 for 7 near 1. Then r'(y)=r(p(| y|)y) has the desired properties. []

Using this lemma, we can find an open covering %,, . . ., %y of T together with
orthogonal matrix-valued functions r4, ..., rx € C%(I') such that, for k=1,..., K
and y € %, r,(y) maps P(y) onto

2.5) Pk={ueRN;u1=...=upk=0}.

(py is the same for those %, lying in the same component of I'.)
We choose a partition of unity for T’

(2.6) Sz-1
k=1

such that {, has support in %, for each k.

Let Ar denote the Laplace-Beltrami operator on I'. This is a negative self-
adjoint operator in L) if we choose D(Ap)=H?(T"). Let Ap=(1—Ap)Y2 Then
Ar is an isomorphism from H*¥(I') onto H*~Y(I') for 1<k <3. By duality Ar
extends to an isomorphism from H*(T') onto H*~}(I') for —2=<k=0.

We shall frequently use the natural correspondence whereby a function u(y, s)
onw=1I"x [0, o] is regarded as a function u(-, s) on [0, 6] whose values are functions
on I'. Under this correspondence L%(w) is naturally isomorphic to L%([0, o]; L*(T")),
the space of square-integrable functions on [0, o] with values in L*(I"). We also
have

@7 H¥w) = H([0, o]; H¥T)) 0+ - - H¥([0, o]; H(T),
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for k=1, 2, 3. Using this correspondence A may be regarded as a bounded
operator from H*(w) to H* (w) for 1 £k<3. Ar maps H(w) into Hf ~(w), so,
by duality, A extends to a bounded operator from H*(w) to H*~}(w) for —2=<k
<0.

Let M=U"'ApU. Then M is a bounded operator from H*(Q') to H*~*(Q’)
for —1 £k =2. Since U is unitary, M is symmetric and bounded below by 1 if it is
considered as an operator in L?(Q’) by restricting its domain to H(Q'). If we
regard ¢ and ¢ as functions on Q' then it follows from the assumption (iii) above
that Méu=¢Mu for u e H1(Q’) and similarly for .

Let A=(1—A)Y2 where A is the Laplacian in the whole space R™. A is an
isomorphism from H*(R™) onto H*~*(R™) for all k.

The expressions u — ¢ Adu and u — ${,.r;y *Mr L, Ju define bounded operators
from H*(Q) to H*~1(Q) for —2=<k =3 in the first case and for —1<k <2 in the
second. We are regarding multiplication by ¢ as a bounded operator from H*(Q)
to H*(R™) and also from H*(R™) to H*(Q) since it has compact support in Q. In
the second case ¢ vanishes in a neighborhood of Q~ Q’ so that it is a bounded
operator from H*(Q) to H*(Q') and also from H*(Q') to H*(Q).

The operator S is now defined by

(2.8) Su = (Ao+Bu+$Apu+ D $luri *MrLiu,

for u e D(S)= H}(Q). Here B=p, has the value given by (1.2). One sees that Sis a
bounded operator from H3(Q) to X. We shall show in §§4 and 5 that S fulfills the
requirements of Theorem 1.

3. Inequalities involving commutators. This section contains results which will
be used later to prove Theorems 1 and 2. We begin with the following proposition
which is due to T. Kato (unpublished).

PROPOSITION 1. Let A be a strictly positive selfadjoint operator in a Hilbert space
H, and let B € B(H) be such that B maps D(A) into itself with ABA~* € B(H). If

G.n I[4, Blu|| = CllA*ul, 47124, Blu| = C|ul,
for u e D(A), with a constant C, then

(3.2 42, Blu| = (C[2)]ul, u € D(4''2),
(3.3) N4, Blu| < (C/2)m~Y2[ A~ |,  ue D(AM).

Here [A, Bl=AB— BA denotes the commutator.

Proof. Using interpolation (see Kato [7]), one sees that B maps D(A%) into
itself with 4*BA~*¢€ B(H) for 0<a=1. Thus [4Y2, Blu and [A'*, Blu are well
defined for u € D(A4*'?) and u € D(A'*) respectively.

We claim that (3.1) implies

34 |4-4[4, Blu| £ C|AY*u|, u € D(A).
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In order to see this, let Tu=A"Y%[A4, Blu, u € D(A). By (3.1), T and AY2TA-1/2
extend to bounded operators on H with norm bounded by C. Using interpolation,
we obtain | AY*TA~*| £ C, which implies (3.4).
We now consider [4/2, B]. Since A'2BA 12 belongs to B(H) and D(A) is a core
of A*2, it suffices to prove (3.2) only for u € D(A4). For such u, A'%u is given by
W f  A-U2RO) du d),
0

where R(A)=(A+A4)~1! is the resolvent of —A4. For fractional powers, see Kato
[8] and Yosida [14]. Since [R(A)A4, B]=A[B, R(A)]=AR(N)[A, B]R(}), it follows that

[4Y2, Blu = m-1 f NZR(X)[A, BIR(\u d).
Here and in the following, integrals are from 0 to co. If v € D(A4), then
([4¥2, Blu, v) = =~ f NU2(4- 1[4, BIR(\u, A" R(\)o) dA.

