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ON THE H. LEWY EXTENSION PHENOMENON

BY

RICARDO NIRENBERG

Abstract. We prove local approximation and extension theorems for C

submanifolds M of C" (CR submanifolds). Under some conditions on M, any smooth

solution of the induced Cauchy-Riemann equations can be extended holomorphically

to bigger (and sometimes open) sets.

1. Introduction. A characteristic feature of the theory of functions of several

complex variables is the holomorphic extendibility of functions from a set to a

bigger set. This phenomenon is intimately related to the vanishing of certain spaces

of cohomology with compact support. The first example of this is the well-known

theorem of Hartogs: any function defined and holomorphic on a neighborhood of

the boundary of a ball in Cn (n> 1) can be extended holomorphically to the in-

terior of the ball. A stronger form of this result was given by Bochner (see [7,

Theorem 2.3.2']): if F is a bounded open set in Cn («>1) such that Cn — D is

connected and D has a C4 boundary bd D, then any C4 function on bd D satisfying

the partial differential equations on bd D indexed by the Cauchy-Riemann equa-

tions in C can be extended holomorphically to D. In [9], H. Lewy proved a

local version of this theorem (see also [7, Theorem 2.6.13]): if the Levi form of a

smooth real hypersurface does not vanish at a point z0, then smooth solutions of

the induced Cauchy-Riemann equations on a sufficiently small neighborhood of z0

can be holomorphically extended to at least one side of the hypersurface. Thus we

see that the extendibility property for a hypersurface does not depend on its

bounding an open domain, but is already present on any small portion of it. Later

in [10] H. Lewy gave an example of a piece of a 4-real dimensional submanifold M

in C3 with the property that any smooth solution of the induced Cauchy-Riemann

equations on it can be extended to a holomorphic function on an open set of C3

whose boundary contains M.

From then on, much work has been done on the local extendibility properties of

real submanifolds M of C with real dimension less than 2n — 1, but always in the

setup of Hartogs' result, that is, one looks at functions which are holomorphic on

some open neighborhood of M in Cn, and tries to extend them to a fixed open set

of Cn. In other words, one extends germs of holomorphic functions on M. The

pioneer work in this direction was done by Bishop [3]. Further results are found in
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[4], [5], [16], [17] and [18]. A brief account of this area of research can be found in

[19].
In this paper we adopt the point of view of Bochner's and Lewy's results, trying

to extend smooth solutions of the induced Cauchy-Riemann equations on a piece of

real smooth submanifold of C". The procedure is to prove first an approximation

theorem : such solutions can be uniformly approximated on M (locally) by germs

of holomorphic functions on M, and then use the results already known for the

extension of germs. Thus the theory of extension from Lewy's point of view is

reduced to the theory for germs.

We consider M to be a CR submanifold (see §2) and the approximation theorem

is proved under certain convexity conditions on M. Briefly, we will assume that

either there is a real hypersurface passing through M which is strongly pseudo-

convex at z0 e M, or that there is a real hypersurface through M whose Levi form

restricted to H0(M) (the space of complex tangent vectors to M at z0) has at least

one positive and at least one negative eigenvalue. In the simplest nontrivial case

of M4 in C3, this means that there is a real hypersurface through M4 whose Levi

form restricted to H0 is not zero. Under these conditions we can extend to the

same sets as in the extension of germs. (For hypersurfaces, no convexity conditions

are needed in the approximation theorem (see [13]).)

In §2 we present an account of the basic properties of CR submanifolds of Cn

and we give some examples. In §3 we put together the results on d-cohomology

with compact support that are needed, and we prove that if a real hypersurface in

Cn satisfies certain convexity conditions, the equation 8f=g can be solved locally

in L2 with 0 boundary values on a piece of the hypersurface. When g is a (0, 1)

form this is due to Lewy [9]; see also Hörmander [7, Theorem 2.6.13]. The idea of

the proof for forms of other types is due to A. Andreotti. The main results of the

paper are proved in §4. For an account of the notions of holomorphic convexity

of sets and of some of the problems in this connection, we refer the reader to [14],

[15] and [19].

A weaker result for the case CR codim M =2 was published without the com-

plete proofs in [12].

2. CR submanifolds of C\

2.1. Definitions. Let M be a real C° submanifold of C\ of real dimension

2n — k. Let T(M) be the tangent bundle to M, TX(M) its fiber at x e M, and con-

sider the complexified bundle

TC(M) = T(M) ®a C.

TC(M) is a subbundle of T°(Cn). On the latter we consider the operator J given by

the complex structure on Cn. Set

(2.1.1) HX(M) = {¿]e TX(M) ; J($) e TX(M)} ;       xeM.
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We write 2m(x) = dimc HX(M). If m(x) is a constant on connected components of

M, we say that M is a CR submanifold ofCn, and for a connected CR submanifold

M we write w = CR dim M. For a CR submanifold M, HX(M) are the fibers of a

vector bundle H(M) on M, whose sections are called complex vector fields on M.

We will consider only connected CR submanifolds of C", and will assume in

general that m>0. (If m = 0, M is said to be totally real.) Let

/' = dim» M— 2CR dim M = 2(n — m) — k = 2 CRcodimM—codimB M,
(2.1.2) V        '

V - 2/-A:.

Then /' is the fiber dimension of TC(M)/H(M). We will assume that T>0, for

otherwise M is a complex submanifold of C\ It is always true that /'^k. If k^n

and l' = k, we say that M is a generic CR submanifold of Cn. In the case k>n, we

say that M is generic if I' = 2n — k, that is, if w = 0. In any case, a complex sub-

manifold is generic if and only if it is a point or Cn itself.

A vector field £ on M is said to be of type (1,0) if J(Q = (—l)1/2£, and of type

(0, 1) if J(0= — (—1)1,2£. Given a point xeM it is easy to see that there is a

neighborhood U of x in M and a basis for sections of H(M) on £/ of the form

(2.1.3) {£i,...,L,£i,...,Q.

where £¡, /'= 1,..., m, are complex vector fields on U of type (1, 0), and therefore

& are of type (0, 1).

Let ä?H(M) stand for the complex Lie algebra of vector fields generated by the

sections of H(M). If dimc f£H(M) is a constant, we set e(M) = dimc ¿?H(M)

-dimcH(M).

2.2. Defining systems. Let px,..., pk be real valued C°° functions defined on

some open neighborhood D of M in Cn such that

(i)   M = {xeJD;Pl(x)=---=Pfc(x) = 0},

(ii)   dpx A • • • A dpk =£ 0   on M.

