
TRANSACTIONS OF THE
AMERICAN  MATHEMATICAL SOCIETY
Volume 168, June 1972
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OF COMPACT 3-MANIFOLDS

BY

BENNY EVANS AND LOUISE MOSER

Abstract. A classification is given for groups which can occur as the fundamental

group of some compact 3-manifold. In most cases we are able to determine the

topological structure of a compact 3-manifold whose fundamental group is known

to be solvable. Using the results obtained for solvable groups, we are able to extend

some known results concerning nilpotent groups of closed 3-manifolds to the more

general class of compact 3-manifolds. In the final section it is shown that each

nonfinitely generated abelian group which occurs as a subgroup of the fundamental

group of a 3-manifold is a subgroup of the additive group of rationals.

(1) Introduction. This paper is primarily concerned with the classification of

those solvable groups which can occur as the fundamental group of a compact

3-manifold. We also consider the problem of determining the structure of a

compact 3-manifold whose fundamental group is known to be solvable. Our

results are complete except in the category of almost sufficiently large 3-manifolds

and the category of 3-manifolds whose nontrivial second homotopy group is

generated by projective plane boundary components.

If M is a compact, sufficiently large 3-manifold with trivial second homotopy

group, and if ir^M) is solvable, then ^(M) appears in the following list of groups:

(1) Z,Z©Z, or Jf, the fundamental group of the Klein bottle,

(2) an extension 1 -> A -> iti(M) -> Z -> 1 where A is either Z © Z or ^T,

(3) a free product of two copies of JT amalgamated along certain subgroups

isomorphic with Z © Z. These groups may be presented by (a, b, x, y \ bab~1 = a~1,

yxy~1 = x~1, a = xpy2q, b2 = xTy2s) where//, q, r, s are integers such that//s — rq= ± 1.

Further, the above list is complete. That is, for each group G listed above, there

is a compact sufficiently large 3-manifold M with n2(M) = 0, and tt1(M)~G.

If the restrictions that M be sufficiently large and that ir2(M) = 0 are dropped,

then further groups must be added to the list. Such groups are discussed in detail

in §§3, 4, 5, and 6.

C. Thomas [16] has listed those nilpotent groups which can act as the funda-

mental group of a closed 3-manifold. Making use of the information we gain
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concerning solvable groups, we are able to simplify much of Thomas' work, and

to extend his results to the bounded case. The only group which must be added to

Thomas' list is Z©Z.

In a remarkable paper of D. Epstein [1] those finitely generated abelian groups

which occur as subgroups of the fundamental group of a 3-manifold are classified.

We complete Epstein's list by proving that each nonfinitely generated abelian

group which is a subgroup of the fundamental group of a 3-manifold is also a

subgroup of the additive group of rationals.

(2) Definitions and preliminaries. If gx and g2 are elements of the group G,

we use the notation [gx, g2] to denote the element gx1g21gxg2 of G. If H and Kare

subgroups of the group G, we use the notation [H, K] to denote the subgroup of G

generated by all elements [h, k] of G, where he H and ke K. For a group G, we

define the nth term G(n) of the commutator series of G, and the nth term C(n) of the

lower central series of G as follows: Gm = Gm = G, G<n + 1, = [G(n), C(n)], and

G(n+ !) = [(/(„), G]. A group G is said to be solvable if there is an integer n such that

G(n) is the trivial group. A group G is said to be nilpotent if there is an integer n

such that Gin) is the trivial group. Each nilpotent group is solvable. Also, each

nilpotent group has nontrivial center. Each subgroup and each factor group of a

nilpotent group is again nilpotent. Likewise, each subgroup and each factor group

of a solvable group is a solvable group. Also each extension of a solvable group by

a solvable group is again a solvable group.

We use the notation Zp to denote the cyclic group of order p and Z shall denote

the infinite cyclic group.

Free groups of rank greater than one and fundamental groups of closed 2-

manifolds of Euler characteristic less than zero are not solvable. The fundamental

group of the Klein bottle JT is solvable. But Jf is not nilpotent since it has a

centerless group Z2 * Z2 as a factor group.

A group G is said to be polycyclic if C7 has a sequence of subgroups G = G0=>GX

=> ■ ■ ■ =>Gk— 1 such that for each /, Gi + X is a normal subgroup of G¡ and GJGi+x

is a cyclic group. A polycyclic group G is said to be poly-infinite-cyclic if the series

above can be chosen so that Gi/Gi+X is infinite cyclic for each /, 0^/^/j— 1. Each

subgroup and each factor group of a polycyclic group is polycyclic. Also each

extension of a polycyclic group by a polycyclic group is again polycyclic. Each

subgroup of a polycyclic group is finitely generated. Finally we remark that each

finitely generated, torsion free, nilpotent group is poly-infinite-cyclic.

We refer the reader to the books by Marshall Hall [3] and Magnus, Karass, and

Solitar [9] for the basic notions of group theory that we shall use here.

We shall use the notation 6"" to denote the standard «-dimensional sphere, and

Pn shall denote «-dimensional real projective space.