Using (3.4), it follows that

IA

([4Y2, Blu, v)| < =-1C f X2 AU R(Nu|| | A R(N)] dA

IA

1/2
ﬂ—lc{ f AV2(ROZAV2u, u) dA}

1/2
x{ f 2RO\ AY20, ) dA} :

Using the spectral theorem, one has [ AY2R(X)? dA=(m/2)4~1/2. 1t follows that
|([4*'2, Blu, v)| £(C/2)|u| |v||, from which (3.2) follows.
The inequality (3.3) is proved in a similar manner. Starting from the formula

Aty = 2‘1’217‘1J AT34R(N)Au d],

0
one proceeds as before to obtain
([4Y%, Blu, v) = 271271 f AVE(R(N)u, [B, A]R(A)v) dA.
Using the first half of (3.1), one obtains
1/2 1/2
(4%, Blu, v)| < 2-1/2ﬂ-lc{ f AZ(R(NYu, 1) d)\} { f (R(\? Ay, v) d,\}

= (C[Dm= 2| 4= 4u] o],
from which (3.3) follows. [
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COROLLARY. Let A be as in Proposition 1. Let T be an unbounded operator in H
with D(T)= D(AY'?) and TA~ "2 € B(H) and such that T maps D(A*?) into D(A)
with ATA=%? € B(H). If
(3.5 4, Tlo|| = Cll4o],  [A7Y2[4, T]o|| = C4*0],

v € D(A®?), with a constant C, then
I[4*2, T1o| = (C/2)|| 4 0], v e D(A),
[LAM, Tho| < (C/)m- 2] Ati0],  ve D(A%MH).
Proof. This follows by applying Proposition 1 to B=TA~¥2. []

The next theorem is a consequence of results from the theory of singular integrals
proved by Calderdn [1], and it will be used frequently later.

THEOREM (CALDERON). Let A be the Laplacian on R™ and A=(1-—A)Y2 If
a e CY{(R™), then

IA, alu| = Clalexllul, — ue H*(R™,
with a constant C independent of a and u. If a € C*(R™), then
IA, alul, = C'llalc2llul,,  ue HA(R™).

Here C*(R™), k=1,2, is the class of real Nx N matrix-valued functions on R™
which together with their first k derivatives are continuous and bounded on R™.

| [lcx is the usual supremum norm in this space. Also, | | and | |, are the norms in
L%(R™) and H'(R™), respectively.

The following result is essentially due to Seeley [13], but we give another proof
here.

LEMMA 2. Let Ar be the Laplace-Beltrami operator on I and Ar=(1—Ap)Y2. If
a e C¥I), then

(3.6) IlAr, aluli = Clalczlull, — uweH**XT), k =0,1,

with a constant C independent of a and u. Here C*(I') is the Banach space of C?
matrix-valued functions on T', and | ||, denotes the norm in H¥(T").

Proof. For k=0 this can be established using Proposition 1 with H=LT),
A=1—Ar, and B being the operator of multiplication by a. The hypothesis (3.1)
reduces to showing

3.7 [[Ar, alui-1 < const. |a]c2]ull, ue H¥(T), k=0,1.
We have

[Ar, alu = 2(grad (a), grad (v)) +ulAra,
and the inequality (3.7) follows from this. Therefore (3.6) is true for k=0.
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The case k=1 may be proved from the case k=0 using the relation Ar[Ar, a]u
=[a, ApJu—[Ar, a]lAru. O

LEMMA 3. Let Ap, Ar be as in Lemma 2. If a e C¥(T"), then
[IAF?, alu] < Clales|A7™2ul,  ue HY(T),
with a constant C independent of a and u. Here | | denotes the norm of L*(T").

Proof. This is proved using Proposition 1 in the same way that (3.6) was estab-
lished in the case k=0. [

The following lemma is again due to Seeley [13], but before stating it we make
some notational comments. If V is a vector field on I' and u is a function on T,
then Vu=(V, grad (u)) is the directional derivative of u in the direction V. The set
of vector fields of class C* on I' (k=0, 1, 2) is a Banach space, and a norm for this
space may be defined as follows. Let {U;} be a finite covering of I" such that each
U, is the domain of a coordinate chart which maps U, onto the unit ball B R™~1,
With respect to the local coordinates for U, the vector field V can be represented as
(Viis---s Vim-1), where the V; ; are C* real-valued functions on B. We define

Ve = Z" Viillcke

LEMMA 4. Let A, Ap be as in Lemma 2. If V is a C? vector field on T, then
(3.8) HAp Vidl-1 £ C|V|c2lulle ue H¥*Y(T), k =1,2,
where the constant C is independent of V and u.

Proof. For k=1 the inequality (3.8) can be established using the Corollary to
Proposition 1 where one takes H=L*T"), A=1— A, and Tu= Vu. The hypothesis
(3.5) reduces to showing

(3.9) I[Ar, V1uli-2 £ const. | V|c2|ull ue H3I), k=1,2.

This inequality can be proved by showing that it holds in the domain of any
coordinate chart. When restricted to such a domain we may assume we are working
in R™"-1, The operators V and A become first and second order differential
operators respectively, and the inequality (3.9) is shown to be true. Thus (3.8)
holds for k=1.

The inequality (3.8) for k=2 follows from the case k=1 together with (3.9) and
the relation Ap[Ar, Viu=[V, Arlu—[Ar, V]Aru. O

Now we obtain formulas for the transformation of the differential operators
D;=0/éx; under the mappings U, U, defined by (2.4). Using these, we consider
commutators involving the operator M.

Let (y,s) = y+sv(y), x = (y(x), s(x)), c(x), and h(x) be as in §2. Define
hy=h &(h™*)[0x;, y;=0y|0x;, s;=0s[0x;. Put ay(y, s)=a,(y+sv(y)) for (y,s) € w,
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and let y, §;, o5, V; be defined in the same way from ¢, A, s, y;, respectively. (Note
that V; is a vector field on w.) Let §=3 «;6; and

(3.10) Lo = ydofos+Y o Vp+d, ve H'(w).
Then we have
LemMmA 5.
UoD;Us v = Vo+0,(0v/0s), UD;U " = Vp+oy(0v/os)+ v,
U a,D,U v = &, 1V £ C|Aro],

v € H(w). Here | | denotes the norm in L*(w).

Proof. In order to show the first relation, note that U *v(x)=uv(y(x), s(x)).
Using the chain rule, we have D,Ug 'v=V,;v+(0v/0s)(0s/0x,), where Vv and dv/ds
are evaluated at (y, s)=(y(x), s(x)). The formula for U,D;Us! then follows.
Since U= Uyh, one may obtain the formula for UD;U ~! from the formula for
Uo,D;Ug . Using this and (2.3), one arrives at the third formula.