Such a system of functions is called a defining system for Af (locally it always

exists). If {px,..., pk} is a defining system for M near ieM, the most general

defining system for M near x is obtained by taking

k

where/y are defined and C" on some neighborhood of x in Cn, and det(_/¡y)?¿0

on M.

Let {px,..., pk} be any defining system for M near xeM. Then for a vector

£ e C2n we have

16 T%(M) o dp[xXi) = 0,       i=l,...,k.
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Lemma 2.2.1. Let I be as in (2.1.2). If{px, • ■ •, pk} is a defining system for M near

x e M, we can find I of the p's (which after reordering we assume are px, ■ ■ -, Pi) such

that they form a maximal subset for which 8px A • • • A Sp¡ # 0 on M, where we have

put 2d = d-(- \yl2Jd and 28 = d+(-l)ll2Jd. Furthermore, for ¿J e C2n, x e M we

have

(2.2.2) U HX(M) o dPi(x)(0 = dPi(x)(£) = 0,       i ={,...,!.

The proof is straightforward and is left to the reader.

2.3. The induced 8-operator. Let M be a CR submanifold of C* and let Ea-0) = E

be the bundle whose sections are the complex vector fields of type (1,0), and

similarly for E(0'1) = E. Let E* he the bundle dual to E, and E* the dual of E.

We consider the bundles of differential forms on M: D{P-'Ù = E*P r\E*q, where Ep

stands for the pth exterior power of E. Then D(p-q) is a subbundle of the bundle of

p + q forms on M. We also write D(p-q) for the space of sections of this bundle.

Consider the operator 8M: D(p-q) -> D{p-q + 1) defined by taking dtp for yefl«

and then projecting it on £)ip,q + 1\ Then we have

82m = 0.

We can therefore define the cohomology spaces

(2.3.1) #*■«> = {<pe D(p-q>; 8u9 = 0}/8M(D(p-"-").

Another way of viewing this locally is the following : take a defining system for

M, {px,..., Pk}, and let / be as in (2.1.2). Let A{p,q) be the sheaf of germs on M of

C°° forms of type (p, q) in C. Consider the form, in Aw-l\

(2.3.2) w = 8px A • • • A dpi.

Then we define the ideals (of forms "normal" at M (see [8])):

(2.3.3) Nip-v = {<pe A^-q); <p A w = 0 on M} = Aip-q\

Then we have

£)(p,q) = r(Alp-q\ M)/F(Nip-q\ M).

Also, the operator d in Cn induces maps

8: A<-P,a) -»> A{p'q + 1>        8: 7V(P,S) —> N(p,q + 1)

because <p e N(p'q) implies that

i k

i=l i = l

with <p¡ e A<p-q\ <pi e y4(p'ï"1). Hence 8~<p a w = 0 on M. As a consequence, 8 induces a

mapping of the quotients 8M: D(p,q) -> Dip-9 + 1\ which is the same as the mapping

previously defined.
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In particular, a complex-valued C œ function fon M for which 8M(f) = 0 will be

called a CR function on M. It is obvious that iffe C°(M) can be continued holo-

morphically and C °° to an open set V of some complex variety such that M lies

in the boundary of V, then fis a CR function on M.

We will need the following algebraic result:

Proposition 2.3.1. If <pe Ar(p,'), ifr>0isa natural number, and dtp vanishes on

M to order r—\, there is an element ipeA(p-q~v with >p\M=0 such that <p + 8<l>

vanishes on M to order r.

For the proof we refer to [13], where the case cp = 8f, fe Al0,m is considered.

However, the argument for the general case goes just along the same lines.

Remark 2.3.2. By using the following result: let K be closed in Rn, and let

feCm(Rn) be such that Dkf(x) = 0 for xeK, \k\^m; then there is a sequence

{f}cCco(Rn) such that/v=0 on some neighborhood Vv of K for each v, and/v

converges to /in Cm(Rn) with the topology of uniform convergence of the deriva-

tives up to order m on compact subsets (see [11]), one can prove easily that we

can replace in the above proposition the orders r and r— 1 by order co. (This is the

"soft" part of Whitney's extension theorem.)

Corollary 2.3.3. Let feC(M) be such that 8Mf=0. Then we can find a

C ™ extension f off to C such that 8f vanishes on M to a given order r (or even to

order co by the above remark).

2.4. CR regular defining systems. Let M be a CR submanifold of Cn and let

{pij • • ■> pk} be a defining system for M. Let V be an open subset of M and U an

open subset of Cn with Un M= V. For t = (tx,..., tk)e Rk close enough to the

origin, we define the C° submanifolds: V(t) = {xe U; pi(x) = ti, i=\,..., k), so

that V(0)=V.

Definition 2.4.1. We say that the defining system {px,..., pk} is CR regular on

V<=M if there is an open set U<^Cn with U n M= V, and an open neighborhood

If of the origin in Rk, and a C° diffeomorphism <D: WxV^-U such that

(i)    O(0) = O |{0} x V = Identity on V.

(ii) <I>(t) = <P|{i}x V is an isomorphism of the CR structures

of the CR submanifolds Fand V(t) for every teW. (We assume

that V(t) is a CR submanifold for t e W.)

The notion of CR isomorphism is the natural one.

Observe that CR regularity is invariant under holomorphic changes of co-

ordinates. Also for any CR submanifold M and every point xe M there are CR

regular defining systems for M on any neighborhood of x in M which is small

enough. For there is a neighborhood U of x in Cn such that if {xx,..., x2n} are the

real coordinates in Cn, we can write

(2.4.2)        MC\U = {xeU; xi-gl(xk+1,. ..,x2n) = 0; i = \,...,k},
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where g¡ e C^t/). Since translations are holomorphic diffeomorphisms, and a

fortiori CR isomorphisms, the system pi = xi-gi is indeed CR regular on U n M.

The reason for considering CR regular systems is that with respect to them a

CR function/satisfies the following strong condition:

Lemma 2.4.2. Let {px,..., pk} be a CR regular defining system for M on V<=M,

and let I be as in (2.1.2). Then there is an open set U in Cn with U c\ M=V such

that every CR function f on V can be extended to a C °° function f on U satisfying

8/a w = 0 on U, where w is given by (2.3.2).

Proof. We can take Win Definition 2.4.1 so that on <f>(Wx V) we still have w^O.

Then we define/on U=<í>(Wx V) as follows:

f\V(t) =/oCp-i(0   fox teW.