In this paper we assume that all spaces and maps are in the piecewise linear

category. Also all subspaces are taken to be piecewise linear subspaces. If A is a
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submanifold of the manifold X, we use the notation °U(A, X) to denote a regular

neighborhood of A in X.

A 3-manifold M is said to be irreducible if each 2-sphere in M bounds a 3-cell in

M. If M is an irreducible 3-manifold and if in addition M admits no two-sided

embeddings of F2, then we say that M is F2-irreducible.

A compact 3-manifold that is homotopy equivalent to a standard 3-simplex is a

homotopy 3-cell. Of course it is not known if a homotopy 3-cell is necessarily

homeomorphic with a standard 3-simplex.

Compact 3-manifolds Mu M2 are said to be simply equivalent if M2 can be

obtained from M-, by either removing the interior of a homotopy 3-cell from the

interior of Mx or by sewing a homotopy 3-cell onto a 2-sphere boundary compo-

nent of M-,. Compact 3-manifolds M, M' are said to be equivalent if there is a

finite sequence of compact 3-manifolds M=M0, Mu ..., Mk = M' such that M¡

is simply equivalent to Mi + 1 for each i, 0^z</c. van Kampen's theorem [10]

assures us that equivalent 3-manifolds have isomorphic fundamental groups.

If M is a compact 3-manifold, we have by Kneser's theorem [7] that M is equiva-

lent to a compact 3-manifold M such that M contains no 2-sphere boundary

components, and each 3-cell in M is homeomorphic with a standard 3-simplex.

We shall find it convenient to adopt the convention suggested by the above re-

marks. That is, for each compact 3-manifold M we shall use the notation M to

denote a compact 3-manifold such that M is equivalent to M, M has no 2-sphere

boundary components, and each homotopy 3-cell in M is homeomorphic with a

standard 3-simplex.

If X is a manifold we use bd X to denote the boundary of X and int X to denote

the interior of X.

A compact 2-manifold F embedded in a 3-manifold M is properly embedded in

M ifFPx bd M = bd F. A compact 2-manifold properly embedded in a 3-manifold

M is compressible in M if there exists a disk D in M such that D n F=bd D and

bd D is not contractible in F. If F is a compact 2-manifold that is properly em-

bedded in a 3-manifold M and if F is not compressible in M, then F is said to be

incompressible in M.

Suppose F is a compact, orientable 2-manifold with nonempty boundary.

Suppose further that Fis properly embedded in a 3-manifold M. If an orientation

is assigned to F, then an orientation is induced on bd F. We may then consider

bd F with its induced orientation as an element [bd F] of /^(bd M). Since there

are exactly two distinct orientations on F, we see that the homology class [bd F]

is well defined up to a sign. If F has no boundary, we take [bd F] to denote the

trivial element of //^(bd M).

A compact 3-manifold M is sufficiently large if M contains a two-sided incom-

pressible 2-manifold other than a disk or a 2-sphere.

F. Waldhausen [17] has shown that each compact, sufficiently large, orientable,

irreducible 3-manifold has a hierarchy. That is to say that there is a sequence of
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compact 3-manifolds M = M0=>Mx^> ■ ■ ■ ̂Mk and a sequence of compact 2-

manifolds F0, Fx,..., Fk_x such that F¡ is a 2-sided, incompressible 2-manifold

properly embedded in M¡, Mi+1=cl (M¡ — "/¿(F,, MA), and Mk is a collection of

3-cells. Furthermore, the hierarchy can be chosen so that [bd F¡] is not trivial in

Hx(hd Md for each / (0</^fc-l).

We shall use / to denote the unit interval [0, 1].

Let A and B denote topological spaces. If A'is a locally trivial bundle with base

A and fiber B, then we shall refer to X as a B bundle over the topological space A.

If F is a closed 2-manifold and if M is an / bundle over F, then we say that F is a

trivial I bundle over F if M is homeomorphic with Tx /; otherwise, we say that M

is a twisted I bundle over F.

(3) Finite groups. By Corollary 8.7 of [1], each finite group which occurs as

the fundamental group of a compact 3-manifold also occurs as the fundamental

group of a closed, orientable 3-manifold. J. Milnor [11] has listed those finite

groups which can occur as the fundamental group of a closed, orientable 3-

manifold. The theorems of this section are proved by checking each group in the

list for the appropriate property.

Theorem 3.1. Let M be a compact 3-manifold such that rrx(M) is finite. Then

rrx(M) is solvable unless ttx(M) is isomorphic with the binary dodecahedral group

Px20 or the direct sum of PX20 with a cyclic group of order relatively prime to 120.

Theorem 3.2. Let M be a compact 3-manifold such that rrx(M) is a finite nil-

potent group. Then irx(M) is a finite cyclic group, a generalized quaternion group

Q(2k), or the direct sum of Q(2k) with a cyclic group of odd order.

(4) The case ir2(M) = 0 and rrx(M) infinite. We shall make extensive use of the

following lemma which appears as a problem in §4.1 of [9]. The proof is omitted.