Note that the vector field V; is tangential to I', i.e. ¥,(y, s) is a tangent vector to
I' for each (y,s)e€ w. Therefore (Vp)(s)=Vi(s)(s) for se€[0,c]. Here Vis)
denotes the vector field on I' defined by V,(s)(y)=V,(y, s), y € I". It follows that
| Viv(s)|2 = C || Arv(s)|E, where C is a constant independent of s and | |r is the
norm in L%T). Integrating from 0 to o gives the last inequality in the lemma. [J

LEMMA 6. If ae C%(Q'), then
1M, alu|x = Clalcelulle, — uweH**YQ), k=01,
with a constant C independent of a and u. Here | |, is the norm in H*(Q').

Proof. Under the mapping U this inequality corresponds to the inequality
[[Ar, «]v]|x £ C|l«|c2|v]x, Where «(y, s)=a(y+sv(p)), v=Uu, and the norms are
now with respect to w. This inequality follows from Lemma 2. []

LemMMA 7.
M, DjJu|| = Cluls, — ue HAQ).
Here || | is the norm in L*(Q').

Proof. Using Lemma 5 and transforming to w by the mapping U, one sees that
it suffices to prove

I[Ar, V;+04(0/0s)+8,Jv| = const. |v],
where v= Uu. This inequality is easily obtained from Lemmas 2 and 4. []
LemMMA 8. If p is a C? function with support in the interior of ', then

lleMp, Alul| = Clluls,  [[pMp, A2Ju| = C|AY2u],
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ue H*(R™). Here || | and | |, denote the norms in L%(R™) and H*(R™). We are
regarding u — pMpu as a bounded operator from H*(R™) to H*-(R™) for k=1,

3
3, 2.

Proof. Let M'=Uy *ArU,=hMh=*. M’ has the advantage that it maps H3(Q2')
into H%(QY'), while M does not. Note that (M —M"u=h[h~!, Mu, ue H}(Q'). It
follows from Lemma 6 that M — M’ extends to a bounded operator on H*(Q'),
k=0, 1. Thus pMp— pM'p extends to a bounded operator on H*(R™), k=0, 1. Using
interpolation, one sees that this is also true for k=4. Consequently it suffices to
prove the inequalities in the lemma with M replaced by M’.

We can use the Corollary to Proposition 1 with H=L?(R™), A=1—A, and
Tu=pM’pu. The hypothesis reduces to showing

3.11) I[A, p M plu|i-2 £ Clu|x, ue H3}R™), k=1,2.
One has
P 2. (D,[D;, pMplu+[D;, pM'p]Dyu),
[Dj, pM'plu = (8p/0x;)M " pu+ p[D;, M"Jpu+ pM'(0p/0x;)u.
Using Lemma 5, we have
[D;, M'lv = Ug *[V;, Ar]Uov+ Ug o, Ar](9/0s)Uov,
ve H%(Q'). It follows from Lemmas 2 and 4 that
I[Dj M'W|i-1 £ Cloflx, veH*Y(Q), k=1,2.
Hence
ILDs, pM plullic-r = Clluli,  we H**Y(R™), k =1,2.

Using duality and the fact that (M u, v)=(u, h=2M'h?v), u, ve H(Q'), one can
show that this inequality holds for k=0. The inequality (3.11) can now be proved
by combining this with (3.12). [

4. Properties of the operator S.

PROPOSITION 2. S is an isomorphism from H}(Q) onto X.

In the proof of this proposition we shall use the operator R defined by
Ru = (Ao +Bu+dAdu+yMiu, ue D(R) = D(S).

LEMMA 9. S—1 and R—1 are accretive when considered as operators in X, and
S'— R extends to a bounded operator on X. It follows that Proposition 2 is true if and
only if R is an isomorphism from HE(Q) onto X.

Proof. If we expand (Su, u) using the formula (2.8), then ((4o+p)u, u) is non-
negative because A4,+f is accretive, and ($A¢u, u) is bounded below by [fu?
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because A is selfadjoint and bounded below by 1 when considered as an operator

in L?(R™). We have

Z (Mrilpu, napu) 2 Z (rlipu, riligpu) = [[pul®.

The inequality on the left is a consequence of the fact that M is symmetric and
bounded below by 1 when considered as an operator in L%(Q’), and the equality
on the right follows from (2.6) and the fact that the r, are orthogonal. Therefore

(Su, u) 2 |[ul®+ |pul® 2 |u]?,  we D(S).

Here we have used the fact that ¢2+¢2 = ¢* +*=1. The proof that R— 1 is accretive
is the same except the r, and ¢, do not appear.
One has

4.1 (S—Ryu = D $luri M, rililpu,  ue D(S).

By Lemma 6, S— R extends to a bounded operator on X.

Since S—1 and R—1 are accretive, it follows that S has range equal to X pre-
cisely when S—1 is m-accretive and similarly for R. In general, if two accretive
operators differ by a bounded operator, then one is m-accretive if the other is.
Thus, Proposition 2 is equivalent to the range of R being X. [

We prove that R has range equal to X by showing (1) R is closed when regarded
as an operator in X, and (2) its adjoint R* is one-to-one. The first assertion is a
consequence of the following lemma.

LEMMA 10. The operator R satisfies
4.2) luls £ C||Ru|, u e D(R),
with a constant C.

Proof. Since R—1 is accretive, one has |u| =<|Ru|, u € D(R). Therefore, it
suffices to show

(4.3) lul} = C(IRul+|u]®),  ue D(R).

Here and in the following, C denotes a constant.
Since ¢*+y*=1, we have

44) lul} = C(i%ul+ %)),  ue HY(Q).