Then /is a CR function on each V(t), t e W, and therefore S/a w = 0 identically

on U.    Q.E.D.

By putting Corollary 2.3.3 and Lemma 2.4.2 together it is easy to get the

following

Corollary 2.4.3. Let {px,..., pk} be a CR regular defining system for M on V.

Then there is an open set U in Cn with U n M= V such that for any CR function f

and any r = natural number or co, we can find a C x function f on U satisfying

(i)   f\V=f\V,
(2.4.3)     (ii)   8f a w = 0 on U,

(iii)    8f vanishes on M to order r, where M = {px = ■ ■ ■ = pi = 0} => M.

We will also need the following

Lemma 2.4.4. If M is a CR submanifold of CR dimension m in Cn, and there is a

real C °° hypersurface {p = 0} containing M such that the Levi form of p restricted

to HX(M) has s positive eigenvalues at x e M, then there is a defining system

{pi, • • •, Pk) f°r M which is CR regular on some neighborhood of x and such that the

Levi form of every p¡ has n — m + s = l+s positive eigenvalues on some neighborhood

ofx in Cn.

Proof. After a holomorphic change of coordinates, we can assume that x is the

origin, xi, yu ..., xm, ym, xm+ x,..., xm+ ¡ are tangential to M at 0 and ym+ x,...,

ym+i, Xm+i+i, ym+i+i,- ■ -,xn,yn are normal to M at 0, where zi = xi + (-l)ll2y¡.

Furthermore, we have on some neighborhood V of 0 in M

,«a^    h-9t(xi,yu-.-,xm,ya,xm+x,...,xm+¡),   i = m + l,...,n;
(2.4.4)

x¡ = &(*i>J>i»• • -,xm,ym,xm+x,- ■ -,xm+,),    i = m + l+l,.. .,«;

where q>¡ and </r¡ vanish at 0 to order two and are C° on some neighborhood of 0.

The hypersurface of the statement can be written as, say,

(2.4.5) yn = cp(xx, yu.. .,*._,, y._i, xn),
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where 9 vanishes at 0 to order 2. Then replacing in (2.4.5) the variables xt

(i = m + l+l,...,«) and yt (i=m + l,...,«— 1) by the expressions (2.4.4), we still

get a function

>n = V\xi, yXf ■ ■ ■, xm, ym, xm+1,..., xm+¡)

whose Levi form restricted to HX(M) has s positive eigenvalues. Now it is easy to

see that the system

yi-<Pi + A(yn-4>),       i = m+l,...,n-l;

(2.4.6) xi-^i + A(yn-f),       i = m + l+l,..., n;

yn-$;

is a CR regular defining system on some neighborhood of x in M, and that if the

real number A >0 is big enough, all its functions have a Levi form with s positive

eigenvalues when restricted to HX(M). Calling p„ j=l,..., k, the functions in

(2.4.6), we now form
k

(2.4.7) p\ = 2 airexp(AjPj) pf,
fml

where A¡ are real numbers and (ait) is a nonsingular real matrix with all %>0.

Then an easy calculation shows that {p[,..., p'k} is a CR regular defining system

on some neighborhood of x in M, and that if the A¡ are chosen big enough, the

Levi form of each of the functions p\ will have s + n — m positive eigenvalues on

C.   Q.E.D.

2.5. Examples. As stated in §2.1, we are interested in CR submanifolds M of

C" for which /'>0 (M is not a complex submanifold), and 0<m<n — 1 (M is not

totally real and it is not a real hypersurface : the approximation theorem of §4 in

those two cases was proved in [13]). The simplest case is when M is Levi flat, that

is, when e(M) (see §2.1) is 0. This means that M is an /'-real parameter family of

analytic submanifolds of complex dimension m, at least locally, by Frobenius'

theorem, and again, the approximation theorem for these is proved in [13]. In

this case it is easy to see that M is not extendible. Any real linear subspace of Cn

is Levi flat. The next two are examples of a generic four real dimensional CR

submanifold of C3 for which e(M)>0.

(2.5.1). Let Mi<=C3 be given by z1z1+z2z2-r-z3z3= 1 ; zx—zx = 0; z1T^ 1, zx¥= - I.

A basis for the sections of H(M*) can be given by £ and £, where l = z3(8/8z2)

— z2(8/8z3). Calculating the bracket we get

r>-   ?i & 8      _    d      _    8

Thus we see that ^(x)/0 for x e Mi. Taking brackets again, we get r¡' = [£, ??] = 2£.

Thus, e(Mi)=l. Furthermore, if Fis an open subset of M4 and/is a CR function

on K,/can be extended to a CR function on some open subset of the real hyper-

plane zx — zx=0.
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(2.5.2). Define M1cC3 by z1z1-z2z2=l; z3z3 —z2z2 = 2. It is easy to see that

M* is a generic CR submanifold of C3. On M* n {z^O, z3/0}, the vector fields

£ and £, where

z2  8       8     z2  8

zx 8zx    8z2   z3 8z3

form a basis for the sections of H(Mi). A calculation shows that the vector fields

£, £, tj = [£, £], and t?' = [£, ij] are linearly independent when z2#0. For any open

subset V of Mi n {zx^0, z2=£0, z3^0} we therefore have that e(V) = 2. In this

situation, any CR function on V can be extended to a holomorphic function on

some open subset of C3 whose boundary contains V. This example is similar to

H. Lewy's [10].

3. The Cauchy problem for the c operator.

3.1. The L2 solution. Let p be a real valued C° function defined on some open

set D of Cn, with grad p/0 and let z0e D he such that p(z0) = 0. Suppose that

the Levi form of p has r, l^r^n, positive eigenvalues at z0. Then by means of a

holomorphic change of coordinates we can assume that z0 is the origin, and that

p is of the form

p(z) = z1+Zx + a1x\z1\2 + 2 Re lzx 2 <*ißj\

(3.1.1) r „ í=2

+ 2A;N2+   2 "/W"+«K*X
; = 2 j = r + 1

where z = (zx,..., zn), o-(z) = 0(|z|3) as |z|-*0, A;>0 for j=2,..., r, and the

matrix

axx   a12    ■■■    alr

a12    A2     •• •     0

aXr     0     ■■■    Ar

is positive definite. Now consider the function

(3.1.2) p(z) = zx + zx-ß   2    l^l2       (/3>°)-
; = r + 1

Let Í2 be an open connected neighborhood of 0 in C and define for e, r¡ â 0 the

sets

(3.1.3) W(e, v,p) = {zeCl; P(z) < e, p(z) > -r,}.