Lemma 4.1. If A and B are nontrivial groups, then A * B is solvable if and only if

AzZ2xB.

Theorem 4.2. Let M be a compact 3-manifold such that ir2(M) = 0. Suppose

further that M has nonempty boundary. Then trx(M) is solvable if and only if M is

equivalent to a 3-manifold from the following list:

(i) a disk bundle over S1 ;

(ii) an / bundle over the torus;

(iii) an / bundle over the Klein bottle.

We shall require two lemmas before beginning the proof of Theorem 4.2.

Lemma 4.3. Let N be a compact P2-irreducible 3-manifold with nonempty com-

pressible boundary. Then ?rx(N) is solvable if and only if N is homeomorphic with a

disk bundle over S1.
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Proof. Let F be a disk properly embedded in N such that bd D is not contrac-

tible in bd N. Suppose D separates N into two components Nx and N2. As a

consequence of the projective plane theorem [1], N, Nu and N2 are all aspherical

3-manifolds. Thus in particular Lemma 8.4 of [1] assures us that ir1(/V1) contains

no elements of finite order. By van Kampen's theorem Tr1(N)x-rr1(N1) * 771(Ar2).

Observe that since bd D is not contractible in bd N, it follows that neither Nx nor

N2 is simply connected. Hence by Lemma 4.1, -rrí(N1)'2íZ2'Z,Tr1(N2). This is contrary

to the statement above that ttx(N1) contains no elements of finite order. Hence D

does not separate N. Let A*=cl (N-°l¿(D, N)). By van Kampen's theorem

7r1(A)~w1(A*) * Z. It follows that N* is simply connected. Since N is irreducible

it follows that N* is a 3-cell. The lemma follows.

Lemma 4.4. Let N be a compact, orientable, irreducible 3-manifold with nonempty,

incompressible boundary. Then tt¡_(N) is solvable if and only if N is either S1 xS1 xl

or the twisted I bundle over the Klein bottle.

Proof. Let N= A0=> N^ ■ ■ ■ => Nk be a hierarchy for N where

Nt+1 = ci (A, - <?/(Fi; A,)),       0 ^ / < k.

Assume further that the homology class [bd F¡] is not trivial in //(bd zV¡) for

each i, l¿i<k. For each /', bd A¡ is not empty. Thus the condition that [bd F¡] is

not trivial in //(bd N¡) insures that each A¡+1 is connected, O^z^/c— 1.

Since F is incompressible and two-sided in A„ it follows from the loop theorem

[14] that the inclusion induced homomorphisms /* : n^F.) —> 771(Ai) and

j%: TrANi+^^TT^Ni) are monomorphisms. Hence tt^F.) and tt^N,) are solvable

groups for each /', 0^i<k, and for each/ Oáy'áA:.

Observe that since Nk is a 3-cell, Nk-1 must have compressible boundary. Let r

be the smallest integer such that bd Ar is compressible in Ar. Then Nr is a compact,

orientable, irreducible 3-manifold with nonempty, compressible boundary.

Furthermore, 7Ti(Ar) is a solvable group. Hence by Lemma 4.3, Nr is homeomorphic

with DxS1 where D denotes the standard 2-simplex.

Through the remainder of the proof,y shall denote an arbitrary integer such that

0Sj<r. Observe that since A< is orientable and bd N) is incompressible, it follows

that each component of bd N¡ is a torus. F, is a compact 2-manifold with nonempty

boundary and solvable fundamental group. Since bd N¡ is incompressible, F¿ is

not a disk. Also F¡ is two-sided and Nj is orientable so that F3 is not a möbius band.

Hence F, is an annulus.

We identify %(Fj,N,) with Fyx[0, 1] in such a way that F¡ is identified with

Fj x \. We wish to observe that the two annuli F¡ x 0 and F¡ x 1 lie in the same

boundary component of Nj+1. If the two boundary components of F, lie in different

components of bd A,, this is clear. If both boundary components of F, lie in the

same boundary component of N,, then bd F¡ bounds an annulus A in bd N,-.

Since [bd FA is not trivial in //x(bd Nj), we see that A u F, is a Klein bottle. But
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Ay is orientable. Hence A u Ft is one-sided in N}. It follows that F¡ x 0 and F, x 1

lie in the same boundary component of Nj+X.

From the above remarks, we observe that A,- is obtained from A,+ 1 as follows.

Let a and A be a pair of disjoint simple closed curves in the same boundary com-

ponent of AJ+1 such that neither a nor b is contractible in bdAy+1. Let

ha: Fjx0 -> °il(a, bd Nj) and hb: Ffx 1—> ̂ ¿(b, bd Nj+X) be homeomorphisms.

Then A, is obtained from Nj+X by sewing F} x [0, 1] onto bd A, via the homeo-

morphisms ha and «„.