Using Calderdn’s theorem, it is not hard to show

4.5 I%u = ClgA$ul®+ [u®),  ue H(Q).
For the term ¢2u, we shall establish the following estimate:

(4.6) l#2ul} = C(|Lul®+ |pMbul®+u]®),  ue HY(Q),



1972] SYMMETRIC HYPERBOLIC SYSTEMS 177

where &7 denotes the formal differential operator > a,D,. In order to show (4.6),
we first note that

Iwly = C(low/os| +[[Arw] +]wl),  we HY(w),

where | || and | ||, are the norms in L%(w) and H!(w). This inequality follows from
(2.7) and the fact that Ar is an isomorphism from H*(I") onto L%T'). Now let &
be the operator defined by (3.10). Since y is nonsingular, one has

lewfes| = (12wl +3 [Vl i), we ).
If one combines this with the preceding inequality and uses the fact ||V,w|
< C|Arw]|, proved in Lemma 5, one obtains
Iwly = CUZLwl+[Acw] +]w]),  we HY ().
Using the formula Us/ =2 U, proved in Lemma 5, it follows that
loll, = C(|v] + | Mo|+[o]),  veHY(Q),

where the norms are with respect to Q'. Putting v=4?u and using the fact that M
commutes with multiplication by ), one obtains (4.6).
Combination of (4.4), (4.5), and (4.6) leads to

4.7 lul = C(lLull®+ | pAdul®+ [ Mipul® + [[u]®),

u € H*(Q). Keeping this in mind, we expand | Ru|2. Note that in proving (4.3), we
may ignore terms in R which act as bounded operators on X. Thus we may assume
without loss of generality that =0, 8=0. Then

(4.8) ||Ru|? = |Zul®+ || $Adu|®+ | Mipu|® +2(Lu, Ku)+2(bAdu, $ Miju),
where Ku=¢Adu+yMju. In a moment we shall prove
(4.92) —(pApu, pMpu) < Clluly|ul,
(4.9b) —(u, Ku) = Cllul;|ul,
u € D(R). Combining (4.7), (4.8), and (4.9ab), one arrives at
lul = CCIRull®+ [lully]u])-

Since 2|u|;|u] = C ~||lu|?+ C|u|?, one obtains (4.3).

We now show (4.9a). Let p be a C3, real-valued function on R™ such that (1)
p(x)=4(x) for x belonging to the support of ¢, and (2) the support of p is contained
in the interior of Q'. Then ¢¢=¢p. It follows that ¢ Mipu= pMpdu since ¢ and M
commute. Therefore, it suffices to show —(Aw, pMpw)=C|w|.|w], where
w=¢u € H*(R™) and the inner product and norms are with respect to R™. We may
assume w € H2(R™) since this set is dense in H}(R™). We have

—(Aw, pMpw) = —(pA?w, MpAl2w)—([pMp, AV2]AY2w, w).
p
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The first term on the right is nonpositive since M = 1. Using Lemma 8, one sees
that the second term is bounded in absolute value by C||w||w].

Finally we show (4.9b). We may assume u € H2(Q) N H}(Q) since this set is
dense in H}(Q). Since K is symmetric, one has (&Zu, Ku)= (&7 Ku, u)+ ([K, &/ u, u).
If one integrates the first term by parts, one obtains (&7 Ku, u)= — (Ku, (< + e)u)
+((Ku)o, a,v)r, where e=> 0a;/ox;. Here v=u, and (Ku), are the traces of u and
Kuon T, and ( , )r denotes the inner product in L%I"). Since $=0 on I', we have
(Ku)o=(pMyu),. Using the fact that Mu=h-1Ug *ArUshu, one can show (Ku),
=hg *Arhgv, where hg is the restriction of A to T'. It follows that

2(Lu, Ku) = ([K, &u, u)—(Ku, eu)+ (hg  Arhov, a,v)r.
Using Calderdn’s theorem and Lemmas 6 and 7, one can show
(4.10) IK W] < Clwls 2, lajles,  we HYQ).
Therefore, in order to finish the proof of (4.9b), it suffices to show
(@.11) —(hg *Achov, av)r < Cllufy]ul.
Let #(y), y € T, be the orthogonal projection of RN onto P(y). Then =(y)v(y)
=uv(y) since u € D(R). Thus
(hg *Achov, a)r = (Apv, av)r+ (hg *[Ar, homlo, anv)r,

where a=ma,n. Note that «(y)=0 for y € I'. By Lemma 2, the second term on the
right is bounded in absolute value by C|v||z, where || |- denotes the norm in
L%T). For the first term on the right we have

(Al"v’ OLU)F = (A%‘/zv, aA%‘/zv)P-*-([a’ All"/z]All"lzv’ U)l"'

The first term on the right is nonnegative since «=0, and the second term is
bounded by C|v|2 by Lemma 3. This proves —(hg'Arhor, av)r<CJv|z. In
order to complete the proof of (4.11), it suffices to show |v|& < C|u|,|u|. Using a
partition of unity and change of variables, this inequality can be reduced to the
case where Q={xe R™: x,>0} and I'={x € R™ : x,=0}. Using integration by
parts, we have (v, v)r= —2(Dnu, u), and the desired inequality follows from
this. [J

In order to finish the proof that the range of R is X, it remains to show that
R* is one-to-one, where R* is the adjoint of R regarded as an operator in X.

The formal adjoint of A, is given by

Bow = —> Dap+'by, ve D(Bo) = HYQ),

where Q(x)=(a,(x)P(x))*, x € I, is the boundary subspace formally adjoint to P.
The formal adjoint of R is then defined by

Tv = (By+B)v+dAdv+ Mo, ve D(T) = HA(Q).
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R and T are formally adjoint to each other, i.e. (Ru, v)=(u, Tv), u € D(R),
ve D(T). It follows that T is closable when regarded as an operator in X and
T< R*, where T is the closure of T.

The operator B,+pf is accretive; this is proved by Friedrichs [5]. Using the
argument in Lemma 9, one sees that T— 1 is accretive. Hence ||u| < ||Tu|, u € D(T),
and T is one-to-one. In order to show R* is one-to-one (and to complete the proof
of Proposition 2), it suffices to prove the following lemma.