We claim that taking Q. small enough and ß > 0 big enough, then

(3.1.4) diam W(e, r,,p)^0   as e2 + v2 -> 0.
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In fact, z e W(e, -n, p) implies that

71

£ > zx+zx-raax(\vj\;j = r+l,. •-,«)• 2 N2+aiiN2
r + l

+ 2Re izx 2 ai^) + 2 ^i\zi\2 + a
\       j=1 I       J=2

71

^ -, + ̂ -maxKI)   2    N2
;' = r + l

-a11|z1|2 + 2Re(z1 2 «iâ) + 2 A;IzíI2 + ct-
\       i=2 /       J=2

+ Í

Choosing Q. small enough, we can make supn |<r| ̂  S 2?=i lz;|2 f°r anY given S>0.

Observe also that if B is a hermitian positive definite rxr matrix and ^ is any

rx(n — r) matrix, then we can choose p.>0 big enough so that the nxn matrix

pld)

B

is positive definite. To see this, consider Rn = Rr © Rn~r and write

(% lb)-A-(?) = läBa + lcfâb + lb^a + 'bp. Id b.

Now there is a constant c such that

(3.1.5) \tcí€b + lbi%a\ ^ c\\b\\ \\a\\,

where \\b\\2 = tb-b and |[a||2 = iâ-a, and there is a constant c±>0 such that laBa

¡icx\\a\\2 and lbp. Id ea/¿||6||2. From (3.1.5) we can make

\tâ%b+ma\ ^ (Cl/2)Hi2+c2||è||2,

for some c2 big enough. It is therefore enough to take p.^2c2 to make A positive

definite. Putting these remarks together, we have that if ß is big enough, there is a

constant c>0 such that

n

c 2 \zi\2 = E + V   f°r z G W(e, t¡, p)
; = i

which proves (3.1.4).

We fix ß and O so that (3.1.4) holds, and so that in addition, the gradient of p

does not vanish on Í2.

It is important to observe that the Levi form of p has everywhere r eigenvalues

equal to 0, and that for s and -n small enough there is a Stein open set U with

(3.1.6) {z e U; P(z) < e} = W(e, v, p).

This is a consequence of the fact that for e, r¡ small enough, the boundary of

W(e, rj, p) consists of the two pieces p = s and p~= —r¡, as one sees from (3.1.4).
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Definition 3.1.1. Given two open subsets D<=E of a complex manifold, we

say that (D, E) is an r-Runge pair if for every compact subset K of D we can find

a real valued function <£ e C°°(E) such that

(i) for a < sup£ <j>, {z 6 E; <j>(z) < a} is relatively compact in E;

(ii) the Levi form of (p has at least r positive eigenvalues at every point of E;

(iii) K={zeE;<p(z)-¿supK<p}^D.

Now consider the sets

(3.1.7) T(e, 8x, 82) = {ze£l; P(z) < e, -S2 < p(z) < -8J,

for e, 8X, 82>0 small enough, and Sx < S2. We have

T{e, ox, S2) = W(e, 82, p)- W(e, 8x, p).

Lemma 3.1.2. For e, -r¡>0 small enough, there is a sequence {E¡} of domains with

a C °° boundary and £je Ej+x, {J¡ E¡ = W(s, -n, P) and such that ifO<exSe, 8x<82

ár/, the pair (T(sx, 8lt 82) r\ Et, Et) is r-Runge for every i.

Proof. Let K<^<^T(ex, 8x, 82). There are positive numbers e'<£i, Si > Sl5 8'2<82

with S'j<S2 such that K^^T(e', 8'x, 8'2). Let t(z) = ^1 lz,|2 and let a>0 be small

enough so that on K we have

P(z) + aT(z) < -8'x,

-log[(P + v)(v-8'2)-i] + aT(z) < 0.

Write

<px(z) =   -logKe-pizMe-e')-1],

(3.1.9) ¿2(z) = p(z) + ^(z) + Si,

<f>3(z) = -Iog[(/H-i7)(i7-8i)-l]-|-aT(z).

Then <px, 4>2 and ^3 belong to Cx(W(e, r¡, P)) and are such that their Levi form has

everywhere in W(e, -n, P) r positive eigenvalues (corresponding to the variables

zx, ...,zr). Therefore the function <¿0 = max (<¡>x, <j>2, <j>3) has, everywhere on

W(e, r¡), r positive eigenvalues in the distribution sense. We also have that <t>0(z)

tends to +00 when z tends to a point in the boundary of W(e, rj), which as we have

taken e and r¡ small enough, consists by virtue of (3.1.4) of the two pieces {P = e}

and {p= -r¡}. On the other hand, by (3.1.8) and (3.1.9),

(3.1.10) K <= {</,0 < 0}   and   <f>0 > 0   on boundary of T{ex, °u S2).

Hence <p0 satisfies all the requirements in Definition 3.1.1 for the pair

(T(ex, 8x, 82), W(e, t], P)), except that it does not belong to C*(W(e, -n, P)). To

complete the proof, we take a slightly smaller set Wq^^ W(e, t¡, p), and set

0 < a0 = inf {d(z, 8W(e, r¡, p)), z e W0}.
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Then take a function x of t(z)1,2= |z| such that x 6 Cx(Cn), x^O and x(|z|) = 0 for

\z\ ä 1, normalized so that Jx dV= 1. For 0<a<a0 we take

(3.1.11) Uz) = J ¿o(z-<Ox(z') dV(z').

Then <£a e Cm(W0), and its Levi form has everywhere r positive eigenvalues on

W0. Furthermore <pa \ <j>a as a \ 0. The domains E( are then chosen so that

Ei = {<pa<Mi}, and by Morse theory we can choose them so that their boundary is

smooth. By letting W0 approach W(e, r¡, P) and M¡ -*■ co, we construct the family

{E¡} with the desired properties.    Q.E.D.