As noted above, Ar is homeomorphic with Dx S1 where D denotes the standard

2-simplex. Let /3 = (bd D) x 0, let „y0 be a point on ß, and put a = .v0 x S1. According

to the remarks above, Nr_x can be obtained from Ar by sewing Frx [0, 1] onto

bd Ar by homeomorphisms that map the annuli F¡ x 0, F¡ x 1 onto regular neigh-

borhoods of a pair of disjoint simple closed curves a and b in bd Nr. Since bd A, is a

torus and a and b are not contractible in bd Nr, it follows that a and b are parallel.

That is, up to a homotopy in bd Ar, a = apß" and b = (apßq)11 where p and q are a pair

of relatively prime integers. Then van Kampen's theorem yields the following

presentation for 7r1(Ar_1) : (x, y, z | y = xp, zyz'1=x±p). Let G be the smallest

normal subgroup of 771(Ar_1) containing the element y. Then ttx(Nt.x)/G can be

presented by (x, z \ x"= 1). Observe that this is also a presentation of the group

Z * Z77. But Trx(Nr-x) is solvable. Hence77= ± l.Thus we see that Nr_x is an /bundle

over the torus or the Klein bottle. Since Ar_j is orientable, it follows that Ar_x

is either S1 x S1 x I or the twisted / bundle over the Klein bottle.

We shall now show that z"=l and hence A=Ar_,. If r^=l then Ar_2 can be

obtained from Nr.x by sewing Fr_2x [0, 1] onto bd (Ar_,) via homeomorphisms

that map the annuli Fr_2x0, Fr_2x 1 onto regular neighborhoods of a pair of

disjoint, nontrivial curves in the same component of bd Ar_x.

If Ar_! is homeomorphic with S1xS1xI, van Kampen's theorem yields the

following presentation for irx(Nr_2) : (x, y, z, w \ [x, y] = l, z = x"yq, wzw'1

= (xpyq)±1) where (77, q) is a pair of relatively prime integers. Let G be the smallest

normal subgroup of ir1(Ar_2) containing the element z. Then ttx(Nt^2)/G can be

presented by (x, y, w \ [x,y] = l, xpyq=l). Let H be the group with presentation

(x, y | [x, y] = I, xpyq = l ). Observe that H is not the trivial group for any values of

p and 77. But irx(Nr-2)/G is isomorphic with the free product Z * H. Hence

771(Ar_2)/G is not a solvable group. It follows that if Ar_x is S1xS1x I, then r= 1

and N=S1xS1xI.

If Ar_, is the twisted /bundle over the Klein bottle, we obtain by van Kampen's

theorem the following presentation for 771(Ar_2) : (x, y, z, w \ yxy~1=x~1,

z = x"y2q, wzw~1 = (xpy2q)±1)- Let H be the smallest normal subgroup of irx(Nr-2)

containing the elements x, y2 and z. Then irx(Nr-2)/H can be presented by

(y, w I y2=l). But this is also a presentation for the nonsolvable group Z * Z2.

Hence 771(Ar_2) is not solvable. It follows that r= 1, and A is the twisted / bundle

over the Klein bottle. This completes the proof of Lemma 4.4.
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Proof of Theorem 4.2. Since -zt2(M) = 0 and each homotopy 3-cell in M is

homeomorphic with the standard 3-simplex, it follows that M is F2-irreducible.

If bd M is compressible in M, then by Lemma 4.3, M is homeomorphic with a

disk bundle over S1. If M is orientable and bd M is incompressible, then, by

Lemma 4.4, M is an / bundle over the torus or the Klein bottle. If M is non-

orientable with incompressible boundary, we let M* denote the orientable double

cover of M. Then M* is equivalent to an / bundle over either the torus or the

Klein bottle. But M contains no two-sided projective planes. Thus by Theorem 1

of [5] we have that M is equivalent to an / bundle over either the torus or the Klein

bottle. This completes the proof of Theorem 4.2.

Theorem 4.5. Let M be a closed, sufficiently large 3-manifold with ir2(M) = 0.

Then ^(/Vf) is solvable if and only if M is equivalent to a 3-manifold from the following

list:

(i) a torus bundle over S1;

(ii) a Klein bottle bundle over S1;

(iii) the union of two twisted I bundles over the Klein bottle sewn together along

their boundaries.

Proof. Since ir2(M) = 0, it follows that the associated manifold M is F2-

irreducible. Since M is sufficiently large, there is a two-sided incompressible 2-

manifold F embedded in M. Furthermore, Fis not a 2-sphere. By the loop theorem

[14], the homomorphism z'*: ir-,(F) -> irAM) induced by inclusion is a mono-

morphism. Hence ^(F) is a solvable group. Also F is not a 2-sphere, and since F

is two-sided, F is not a projective plane. Hence F is either a torus or a Klein

bottle.