LemMa 11. T=R*.

Proof. In the terminology of Friedrichs [3], T is the strong extension of T and
R* is the weak extension of T, so the proposition asserts the equivalence of the
weak and strong extensions of T. Friedrichs ([3], [4], [5]) and Lax and Phillips [10]
have shown the identity of weak and strong extensions of first order partial differ-
ential operators, and this proof is an extension of their methods to the case at hand.

Let £2+9%2=1 be a C? partition of unity for R™ with the following properties:

(i) é=1 and 7n=0 in a neighborhood of the support of ¢, so that {b=¢,
n¢=0, and ng=1.

(i1) The support of ¢ is relatively compact in Q; in particular, £=0 and »=1
near I,

(iii) For x € Q', £(x) and 7(x) depend only on s(x). This implies that Méu= éMu,
u € H~1(Q'), and similarly for 7.

Since the inclusion 7= R* has already been shown, it remains to prove the
opposite inclusion. Let v € D(R*) with R*v=f. We shall show ¢%v, %0 € D(T).

We first show ¢2v € D(T). Let J,=(1 +¢A)~ !, ¢>0. For each k, J, maps H*(R™)
into itself with norm uniformly bounded in e. If « € H*(R™), then J,u — u in H*(R™)
as ¢ — 0. Furthermore J, maps H*(R™) into H**1(R™).

Let Hu=¢J €u, where we regard multiplication by ¢ as an operator from
H*(Q) to H*(R™) and also from H*(R™) to H*(Q), |k| £3. Then, for |k| <3, H,
maps H*(Q) into itself with norm uniformly bounded in e. If u e H¥(Q), then
Hau — £y in H*(Q). (From now on we omit ““e — 0"’ when it is clear from the
context.) For —3=<k <2, H, maps H*(Q) into H**+1(Q).

Let v,= H,v. Then v, € D(T) since £=0 near I'. Also v, — ¢?v in X. In order to
show ¢2v € D(T), it remains to show Tv, converges in X.

Let T,: X — H~1(Q) be defined by

T = — Dau+(b+Pu+pAdu+yMju, ueX.

Note that T; is an extension of T. It is not hard to see that T;v=f. Then we have
Tv,=H_ f+ [T, H.v. Since H . f— £*fin X, it remains to show [T, H,]v converges
in X. In fact we shall show

(4.12) [T,, H.Ju converges in X for all ue X.



180 F. J. MASSEY III [June
The first step is to show
(4‘13) ”[Tla HE]u" = C"u"’ uEX> &> 09

with a constant C independent of e.
Let x be a C* real-valued function with compact support in Q with the property
that x(x)=1 for x belonging to the support of £. Then xé=¢ and

(4.14) [Ty, Hlu = [Ty, ElxJeéu+ElxTx, Jeléu+ EJox(T, £lu.

In the first and third terms on the right we have

(4.15) Ty, éw| = Clwl,  we HYQ).

This follows from Calder6n’s theorem and Lemma 6. In the second term we have
[XTix, J.Jw = eJ [A, xTixlJw = J[A, xTix]A (1 =J)w,

w € L(R™). It follows from Calderdn’s theorem and Lemma 8 that ||[[A, xT:x]v]|
<Cl|v|,, v e H3(R™). Therefore

IxTx, JIwll = Clwl,  we HY(R™), &> 0.

Since H!(R™) is dense in L2(R™), this holds for u € L% R™). Combining this in-
equality and (4.15) with (4.14) proves (4.13).

Having established the inequality (4.13), we can prove (4.12) using the following
well-known principle:

(4.16) Let A,: X, —> X,, ¢>0, be a family of continuous linear operators
between Banach spaces X; and X,. Suppose the 4, are uniformly bounded in norm
with respect to ¢ and A,u converges in X, as ¢ = 0 for all # belonging to a dense
subset of X;. Then A,u converges in X, for all u in X;.

In the particular case of (4.12) one sees that [T, H ]Ju converges in X for all
u € HY(Q). Since H*(Q) is dense in X, the assertion (4.12) follows. This completes
the proof that £2v € D(T).

In order to show 520 € D(T), we transform from Q to w. However, we first make
the following observation. Suppose C is a bounded operator on X. Then Lemma
11 is true if and only if (R+ C)* coincides with the closure of T4+ C*. Thus we may
assume without loss of generality that 5=0, 8=0in R and T.

Let

4.17) FEu = Lu+ Aru,

where the domain of E consists of those u € H'(w) which satisfy the boundary
conditions u(y, 0) € P(y), u(y, 0)=0fora.a. ye I. If u € D(E), then nU ~*u € D(R)
and )

(4.18) RnU ~'u = qU ~'Eu+ a@n/ox;))U " 'u.
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Here we have used Lemma 5 and the fact that ¢ =0. It follows that if E* is the
adjoint of F regarded as an operator in L%(w), then Unv € D(E*) with

EXUnp = f' = U(v;f—z (877/8x,)a,v).
The formal adjoint of E is given by Fw=.#w+ Apw, where
Mw = —(8[osyyw— D Vie,w+ 8w,

with 8; =8—3 div (V;);. Here we are using the fact that if V is a vector field on I,
then ¥V and — V—div (V) are formally adjoint as operators in L?(I'). The domain
of F consists of those we H'(w) which satisfy the boundary conditions w(y, 0)
€ Q(y) for a.a. ye I We note that (Eu, w)=(u, Fw), u € D(E), w e D(F). Thus
F<E*. In a moment we shall show E*=F. Assuming this, it follows that there
exists a sequence {w,}< D(F) with w,— Uqv and Fw,—f’ in L*(w). Then
nU~*w, € D(T), nU ~'w, - 7%v in X. Using the fact that U(—2 D;a,)U " '=4,
one can show
TnU ='W, = qU "*Fw,— > (&9/ox,)a;U ~*w,,

Thus TnU ~'w, converges in X. We conclude 52 € D(T).