The reason for considering Runge pairs is the following: let D^E as before and

let HP'%D) stand for the d-cohomology space of type (p, q) with compact support,

obtained by taking the quotient Ker 8: s¿0p-q)(D)^sá0p-q + 1\D) over 8(stfp0-q-\D)),

where s/t0p-q) is the space of forms of type (p, q) whose coefficients are C™ and

compactly supported in D. Then there is a natural mapping Hp-q(D) -> H£-q(E),

induced by the natural inclusion si/p-q(D) -> s^^-q(E). For Runge pairs more can

be said:

Theorem 3.1.3. // (D, E) is an r-Runge pair, the natural mapping H£-q(D)

-> H?-"(E) is injective for qfkr. Therefore iffeL2Q(D) (the space of (p,q) forms

on D with L2 coefficients), and f has compact support in D, and f=8g for

g e L2a-x(E) with g compactly supported in E, we can find h e L2 a_x(D) compactly

supported in D so that f=8h, if qfir. Furthermore h can be chosen such that \\h\\

^ C ¡/[j, where ||   || stands for the L2 norm and the constant C does not depend onf

For the proof of this result we refer to Andreotti and Vesentini [2, Lemma 29,

p. 122], where the above L2 estimate does not appear in the statement but is

obvious from the proof. One can also obtain it from Hörmander [6] and the use

of Serre duality. See also Andreotti and Grauert [1].

As a consequence of Lemma 3.1.2, we get

Corollary 3.1.4. The conclusions of Theorem 3.1.3 hold for D = T(ex, 8x, 82)

and E= W(e, -n, p) for E,r¡>0 small enough and £X ̂ £, 8X < S2 S r¡.

We will also need the following result, whose proof is carried out along the same

lines as that of Theorem 3.1.3. (See Andreotti and Vesentini [2, Theorem 5, p. Ill],

or again, Hörmander [6] and Serre duality.)

Theorem 3.1.5. Let E be an open set in Cn and suppose <j> e C(E) satisfies (i)

and (ii) of Definition 3.1.1. Then H%,q(E) = 0 for q<r. Furthermore, if fis a (p,q)

form in L2q(E) with compact support in E,q<r, and 8f=0, we can find a (p,q—\)

form g in L%iq-x(E) with compact support such that 8g=f and ||g|| ¿C[|/||, with C

independent off.

We can now prove the main result of this number.

Theorem 3.1.6. Let p be a real valued C° function on some open set Ü of Cn,

let z0e Q. be such that p(z0) = 0 and grad p(zo)/0. Suppose that the Levi form of p
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has r positive values at z0. Then there is e0>0 and r¡>0 with the following property:

Let 0 ^ £ < £0, and let U be an open neighborhood of z0 with U n {z e £2 ; P(z) < e}

= W(e,t¡, p). Also let V be an open set with U^V, and call d(U, V) = distance

between U and C— V. Then given a form feL2¡v(V) with 0<q<r such that 8f=0

on V and f=0 on V C\{z eQ.; p(z)>e}, we can find a form g e L2tQ_x(U) such that

8g=f on U and g=0 on U n {z e Í2; P(z)>e}. Furthermore, g can be chosen so that

\\g\\SC\\f\\, where C only depends on d(U, V),andC=0(d(U, K)"1).

Proof. Let if >r¡">r¡'>r¡ he such that W(e,-qm)<^V, and such that Corollary

3.1.4 holds for 0^£<£0 and for -n"'. Let x(t) e Cm(R) be such that 0^xâ L x(0= 1

for t^—rj' and X(t) = 0 for f¿± — y. Then if £<e'<e0, the form x(P)fiv/i\\ have

compact support in W(e, r¡", P) (if we have chosen e0 and 17 small enough to begin

with) by (3.1.4). Observe now that 8(X(P)f) = 8x(P) Af is a (p,q+l) form with

compact support in T(e', r¡, r¡m). As q+1 ^r, we can therefore find a (p, q) form w

compactly supported in T(e', -q, -n'") such that 8o> = 8(X(P) •/), with

(3.1.12) H| ï CxWfW,

where Cx depends only on the first derivative of x- Then the (p, q) form x(p) •/— o>

= his d-closed on V and its support is compact in W(e, rf', P). Also, it coincides

with/on W(e , r¡, P). By Theorem 3.1.5 we can find a (p, q—\) form ge. such that

8gE. = h on W(e', r/", P) and supp^.cc w(e, r/", P). Furthermore by (3.1.12),

\ge-\ úC\f\, where C depends only on Cx. (It can be seen in [2] that it does not

depend on e , e<e <e0.) This last inequality implies that by weak compactness of

the unit ball in L2, there is a weakly convergent sequence g£- with e \ e. If we call

g its weak limit, we easily verify that 8g=f on U, that g = 0 if p>e, and that

||*|| áC U/H. Q.E.D.
Now assume that

(3.1.13) P = ma\(Pl,...,Pm)

where the Levi form of each Pi has r positive eigenvalues at z0, corresponding to the

same r-dimensional space. Then each pt, /= 1,..., m, can be expressed on a neigh-

borhood of z0 in the form (3.1.1). Furthermore, assume that dpx A • • • A dPm(z0) # 0.

The following result will not be needed in the sequel, but might have some

interest.

Corollary 3.1.7. The conclusions of Theorem 3.1.6 hold for P as in (3.1.13),

with a set W(e, -n, P) which contains C]f=1 W(e, -n, Pi).

Proof. We consider the case m = 2, the general case being different only in that

it requires a bigger burden of notation. Write

P = max(p1; p2) = Upx + p2+\pi-P2\},

and consider the Taylor expansion of the function (£2 + /2)1/2 about t = \. Call

Ps,n(t) the first n terms, and set

<f>e,n = ÍÍP1 + P2+Pe.ÁPl- P2ï)-
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With 4>n = <Pun,2n+i it is not hard to see that there is a neighborhood ß0 of z0 in

Cn such that <j>n e Cœ(£l0) for each n, ¡pn\ P as n -> co on Í20, and the Levi form

of </>„ has at least r positive eigenvalues on £20, for every n, which are bounded from

below by a positive constant C independent of«. Furthermore, recalling (3.1.2),

we have, for every n, <f>n = ï(pi + P2Y» which proves that if e'>£and n is big enough,

then for any tj > 0, W(e, r¡, (/>„)=> W(e, r¡, Pl) n W(e, -n, p2). The situation being as

in the statement of Theorem 3.1.6, the proof of the corollary is completed by

taking e' >e, and applying Theorem 3.1.6 to 4>n = E' f°r n b'g enough, then letting

e -> £ and taking a weak limit of L2 solutions. Observe that we can take

(3.1.14)      W(e,v,p) = {zen0;P(z) < «.Kft+./*)" >  ~v)-        Q-E.D.

Although we will not need it, it is worth noting that if/in Theorem 3.1.6 belongs

to C"(U), then there is a solution g in C°°(i/). This can be proved by using the

regularity results of J. J. Kohn and L. Nirenberg [Noncoercive boundary value

problems, Comm. Pure Appl. Math. 18 (1965)] and it can be used to prove the

H. Lewy extension phenomenon on real hypersurfaces for cohomology classes of

type (p, q) with q<n—l.