Case 1. F separates M. If M is nonorientable then F can be chosen so that it

does not separate M. Thus in this case we may assume that M is orientable. Hence

F is homeomorphic with S1 x S1. The 2-manifold F separates M into two com-

ponents whose closures we denote by Mx and M2. Then Mx and M2 are compact,

F2-irreducible 3-manifolds with nonempty, incompressible boundary. Furthermore,

the groups -rr^M-,) and 7r1(/V/2) are solvable. It follows then from Lemma 4.4 that

M-, and M2 are each homeomorphic with an / bundle over either the torus or the

Klein bottle. Observe that M1 and M2 are orientable and that each manifold has

connected boundary. It follows that M-, and M2 are both homeomorphic with a

twisted / bundle over the Klein bottle.

Case 2. F does not separate M. Let Mx = cl (M—<%(F, M)). Then M-, is a

compact PMrreducible 3-manifold with nonempty, incompressible boundary.

Furthermore, ttAMA lS a solvable group. Thus M1 is homeomorphic with an /

bundle over either the torus or the Klein bottle. Observe that bd M1 is not con-

nected. It follows that Mi is homeomorphic with a product Gx[0, 1] where G

is either S1 x S1 or the Klein bottle. Hence M is either a torus or Klein bottle

bundle over S1.
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It is straightforward to show that the fundamental groups of the manifolds (i)

and (ii) are solvable.

The groups (iii) contain a normal subgroup Z@Z which is the fundamental

group of the torus separating the / bundles over the Klein bottles. The factor

group obtained by moding out this normal subgroup is the solvable group Z2 * Z2.

Hence the groups (iii) are solvable. This completes the proof of Theorem 4.5.

Let M be a closed 3-manifold with ir2(M) = 0, rrx(M) solvable and ßx(M) >0.

Then there exists an incompressible, two-sided 2-manifold embedded in M which

does not separate M. Hence we see from the proof of Theorem 4.5 that M is

equivalent to a torus or Klein bottle bundle over S1.

Corollary 4.6. The following is a complete list of all solvable groups G which

occur as the fundamental group of a compact, sufficiently large 3-manifold with

trivial second homotopy group :

(i) Z, Z@Z, or JT, the fundamental group of the Klein bottle ;

(ii) an extension 1->A^G->Z->1 where A is either Z © Z or Jf;

(iii) a free product of two copies of Jf amalgamated along certain subgroups

isomorphic with Z © Z. In this case G has the presentation (a, b, x, y \ bab~1=a~1,

yxy ~1=x~1,a = xpy2q, b2 = xry2s) where p, q, r, s are integers such that ps — rq= ± 1.

Proof. If G is the fundamental group of a compact, sufficiently large 3-manifold

with trivial second homotopy group, then, by Theorems 4.2 and 4.5, G is among the

groups listed above. Thus we need only show that each group G in the list above

actually occurs as the fundamental group of a compact, sufficiently large 3-

manifold MG with trivial second homotopy group. If G is Z, Z © Z, or JT, this is

straightforward. Let F denote either S1xS1 or the Klein bottle, and suppose G

is an extension of rrx(F) by Z. The generator of the group Z acts on rrx(F) by

conjugation to induce an automorphism 8: irx(F) -> ttx(F). By Baer's theorem [12]

there exists a homeomorphism h:F^F such that the induced automorphism

«*: 7tx(F) -> ttx(F) is 6. Let M1 = Tx[0, 1]. Let MG he the identification space

obtained from Mx by identifying (x, 0) with (h(x), 1) for each x in F. Then by van

Kampen's theorem, rrx(MG)xG.

Let G be a group with presentation (a, b, x, y \ bab~1 = a~1, yxy~1 = x~1,

a = xpy2q, b2 = xry2s), ps — rq=±l. We construct Ma as follows. Let Mx and M2

denote twisted / bundles over the Klein bottle. Then bd Mx and bd M2 are tori.

Hence ^(bd Mx)?zZ®Z^Trx(hd M2). Let h: bd Mx -> bd M2 be a homeomor-

phism such that the induced isomorphism «*: Z@Z-> Z©Z has matrix (P q).

Let Ma be the adjunction space MxUhM2. By van Kampen's theorem irx(Ma)xG.

Lemma 4.7. Let M be a compact 3-manifold with infinite, solvable fundamental

group. Then M has a finite sheeted, regular covering space (M, p) such that ßx(M) > 0.

Proof. Let G = 771(M). Since G is solvable, there exists an integer k such that

G(W= 1. Since G is infinite and G(W= 1, there is an integer i such that G(i + 1) is of

infinite index in G(i). Let 7 be the smallest such integer. Let (M,p) be the covering
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space of M associated with the normal subgroup G0) of n^M). Then (M,p) is a

finite sheeted regular covering space of M. Furthermore HAÂÏ)~ GU)/GU +1( is infinite.

We use the notation GL„(Z) to denote the multiplicative group of invertible,

nxn matrices with entries from the ring of integers.

Theorem 4.8. Let M be a closed, nonsufficiently large 3-manifold with rr2(M) = 0.

Suppose further that ttAM) is an infinite, solvable group. Then M has a finite sheeted,

regular covering space (M,p) such that M is equivalent to a torus bundle over S1.