It remains to show E*=F We first reduce the problem to the case where the
boundary subspace P(y) is independent of y. Let ry, {, be as in §2. Let v € D(E*).
In order to show v € D(F), it suffices to show {Zve D(F), k=1, ..., K. Fix k and
let {=¢,, r=r, and

Ly =yr? 8u/6s+z or " W+ 8r~u+ Apr~u,

with the domain of L consisting of those u € H!(w) which satisfy the boundary
conditions

(4.19) u(y, 0) € Py, u(y,0) =0, foraa.yel.
If u e D(L), then {r~'u e D(E) and
Elr~'u = {Lu+ D oVi(LrYu+[Ar, L u.

By Lemma 2, [Ar, {] extends to a bounded operator on L%(w). It follows that
{v € D(L*) with

L*gw = {rE*o— Vi(lr)ap—r[Ar, {o.
The formal adjoint of L is
Mw = —(8[as)ryw— D Viraw+rdw+rAcw,

where the domain of M consists of those we H'(w) which satisfy the adjoint
boundary conditions w(y, 0) € Q,(»), where

2:(») = (/(, Or(») ™ P)".
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We have (Lu, w)=(u, Mw), ue D(L), w e D(M), so M<L*. In a moment we shall
show L*=M. Assuming this, it follows that there exists a sequence {w,}< D(M)
with w, — {v, Mw, — L*{v in L?*(w). For y belonging to the support of {, we have
r~Y(»)P,=P(y). For such y, one has Q,(y)=Q(y). Thus {{w,}= D(F). Also
{w, — v and

Flw, = lr‘le,,—z Vi(lr=Yre;w,+[Ar, {Iw,,

which converges in L%(w) since [Ar, {] extends to a bounded operator on L?(w).
It follows that {2v € D(F).

We now show L*=AM. By multiplying L by ry~!, we may assume L has the
form Lu=0u/os+ Gu, where Gu=Y a,Vu+bu+c;Arcou, where a;=ry a2,
b=ry=1or=1, ¢c;=ry~1, and c;=r"1. Then Mv= — dv/0s+ Hv, where

Ho= - Vj‘ajv+(‘b—z div (V) taj)v+tc2Ar‘ ‘erv,

and the adjoint boundary conditions become v(y, 0) € Pi.

To show L*< M, we use the mollifier K,=(14+¢Ap)"!, e>0. For —1<k<1,
K, maps H*(') into itself with norm uniformly bounded in e. For ue H*(),
K. — u in H¥(T'). Furthermore K, maps H*(I') into H***(T") for k= —1, 0.

Using the natural correspondence (2.7), we shall regard K, as mapping H*(w)
into itself for —1 £k <1. Then, for u € H*(w), Ku —> u in H*(w).

Given v € D(L*), let v,=K,v. Then v, — v in L*(w). Since K, maps H°(I') into
H(T), it follows that the first order derivatives of v, along directions tangential to
I' lie in L%(w). In order to show v, belongs to H(w), it suffices to show ov,/ds
belongs to L%(w).

If L*v=f, then —dv/ds+ Hv=f when we regard dv/os and Hv as elements of
H ~Y(w). Then ov,/0s =K, (6/0s)v= — K, f+ K, Hv. One has K, Hv € L*(w), since K,
maps H ~}(I') and L*T") and the operator H only involves differentiation in the y
compcnent of a function v(y, s) on w. Thus v, € H'(w).

We claim v, satisfies the boundary conditions v,(y, 0) € P%. Suppose u € D(L).
Let #(0), (K.u)(0), denote the traces of v and K.u on I'x{0}. Then (K,u)(0)
= K, (u(0)). It follows that K,u satisfies the boundary conditions (4.19) and hence
belongs to D(L). We have

(4.20) (LK, v) = (Kou, f) = (u, K.f),

since L*»=f. On the other hand, we have (LK, u, v)=(0u/0s, v,)+(GKu, v), since
K, and 0/ds commute. Integrating by parts, one obtains

(0u0s, v;) = —(u, 9v,/05) — (u(0), v,(0))r-
We use here the fact that u(y, 0)=0 for a.a. y e I'. Thus
(LK, v) = —(u, 0vs/0s) — (u(0), v,(0))r + (v, KeHv) = (4, K.f)—u(0), v(0))r-
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Combining this with (4.20) gives (4(0), v,(0))r=0, u € D(L). Since the values of
u(0) can be chosen arbitrarily subject to the restriction (4.19), it follows that v,
satisfies the boundary conditions v,(y, 0) € P¢. Therefore v, belongs to D(M).

It remains to show Mv, —f in L%(w). We have Mv,=K,f+[H, K,]v. Since
feL¥w), K. f— fin L*(w). We claim [H, K.Jo — 0 in L?(w). In fact, we shall show

4.21) [H, K.]Jw—0 in L%*w) for all we L*(w).

The proof of this is very similar to (4.12). The crucial step is to establish the
inequality

(4.22) I, KJw| = Clwl, weL*w), &>0,
and then we can apply the principle (4.16). We have
[H, K.w = K[Ar, HIAR (1 = K)w.

Using Lemmas 2 and 4, one sees that ||[[Ar, H]Af 0| 2 C|v|, v € H}(w). Using
this inequality, one easily obtains (4.22).

Since [H, K,]Jw — 0 in L*(w) for w e H'(w), and H'(w) is dense in L*(w), one
obtains (4.21). Thus Mv, — fand ve D(M). [

This concludes the proof of Proposition 2. We now prove a regularity result
for S.

PROPOSITION 3. If v e HY(Q) then S ~'v e H3(Q).

Proof. Let u=.S ~'v. Then u € H}(Q), Su e H(2), and we must show u € H?(Q).
(S—R)u is given by (4.1) and, by Lemma 6, [M, r.{,] is a bounded operator on
HY(Q'). Therefore (S— R)u belongs to H'(Q). Since Sue H(Q), it follows that
Rue HY(Q).