4. Function algebras on CR submanifolds.

4.1. Uniform approximation with holomorphic functions. Let A!' be a compact

subset of a complex manifold X, and let 0 he the sheaf of germs of holomorphic

functions on X. Let C(K) stand for the uniform algebra of complex valued con-

tinuous functions on K, and F(K, 0) for the algebra of sections of 6 over K. Then

there is a natural restriction mapping F(K, <S) J-^. C(K), and we call A(K) = closure

of r(F(K, 0)) in C(K). Similarly, if M is a CR submanifold of C" and a: is a com-

pact subset of M, GM denotes the sheaf of germs of CR functions on M (solutions

of Uf) = 0) and AM(K) is the closure of r(F(K, 0M)) in C(K).

The following result is proved in [13]: Let Abe a compact subset of M, where M

is a totally real submanifold of a complex manifold X (i.e. CR dim M=0). Then

A(K) = C(K).

When M is not totally real, the best we can expect is of course A(K) = AM(K).

Our aim is to establish this result locally. This was done in [13] in two cases: M a

real smooth hypersurface (codimB M= 1), and M Levi flat (any dimension).

Let M be a CR submanifold of C, z0 6 M, and suppose that at least one of the

following conditions is satisfied.

(I) There is a smooth real hypersurface containing M whose

Levi form restricted to HZq(M) has at least one positive and at

least one negative eigenvalue.

(II) There is a smooth real hypersurface containing M whose

Levi form restricted to HZo(M) has all its eigenvalues of the

same sign #0.
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Theorem 4.1.1. Let M be a CR submanifold of Cn and let z0 e M. Assume that

either (I) or (II) of (4.1.1) holds. Then there is a fundamental system of compact

neighborhoods {K} of z0 in M such that if Ke{K} then A(K) = AM(K).

We will use the following

Lemma 4.1.2. Let {Pl,..., Pk} and {p'x,..., Pk} be two defining systems for M,

defined on some neighborhood D of M, with pi = 2?=i auPj- Assume that the C°

real kxk matrix (au) restricted to M is a symmetric positive definite matrix. For

£ > 0 define

T(e) = {zeD; Pi(z) < e, p\(z) > -e; i = 1,..., k).

Then if D is taken small enough, f\>o T(e) = M.

Proof. zeT(s) means that £ —p¡(z)>0, i=\,...,k, and 2/ = i auPÀz) + £ > 0>

i= 1,..., k. Therefore if D is small enough, z e T(e) implies that

k l       k k \

2 P?(z) ¿ c 2 au(z)PiPj(z) < EC Ik 2 %O0p/z)-2 Pi(z) + ke\
i = l i,i \    j = 1 i = l /

for some constant c, and therefore, 2?=i P?(z) tends to 0 as e -> 0.    Q.E.D.

Proof of Theorem 4.1.1. Obviously it is enough to prove that any/in r(A", &M)

can be uniformly approximated on K by elements in F(K, 0).

We set £ = codimÄ M, l=CR codim M, m = CR dim M.

Consider first case (I). Using Lemma 2.4.4, we can find two CR regular defining

systems for M on some neighborhood D of z0, {Pl,..., Pk} and {p[,..., p'k} such

that

(i) 8Px(z0) A • • • A BPt ¿ 0; 8P'x(z0) A • ■ • A lp\ ï 0 on D.

(ii) The Levi form of Pj has at least /+1 positive eigenvalues

,M    _     onDforj=l,...,k, and the Levi form of p' on D has at least
(4.1.2)

/+ 1 negative eigenvalues for j=\,..., k.

(¡u) pi = 2ï oijPj on D, where the C°° real matrix (atj) is equal

to the identity onMnD.

Let (7e D be an open neighborhood of z0 in Cn with U n M=V for which the

assertions of Lemma 2.4.2 and Corollary 2.4.3 hold. Then if/is a CR function on

V, it has an extension/to U satisfying (2.4.3), and the order r of vanishing of 8f

on M will be chosen at the end of the proof. (Or it can be made co from the

beginning.)

Consider now a family of functions <fit(x) of a real variable x in C°°(Ä) with

t eR, t > 0, such that

(1)  Mx) = lfOTX^-t,

i4Mv     (2) Mx) = 0forx£-2t,

K       '    (3) 0 ̂  4>t(x) è 1 for every x and t,

(4) \dm<pt(x)/dxm\ SCt'm for some constant C and every m= 1, 2,....
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Let

(4.1.4) 4>t.i = Hp,)-H-p'i),     i=i,...,l.

We use the following notation: for a multi-index / of length \\J\\ =N, and differen-

tial forms fh,.. .,fjN, we write

A/ = A/=4 A---A/N;      f\fi=\   if/V = 0.
J jeJ J

We will consider multi-indices / consisting of N different numbers in the set

{1,..., /}. Let J¡ be a multi-index of length /; we have by (2.4.3)

(4.1.5) ÍA#i.y) A 8/=0   ont/.

Therefore, if Jt_i is of length /— 1, the (0, /) forms

(4.1.6) at, Ji-x) = te^A  Ht)j A If;        i$Ji-x\        i=l,...,l,

are d-closed on U.

At this point we make the observation that we can assume l<n, for if l=n, M

is totally real and the theorem is proved in [13].

We now introduce the following sets : for a real number s and a multi-index J

define

(4.1.7) Rj(s) = C\({zeU; Pi(z) ¿ - s} u {z e U; ¿(z) > s}) ;
ieJ

we also put Rj(s)=U if \\J\\=0 and R}(s) = R}(s) if J={j}. From (4.1.3), (4.1.4)

and (4.1.6), we see that

(4.1.8) suppí(r, /,_,) = -rVxO).

By (4.1.2)(iii), for any je J the corresponding two sets in the union in (4.1.7) are

disjoint. By shrinking U if necessary, we can assume that U is a Stein open set,

and that using (3.1.6) and Theorem 3.1.6, if? is small enough, then for any jeJ¡_x

we can find a form w(t, Jt-x,j) of type (0, /— 1) in L2(U) such that

(1) Mt,Ji-uJ) = î{t,Ji-i) on U,

(2) suppoj(t, J,_x,j)^RAt),

(4.1.9) (3) ||oj(t, J,.x, j)|| ^C\\¿J(t, J,.x)||, C = absolute constant,

(4) oj(t, J¡-x,J) is antisymmetric in the indices of J¡-x, for any t

and any j.