Furthermore, (M, p) can be chosen so that the group of covering transformations of

(M,p) is a finite, solvable subgroup of GLn (Z) with n~¿3.

Proof. Observe first of all that since M is not sufficiently large, M is an orientable

3-manifold. By Lemma 4.7, M has a finite sheeted, regular covering space (M,p)

such that ß1(M)>0. Since M is orientable, we see by the remarks following

Theorem 4.5 that M is equivalent to a torus bundle over S1.

We have the exact sequence 1 -> ^(M) _>. rr^M) 1+ Q _> 1 where Q denotes

the finite group of covering transformations of (M, p). We assume that among all

finite sheeted, regular covering spaces (N,p') of M such that ßx(N)>0, (M,p) is

chosen so that the group Q of covering transformations of (M,p) has minimum order.

Since M is compact, //X(M) is a finitely generated, abelian group. Hence there

exists a positive integer a such that aH1(M) = {ax \ x e HX(M)} is torsion free.

Furthermore, since M is equivalent to a torus bundle over S1, aH^M) is iso-

morphic with Z, Z © Z or Z © Z © Z. Let r be the rank of aHAM)- Then r ^ 3.

Each covering transformation q in Q induces an automorphism

z7Hi://1(M)^//1(M).

For qe Q, let q denote the restriction of q* to a/7x(M). Let </>: Q -> GLr (Z) be the

homomorphism defined by xfi(q) = q for each q in Q. We shall show that the assump-

tion of minimum rank for Q insures that </> is a monomorphism.

Let Q' denote the kernel of the homomorphism ¡¡¡. We have the following exact

commutative diagram.

1 1

7-

1-„ 9içst)->f\Q') -4-* Q' ■-> 1

f V
1 -► rr^M)-► tt^M)-> Q-> 1

QIQ'   =   QIQ'

l l
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Let (A, p') denote the regular covering space of M associated with the normal

subgroup /" 7 Q') of rrx(M). From the spectral sequence of a covering map [8]

we obtain an exact sequence of terms of low degree. In particular we have the

following exact sequence. H2(Q')-+ HX(M) <g)Q. Z -> HX(N) -> HX(Q'). We wish

to show that HX(N) is infinite. Since Q' is finite, it follows that H2(Q') is also finite.

Hence in order to show that HX(N) is infinite, we need only show that the tensor

product HX(M) (g)Q. Z is infinite. Let K denote the subgroup of HX(M) generated

by all elements of the form x — q*(x) where x e HX(M) and qeQ'. Then

HX(M) (x)0- Z is isomorphic with HX(M)/K. Consider the subgroup (aHx(M)) n K

of HX(M). If z e (aHx(M)) n K, then there exist elements x,yx,..., yk of HX(M),

and there exist elements qx,...,qk of Q' such that ax = ^k=x y¡— qit(yd- Then

a2* = Z?=i ayi~1i.(ayi) = 2'i = i «/¡-^(«I'i)- But q^^qf) is the identity map since

q¿ is an element of the kernel of </j. Hence a2x = 0. But aHx(M) is torsion free. Thus

z = ax = 0. It follows that (uHx(M)) n K=0. Hence the restriction of the natural

projection of HX(M) onto HX(M)/K to aHx(M) is a monomorphism. Thus

HX(M) (x)Q. Z is infinite. It follows that HX(N) is also infinite.

Thus (A,77') is a finite sheeted, regular covering space of M such that ßx(N)>0.

The group of covering transformations of (A, p') is isomorphic with Q/Q'. By the

minimality assumption for (M,p), the order of Q is not greater than the order of

Q/Q'■ It follows that Q' is the trivial group. Hence <A is a monomorphism and the

proof of Theorem 4.8 is complete.

Corollary 4.9. Let G be the fundamental group of a compact, nonsufficiently

large 3-manifold with trivial second homotopy group. Suppose further that G is an

infinite solvable group. Then G is a nonsplit extension of the fundamental group of an

orientable torus bundle over S1 by a finite solvable subgroup of GLr (Z), r£3.

Looking closely at the proofs of this section, we have the following corollary.

Corollary 4.10. Let M be a compact sufficiently large 3-manifold with trivial

second homotopy group. Then rrx(M) is solvable if and only if rrx(M) contains no

free subgroup of rank two.

(5) The case 772(M)/O. Let G be a split extension of a group H by a group K.

Then each element k of K acts by conjugation on H to induce an automorphism

6k on H. We say that K acts without fixed points on H if for each k in K and each

h in H, 6k(h) = h if and only if k = 1 or h = 1.

Theorem 5.1. Suppose M is a compact 3-manifold such that 7r2(M)/0. Ifrrx(M)

is an infinite, solvable group, then precisely one of the following is true:

(i) ttx(M)zZ, Z © Z2, or Z2 * Z2.