Let £2+72=1 be the partition of unity introduced in the proof of Lemma I1.
We must show £2u, n%u € H%(Q).

Let {J, : ¢>0} be the operators introduced in the proof of Lemma 11 and
Gau=e"1¢(1—J,)éu. Note that e~ (1 —J,)= AJ,. We claim that in order to show
£2u € H3(Q), it suffices to show G.u converges in H'(€2). Suppose the latter is true.
Then

Gau—e Y (1-J)8% = e[, £léu = J,[€, A} u.
By Calderon’s theorem, [£, A]is a bounded operator on H'(R™), so the right side
converges in H*(R™). Therefore J,A£%u converges in H'(R™). So A¢%ue HY(R™)
which implies £2u € H%(Q). This proves the claim.

It remains to show G.u converges in H!(Q). Note that G,u € D(R) since {=0
near I'. By (4.2), we are reduced to proving RG.u converges in X. We have

RGu = G.Ru+[R, G, lu.
Since Ru e HY(Q), G.Ru— ¢A¢Ru in X.
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It remains to show that [R, G.Ju converges in X. In fact we shall show that
[R, G]w converges in X for all w e HX(Q). (Note that in proving this we do not use
the fact that w satisfies the boundary conditions wo(y) € P(y), y € I', so we shall
assume that P(y)=R" and D(R)=H!(Q).) The proof is similar to the proof of
(4.12). We establish the inequality

(4.23) IR, G.Iw| < Clw|s, weHQ), &> 0,

and then apply the principle (4.16). Let y be the function introduced in connection
with the proof of (4.13). Then

(4.24) [R, G.Iw = [R, éIxAJéw+ EJ [xRx, Al éw+ EATx[R, é]w.
Application of Calderdn’s theorem and Lemma 6 shows that
IR, &l < Clwli, — weH**XQ), k=01
Using Calderdn’s theorem and Lemma 8, one obtains
IxRx, Ale] < Cllols, v e H(R™.

Combination of these last two inequalities with (4.24) proves (4.23).

Note that if w e H2%(Q), then G,w — éAéwin HY(Q). Thus [R, G.Jw — [R, ¢A€]w
in X for we H?(Q). Since H%(Q) is dense in H*(Q), it follows that [R, G,]w con-
verges in X for all we H(Q). Thus we have proved &2u € H%(Q).

We now show n?u € H%(Q). It suffices to show Un?u € H?(w) which in turn reduces
to showing ArUn2u and (9/0s)Un2u belong to H*(w). To show this, we shall use
the operators {K, : ¢>0} introduced in the proof of Lemma 11. In order to show
ArUn*u e HY(w), it suffices to show K, AprUn?u=e~1(1—K,)Un?u converges in
H'(w). Since n commutes with UK, U, it suffices tc show e U ~(1—-K,)w
converges in H!(Q), where w= Unu.

Let L,=> {.ri 'K, r.,. Using (2.6), we have

(4.25) e (K, —Lw = e7* > Luri i, K w.

Note that e~ ![r. Ly, K Jw=K [Ar, ri.{JK,w. This converges in H*(w) as ¢ — 0 by
Lemma 2. Thus it suffices to show

(4.26) e IqU-Y(1—-L,)w converges in H}(Q).

We claim that e~ U ~ (1 — L,)w belongs to D(R). Since u € D(R), it follows that
w(y, 0) € P(y) for a.a. y e I. Therefore r.(y).(y)w(y, 0) € P, for a.a. y € I', which
implies (K ri.8w)(y, 0) € P, for a.a. y e I'. From this one concludes (L.w)(y, 0)
€ P(y) for a.a. y e I'. The claim then follows.

Using (4.2), one sees that the assertion (4.26) reduces to showing
e 'RyU ~Y(1—L,)w converges in X. We may assume without loss of generality
that b=0, 8=0in R. Let E be the operator given by (4.17). Using (4.18), one sees
that it suffices to show e *E(1 —L,)w converges in L?*(w). For this we do not use



1972] SYMMETRIC HYPERBOLIC SYSTEMS 185

the fact that w satisfies the boundary conditions w(y, 0) € P(y), y € I', so we shall
assume that P(y)=R" and D(E)= Hw). Again using (4.25), one sees that it
suffices to show e *E(1 — K,)w converges in L%(w). One has

e TE(1—K,)w = e~ Y(1—K)Ew+e'[K,, E]w.

It is not hard to show that Ru e H(Q) implies Ew € H'(w). Therefore the first
term on the right converges to ApEw in L*(w).

It remains to show e ![K,, E]w converges in L%*(w). We shall show that
e~ ![K,, E]o converges in X for all v € H!(w). We first establish the inequality

4.27) le [Ke, Elv| £ C|v|1, ve HY(w), &> 0,
and then apply (4.16). We have
(4.28) ' e 1K, Elv = K,[E, Ar]lK.v.

Using Lemmas 2 and 5, one sees that |[E, Ap]u|| = C|ul,, u € H*(w). Combining
this with (4.28), one obtains (4.27). Since ¢ ![K,, EJv=¢"*[(I—- K,), E]v converges
to [Ap, E]v in L¥*(w) for v € H*(w) and H?*(w) is dense in H'(w), it follows that
e~ ![K,, E]v converges in X for all ve H'(w). This concludes the proof that
ArUn?u € HY(w).

1t remains to show (9/0s)Un%u € H(w). It was noted above that Ew= EUnu
€ H'(w). It follows that EUn?*u € H*(w). Using the fact that ArUn’u € H'(w) and
the fact that the V,Ar! are bounded operators in H'(w), it follows that
y(0/0s)Un*u € H(w). Since y is nonsingular, this implies (8/0s)Un®u € H'(w). [

5. Proof of Theorems 1-3. In order to show that S defined by (2.8) satisfies the
requirements of Theorem 1, it remains to prove the following proposition.