This can be done if 1 <l<n by virtue of (4.1.2)(ii).

Pick now a multi-index 7¡_2 with ||/,_2|| =/—2. We write jJ¡-2 for the multi-

index obtained by adjoining j at the beginning of /¡_2.

For / e/_2 we define the (0, /- 1) forms in L2(t/)

(4.1.10) è(t,jl_2,i)=  n fe.AC'Aâ/- 2  ™('JJi-2,i).
jW|-2 -ff.-2 íí^l-2
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These are S-closed on U by ( 1 ) of (4.1.9), and the support of ¿J(t, J¡ _ 2, i) is contained

in Rt(t) by (2) of (4.1.9), and the fact that ieJt_2.

If now /> 2, proceeding as before we can find forms w(t, /¡_2, i) of type (0,1—2)

such that

(1) oj(t,Ji_2, i)eL2(U) and 8œ(t,J^2, i) = £(r,/,_2, i) on U,

(41 in (2) supp £u(i'/'-2' '-) c *i(i)'

1 - '    J   (3) ||co(r, y,_2, Oil ^ C||¿j(t,J¡-2, 01; C = absolute constant,

(4) ca(t,J¡_2, i) is antisymmetric in the indices of J¡-2, for any

t and i.

(Observe that (4) of (4.1.11) is possible as a consequence of (4) of (4.1.9).) Then

if/_3 is a multi-index of length /—3, and ieJi_3, we have (for />3)

u *u- A Ht.i a 0/1 =   2    il  hr A Hu as/

=   2   ÉC.A/|_,,Q+ 2      2   <tJhJi_3,i).
htJi-3 htJi-3 HhJi-3

The double sum in the right-hand side vanishes by (4) of (4.1.9). Therefore, the

(0,/-2) forms

¿j(t,Ji-3,i)=   Yl  fa- A Htj A ö/-  2   ^{t,jJi.3,i)
jWl-3 ^1-3 >th-3

are in L2(U) and are S-closed on £/. Also, their support is contained in R¡(t).

Continuing in this way, we finally arrive at a S-closed (0, 1) form in L2(U):

fl+u'-if-Z "V'J'fl - **ifc./a/-!

The forms £t and ¿/ coincide on the set

Ó {z e U; Pj(z) ̂  -t}nf\{zeU; P;(z) ̂  t},
i=i í=i

where <pt.f= 1 f°r j= L • • -, h ancl where oj(t,j,j) = 0 for j=l,...,/. This set is a

neighborhood of U n M for every t > 0. In view of Lemma 4.1.2, of (4.1.3)(2) and

(4.1.3)(4), we can make the L2 norm of the forms (4.1.6) (and of any number of its

derivatives) arbitrarily small by taking t small, if we choose r, the order of the

vanishing of 8f on Pl= ■■■= Pl = 0, big enough to begin with. Using (4.1.9)(3) and

(4.1.11)(3), etc., the same is true of the successive forms $ and cu, and therefore

the L2(U) norm of £( can be made arbitrarily small by taking t small enough. (The

same is true of any Sobolev norm.) We then solve the equation

(4.1.12) 8vt = U   on U,
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with

(4.1.13) \\vt\\ Ú C||£(||        C = absolute constant.

That this can be done is a consequence of the fact that U is Stein, and of the

results in Hörmander ([6] or [7]).-

The function /— vt is therefore holomorphic on the set

a(t) = (\{zeU; Pj(z) fc -/) rv.fi {re V; P\(z) ú t},
i=i i=i

and the difference ¡f—(f—vt)\ = \vt\ can be made uniformly small on compact

subsets of M n U if we take t to be small, by (4.1.13) and Sobolev's Lemma. The

details of the argument are identical to those in [13].

In case (II), the proof is similar, but somewhat easier. Instead of the two systems

in (4.1.2), we consider just one, {px,..., pk}, with pj strongly plurisubharmonic in

D for j= 1,..., k, and 8Pl A • • • A 8Pl ̂  0 on D.

Then with i/it(x) as in (4.1.3) one considers

<A¡,i = Mpd-tA-pi),       i = 1, • • -, /•

One then proceeds as in case (I), but instead of co as in (4.1.9) one obtains

(1) 8œ(t,Ji_1,j) = i(t,Jl_x) on Un{Pj(z)^t,j=l,...,l},

(4.1.9)'    (2) supp «>(t,Ji_x,j)^{zeU; Pj(z)^-t},

(3) and (4) as in (4.1.9).

Then ¿¡(t,J¡_2, i) are 3-closed on U n {Pj(z)iít,j=l,..., l} = Qt. Finally one

arrives at a (0, 1) form £( with the same properties as above, except that it is in-

closed and defined on Q(, instead of U. But Í2, is Stein for every t > 0, because of

the assumption on the Ps. Therefore one can solve (4.1.12) with (4.1.13) on Q.t,

with a constant C independent of t, and the resulting function/—1;( is holomorphic

on the set

a(t) = f){zeU; Pi(z) è -t}n (\{zeU; Pi(z) S t}.       Q.E.D.
i=i i=i

Remark 4.1.3. We have actually proved that for a fundamental system of

neighborhoods {U} of z0, an element fe F(U n M, GM) can be uniformly approxi-

mated on C/nMby elements of F(U n M, 0), where M is defined by Pl = • ■ •

= pi = 0, and is a generic CR submanifold of C" containing M (locally near z0).

Here {p1;..., Pk} is a CR regular defining system for M, as in (4.1.2), and /is as in

(4.1.2)(i). This is not surprising, it being obvious from Lemma 2.4.2 that

feF(Ür\M, GM) can always be extended tofeF(UnM, &û).

4.2. Extendibility and the H. Lewy phenomenon. Given a set K of Cn and a

connected set K' of C" with K<=K', K^K', we say that AT is extendible to K' if the

restriction map F(K', 0) -* F(K, 0) is onto.
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If M is a generic CR submanifold of Cn with dim« M^n, and U is an open

subset of M, it is easy to see that a function which is holomorphic on some open

neighborhood of U and is zero on U must vanish identically. Therefore, if K= U

and K is extendible to a set K', we have in this case that F(K', <9) r-* r(A", 0) is

one-to-one and onto.

Let K be a compact subset of a complex manifold X, and let S^TX") be the

spectrum of the uniform algebra A(K). We say that K is holomorphically convex if

K=S(K). (Of course we always have ^cj(^) by means of the evaluation map.)