(ii) tt2(M) is generated as a irx(M) module by the projective plane boundary

components of M, and ttx(M) is a split extension of G by Z2 where G is the funda-

mental group of a compact, orientable, irreducible, 3-manifold with solvable funda-

mental group. Furthermore, Z2 acts without fixed points on G.
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If M is a compact 3-manifold which falls into the second category of Theorem

5.1, then M can be obtained as follows. Let Abe a compact, orientable 3-manifold

with 7T2(A) = 0 such that ^(A) is an infinite, solvable group. Let/: N^ N be an

involution whose fixed point set is a finite collection of points xu . .., xk. Let Mx

be the orbit space cl (A—Uf=1 ^{xu A))// Then M is obtained from M-* by re-

moving the interiors of a finite (possibly empty) collection of 3-cells.

Numerous examples of such 3-manifolds exist. For example we can construct

an involution a on N=S1 x S1 x [0, 1] which fixes exactly four points as follows.

Let C denote the complex plane. The 2-manifold S1 x S1 is naturally embedded

in C x C as the set of ordered pairs (e2Ma, e2nie) such that 0 g « ¿ 1, 0 S ß g 1. We

define the involution r\ S1 x S1 -> S1 x S1 by

T(£2!iicc   e2aiß\   _   (e2nia-a)   e2jzi(l-/J)\

The involution t fixes exactly four points; namely x1 = (l,l), .y2 = (I, e2nil2),

x3 = (e2"il2,l), xi = (e2"il2,e2"il2). Define o: A-> A by o(x, t) = (r(x), 1 -t). Let

M be constructed from A as described above. Then •zr1(M) has presentation

(x, y, t \ [x, y] = l, txt~1 = x~1, tyt~1=y~1, t2=l). Observe that since Z2 acts

without fixed points on n1(N)xZ@Z, it follows that ttx(M) is the only split

extension of Z©Z by Z2 which occurs as the fundamental group of a compact

3-manifold.

Proof of Theorem 5.1. Since 7r2(M)^0, we have by the projective plane theorem

[1] that M contains either a noncontractible 2-sphere or a two-sided projective

plane.

Case 1. There exists a noncontractible 2-sphere S in M. If S separates M into two

components Mx and M2, then by van Kampen's theorem 7r1(M)^771(M1) * ttx(M¿).

Since S is not contractible in M and M has no 2-sphere boundary components,

it follows that neither Mx nor M2 is simply connected. Hence ^(MJ^Z^tz-^/VF,).

Thus Tr1(M)Xrr1(M)xZ2 * Z2.

If í does not separate M, then van Kampen's theorem allows us to write

tt1(M)~Z * //where His the fundamental group of M — S. Since ^(M) is solvable,

it follows that His the trivial group. Hence n1(M)xn1(AÂ)xZ.

Case 2. Each 2-sphere in M is contractible in M. Let/,. . .,/ be maps of S2

into the projective plane boundary components of M (if any exist) such that /

identifies antipodal points for each i, 1 az'Sr. Let A denote the ^(/WJ-submodule

of rr2(M) generated by/,...,/.

Case 2A. A^tt2(M). By the projective plane theorem [1] there is a map

f: S2 —- M such that/^ A and/(52) is either a 2-sphere or a two-sided projective

plane. Since each 2-sphere in M is contractible, it follows that/(5'2) is a two-sided

projective plane. Let (M, P) denote the orientable double cover of M, and let

/: iS2 -» M be a lifting off. Let t. M -> M denote the nontrivial covering trans-

formation of (M, P). Suppose f(S2) does not separate M. Let

Mx = cl (M-^/(f(S2), M)).
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Suppose f(S2) separates M. Then since M—f(S2) is connected, it follows that t

interchanges the components of M—f(S2). Let S* denote a 2-sphere in M such

that S* is parallel to f(S2). Then since t(S*) n S* = 0, it follows that P\s. is an

injection. Hence P(S*) is a noncontractible 2-sphere in M. Since each 2-sphere in

M is contractible, we have established a contradiction to the assumption that

f(S2) separates M. Let MX=P-\MX). Then irx(Ñ)xZ * nx(Mx). It follows that

tix(Mx)= 1. Since Mi is a connected, two-sheeted covering space of Mx, it follows

that ir1(M1)xZ2. Then by Theorem 5.1 of [2], Mx is homotopy equivalent with

P2x[0, 1]. It follows that 771(M)^771(M)^Z©Z2.

Suppose f(S2) separates M into two components whose closures we denote by

Mx and M2. Let MX=P~\MX), and let M2 = P~\M2). Since f(S2) is not in

P*1(A), it follows that neither Mx nor M2 is simply connected. Thus since

nx(M)X7rx(Mx) * nx(M2),v,ehavethatnx(Mx)zZ2Xnx(M2). ButP\MX: Mx^ Mx

is a two-sheeted covering map. Hence rrx(Mx) is an extension of Z2 by Z2. This is not

possible since as proved in [1], the only finite group which can occur as the funda-

mental group of a compact, nonorientable 3-manifold is Z2.