PROPOSITION 4. SAS ~'=A+ B, where B € B(X).

Proof. We first show that ue HA(Q) implies A4S ~ue HE(Q). Let v=S"'u.
Then Sv=ue H}(Q) and, by Proposition 3, v € H}(Q) N H*(Q). We must show

Av e HE(Q).
Note that ¢ A¢v € HA(Q) since $=0 near I'. Next we claim
(5.1) Bl *Mr Labv € HY(Q), k=1,..,K

To prove this, note that ve HHQ)N H%Q) implies rlpve H?(Q') and
(rlpv)(p) € P, for a.a. y € I since r,(y) maps P(y) onto P, for y belonging to the
support of . Therefore w=Ur.{,pv € H*(w) and w(y,0) e P, for a.a. ye'. It
follows that (Apw)(y, 0) € P, for a.a. y e I' and (Mr.{fv)(y) € P, for a.a. yeT.
The assertion (5.1) follows from this. We conclude Av € H3(€2).

It follows that HA(Q)<= D(SAS ~1), and for u € H3(Q) we have

SAS ‘u—Au = [S, A1S "u = [Z, A]S ~u,
with
Zv = d’Ad’U'*'Z Pliric *Mri Lo, ve HY(Q).
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Note that Z is an extension of S—A4 —pB. We claim
6Dz Akl 5 Clob(Slale+lble).  ve HE@) N HY@).

If Kv=¢Adv+yMyuv is as in Lemma 10, then (Z— K)v=(S— R)v is given by (4.1)
with u replaced by v. We have already noted that S— R is a bounded operator on
both X and H(Q). Therefore (5.2) follows from (4.10) since Av=/v+ bv.

It follows from (5.2) that B=[Z, A]S ! extends to a bounded operator on X.
Thus we have SAS ~‘u= Au+ Bu for ue HE(Q). Since H}(Q) is a core of A4, it
follows that this holds for u € D(A4). So SAS ~1! is an extension of 4+ B. It follows
that S(4+A2)S >4+ B+ A for all A If Ais large, the right side has range X and
the left side is one-to-one. Therefore we have equality: SAS “'=4+B. [

Theorem 1 is a direct consequence of Propositions 2 and 4.

Proof of Theorem 2. Let

S(0)u = (Ao(t) +Bu+$Adu+ D $leri *MrLihu,

for ue D(S(1))=HEQ). Here B=sup,{B;}, where B, has the value (1.2). The
matrix

c(x,t) = Z a;(x, t) 0s/ox,, xeQ, 0=2t=T,

defined by (2.3), is now a function of ¢, as well as x. Therefore the value of o in
(2.1) should be chosen so that c¢(x, t) is nonsingular for x € Q', 0<¢<T.

Note that the only part of S(¢#) which varies with ¢ is A¢(¢). Thus S(¢) is continu-
ously differentiable on [0, T) to B(HA(Q), X), since this is true for 4(z).

According to Propositions 2 and 4, S(¢) is an isomorphism from H}(Q) onto X,
and S(2)A(t)S(t) '=A(t)+ B(t), where B(t)e B(X). It follows from the in-
equality (5.2) that the map ¢t — B(t1)=[Z, A(¢)]S(¢)~* is continuous on [0, T] to
B(X). O

Proof of Theorem 3. We noted in the remark after Theorem 3 that the conclu-
sions of Theorem 3 are true if P(x, t)=P(x) is independent of t. We turn now to the
general case where P(x, t) varies with ¢.

Suppose r(x, t) is an orthogonal matrix-valued function of class C2 on Qx [0, T
with the property that

(5.3) r(y, t) maps P(y,0) onto P(y,t) foryel, 0=t=T.
If one makes the change of variables
v(x, t) = r(x, 1)~ u(x, t), xel, 0t=T,
then equation (1.1) for u corresponds to the following equation for v.
6v/8t+z r~ta; ovfox;+b'v = r-lf,

v(x, 0) = r(x, 0)~*¢(x),
v(x, t) € P(x, 0), xel', 0=2t=T,



1972] SYMMETRIC HYPERBOLIC SYSTEMS 187

where b'=r~1(0r/ot+ 3 a; or[ox;+br). In this equation the boundary subspace
P(x, 0) does not vary with r. We also note that the assumption f(-, t) € H3,(Q)
implies r(-, t)7f(-, t) € H3 (Q). Therefore, as noted above, the conclusions of
Theorem 3 hold for this equation. It follows that u=rv is the desired solution to
equation (1.1).

To complete the argument, one must show that there is a function r(x, t) with
the above properties. The condition (5.3) can be restated as

(5.4) r(y, e(y, Or(y, t)"* = e(y,t), yel, 0=t=T,

where e(y, t) is the orthogonal projection of RY onto P(y, t). Such an r is called a
transformation function for e(y, t), and it may be constructed using Kato’s method
(see [8, p. 99]). We take for r the solution of the differential equation

@jot)r(x, t) = q(x, Hr(x, 1), 0=t=T,

r(x, 0)=1, where g=[0e/ot, e]. Since q is antisymmetric, this r is an orthogonal
matrix-valued function of class C2 on I x [0, T'] which satisfies (5.4) with r(y, 0)=1.
We must extend » to Qx [0, T]. Let r'(y, s, t)=r(y, tp(s)), where p is a function
mapping [0, o] into [0, 1] with p(0)=1 and p(s)=0 for s=o/2. r’ is defined on
I'x [0, o] x [0, T] with r'(y,0,¢t)=r(y,t) and r'(y,s,t)=1 for s=o/2. Letting
y(x), s(x) be the coordinates in Q' introduced in (2.2), one may change variables
to obtain r(x, t)=r'(y(x), s(x), t). This r is defined on Q' x [0, T] with r(x, t)=1
if s(x)Z0/2. r may then be extended to Qx [0, T'] by setting r(x, t)=1 for x € Q
~Q. O
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