We say that a set M<^ X is locally holomorphically convex at z0 e M if there is a

fundamental system of compact neighborhoods {A'} of z0 in M such that each K

is holomorphically convex.

Greenfield [4] has proved the following theorem, making use of the techniques

first introduced by Bishop [3]:

Theorem 4.2.1. If M is a generic CR submanifold of Cn with dimÄ M^n, then

M is extendible to a set containing a CR submanifold N with dimÄ Ar=dim/f M+e

(e defined as in §2). If e = 0, then M is locally holomorphically convex.

In [5] and [16] this theorem is proved for real-analytic submanifolds of Cn

which are not necessarily generic, and it is also proved for C°° CR submanifolds

with CRcodim=l. In these cases, one also has that M is not locally extendible

to a set of dimension greater than dim M + e.

If M is a CR submanifold of Cn, K^M and K' is a connected set with A"=>A,

KjtK', we say that Ais CR extendible to K' if the restriction map A(K') -* F(K, <PM)

is onto. We then have

Theorem 4.2.2. Let M be a CR submanifold of Cn, z0 e M, and suppose M satisfies

either one of conditions (I) or (II) of (4.1.1). Then there is a fundamental system of

compact neighborhoods ofzQ in M, {K}, such that each K e {K} is CR extendible to a

corresponding set K' which contains a CR submanifold of dimension dim M + e + k — l.

Proof. Let K-M n U, where U e {(/}, the fundamental system of open neigh-

borhoods of z0 in Theorem 4.1.1. Then by Theorem 4.1.1 and Remark 4.1.3, given

fe F(K, 6M), we can first extend/to fe F(K, ®ü), where K= U n M, and then find

a sequence {f}<^F(K, 0) which converges uniformly to / on K. Because M is

generic and dim/? M^n,we can apply Theorem 4.2.1 to find for each/ an extension

g, e F(K', (5), where K'^K is a compact set containing a CR submanifold of

dimension dim/; M + e + k — l. To see this, observe that dim« M = dimg M + k — l,

and that the e for M is the same as the e for M, for Lemma 2.2.1 says that H(M)

= H(M). Next, we prove that the sequence {#,} converges uniformly on A". This

is due to the fact that the restriction mapping I\A", 0) -s- F(K, (9) being one-to-one

and onto, we must have supK. ||/||=sup¿ ||/|| for every fe F(K', 0). (Otherwise,

if £ e K'-K and |/(£)| >sup¿ ||/||, the function (/-/(£))_1 | K belongs to F(K, &)
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and is not in the image of F(K', 0) by the restriction map.) Hence {g,} is Cauchy on

A", and it is obvious that its limit g is equal to/on Â, and hence to/on K.    Q.E.D.

Observe that CR extendibility being a stronger condition than extendibility,

we have in particular proved that Theorem 4.2.1 holds without the conditions of

genericity and dimÄ A/ä«, as long as M satisfies at least one of the conditions

(4.1.1). Using the arguments in [5], one can also prove that if M satisfies (I) or (II)

of (4.1.1), then it is not locally extendible to a set containing a manifold of real

dimension bigger than dimÄ M + e + k — l.

As an immediate consequence of Theorem 4.2.2, we get the

Corollary 4.2.3. If M satisfies at least one of the conditions of (4.1.1) at z0 e M,

then there will be a fundamental system of neighborhoods {A} of z0 in M such

that each A is CR extendible to a set containing an open set U in C" (U depending

on A), if and only if M is generic at z0, and e is as big as possible, i.e., e = l

= dimÄM-2CRdim M.

References

1. A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces

complexes, Bull. Soc. Math. France 90 (1962), 193-259. MR 27 #343.

2. A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on

complex manifolds, Inst. Hautes Études Sei. Publ. Math. No. 25 (1965), 81-130. MR 30 #5333.

3. E. Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965),

1-21. MR 34 #369.

4. S. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scoula Norm. Sup.

Pisa (3) 22 (1968), 275-314. MR 38 #6097.

5. -, Upper bounds on the dimension of extendibility of submanifolds in C, Proc. Amer.

Math. Soc. 23 (1969), 185-189. MR 41 #3817.

6. L. Hörmander, L2 estimates and existence theorems for the d operator, Acta Math. 113

(1965), 89-152. MR 31 #3691.

7. -, An introduction to complex analysis in several variables, Van Nostrand, Princeton,

N.J., 1966. MR 34 #2933.

8. J. J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a

complex manifold, Ann. of Math. (2) 81 (1965), 451-472. MR 31 #1399.

9. H. Lewy, On the local character of the solutions of an atypical linear differential equation in

three variables and a related theorem for regular functions of two complex variables, Ann. of

Math. (2) 64 (1956), 514-522. MR 18, 173.

10. -, On hulls of holomorphy, Comm. Pure Appl. Math. 13 (1960), 587-591. MR 27

#340.
11. B. Malgrange, Ideals of differentiable functions, Studies in Math., Tata Institute of

Fundamental Research, Bombay.

12. R. Nirenberg, Function algebras on a class of pseudoconvex submanifolds ofC", Bull. Un.

Mat. Ital. (4) 3 (1970), 628-636. MR 42 #3306.

13. R. Nirenberg and R. O. Wells, Jr., Approximation theorems on differentiable submanifolds

of a complex manifold, Trans. Amer. Math. Soc. 142 (1969), 15-25. MR 39 #7140.

14. H. Rossi, Holomorphically convex sets in several complex variables, Ann. of Math. (2)

74 (1961), 470-493. MR 24 #A3310.



356 RICARDO NIRENBERG

15. H. Rossi, Report in the Proceedings of the International Congress of Mathematicians

(Moscow, 1966), "Mir", Moscow, 1968.

16. G. Tomassini,  Tracce delle funzioni olomorfe suite sottovarietà analitiche reali d'una

varietà complessa, Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 31-43. MR 34 #6808.

17. B. Weinstock, On holomorphic extension from real submanifolds of complex Euclidean

space, Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1966.

18. R. O. Wells, Jr., On the local holomorphic hull of a real submanifold in several complex

variables, Comm. Pure Appl. Math. 19 (1966), 145-165. MR 33 #5948.

19. -,   Holomorphic hulls and holomorphic  convexity,  Proc.   Conference  Complex

Analysis (Rice University, Houston, Texas, 1967), Rice Univ. Studies 54 (1968), no. 4, 75-84.

MR 39 #3029.

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Current address: Department of Mathematics, State University of New York, Albany,

New York 12203.