Case 2B. A = -rr2(M). Let/i,.. .,fr be liftings of the generators fx,.. .,fi of A

to the covering space M. The map /%.: ir2(M) -^n2(M) is an isomorphism of

abelian groups. Thus since for each i, 1 £i%r, P~\f(S2) is connected, it follows

that 772(A?) is generated as a -rrx(M) module by fx,.. .,fi. Hence tt2(M~) = 0. It

follows that M~ is an irreducible, orientable, compact 3-manifold with infinite,

solvable fundamental group.

Let G = ttx(M). Then Trx(M) is an extension of G by Z2. The group G is the

fundamental group of an aspherical 3-manifold. Hence by Lemma 8.4 of [1], G is

torsion free. But M has at least one projective plane boundary component. Hence

irx(M) contains a nontrivial element t of order 2. It follows that the above exten-

sion is split by a homomorphism that maps the generator of Z2 onto /.

The element / acts on G by conjugation to define an automorphism 8:G^G.

Suppose there exists a nontrivial element g in G such that 6(g) =g. Then tgt ~1=g.

Since G is torsion free, it follows that t and g generate a subgroup H of rrx(M)

such that H is isomorphic with Z® Z2. Then by Theorem 9.5 of [1], we can write

M as a connected sum M=QffR where irx(Q)xZ® Z2. By van Kampen's

theorem, irx(M)~-nx(Q) * rr,(R). Since rrx(M) is solvable, it follows that irx(M)

~Z®Z2. Then nx(M)xZ. Since M^ is irreducible and orientable, it follows that

M~ is homeomorphic with a product DxS1 where D denotes the standard 2-

simplex. Thus M has a boundary component T such that T is isomorphic with

either S^xS1 or the Klein bottle. Since rrx(M)~Z@Z2, we see that Tis com-

pressible in M. Let D be a disk in M such that D n bd M= D n T=bd D, and

bd D is not contractible in T. If D separated M, van Kampen's theorem would

allow us to write the fundamental group Z © Z2 of M as a nontrivial free product.

Thus D does not separate M. Then by van Kampen's theorem Z®Z2~trx(M)

■Z.Z * K where K is the fundamental group of M— D. This contradiction assures
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us that Z2 acts  on  G without fixed  points. The  proof of Theorem  5.1   is

complete.

We are now able to prove a general theorem about solvable fundamental groups

of compact 3-manifolds.

Theorem 5.2. If M is a compact 3-manifold then ir-AM) is solvable if and only if

tti(M) is poly cyclic.

Proof. Let M denote a compact 3-manifold with solvable fundamental group.

A finite group G is solvable if and only if G is polycyclic. Thus we need only

consider the case that ^(M) is infinite.

Case 1. tt2(M) = 0. If M has nonempty boundary, then ^(M) is either Z,

Z©Z, or the fundamental group of the Klein bottle. All these groups are poly-

cyclic. If M is closed, then we let M denote the orientable double cover of M if M

is nonorientable; otherwise, let M=M. Then M has a finite sheeted, regular

covering space M* such that M* is equivalent to a torus bundle over S1. Since

TTy(M*) is polycyclic, it follows that ttAM) is polycyclic. Hence 7r1(M)~771(M) is

also polycyclic.

Case 2. n2(M)^0. In this case tt^M) is either an extension of a polycyclic

group by Z2, or tt^M) is isomorphic with one of the polycyclic groups Z,Z@Z2

or Z2 * Z2.

(6) Seifert fiber spaces. In this section we consider again the category of closed,

F2-irreducible 3-manifolds which are not sufficiently large but which have solvable,

infinite fundamental groups. All such 3-manifolds known to the authors are Seifert

fiber spaces. We therefore devote this section to the classification of those Seifert

fiber spaces with solvable fundamental groups.

A Seifert fiber space M is constructed as follows. Let F be a closed 2-manifold

and let M-, denote a locally trivial 5"1 bundle over F. LetP: M-, -> F be the bundle

projection. We shall refer to F as the Seifert surface of M. Choose disjoint disks

Du..., Dk in Fand set M2 = cl(M1-\Jk=1 P~ ADA). Note that F - l'{J}t) is a solid

torus for each i, 1 ̂ z'á/V. We identify P~1(Di) with D¡ x S1. Put^ = (bd D¡) xO and

i\—Xi x S1 where xt is a point on q¡. We complete M by sewing solid tori D\ x S1

onto qx x hi in such a way that the curve (bd D\) x 0 is sewn to the curve qfxhf'

where (a,, ft) is a pair of relatively prime integers. If y, is the center of the disk D¡,

we refer to the simple closed curve P~1(yi) as a singular fiber of type (a¡, ft).

Observe that if o¡¡= ± 1 then M can be refibered in such a way that y¡ no longer

occurs as a singular fiber of M. Thus in the sequel, we lose no generality in

assuming that |a(| > 1 for each i, 1 fíifík.

If Fis orientable of genus g, van Kampen's theorem yields the following presenta-

tion for ttAM): (a¡, b¡, q¡, h \ FIf= i [«., b^h" n?=i Ci, [h, z7,] = l, aihai1=hEx,

bfibï1 =hxx,q'jihBi=l), Ifíiúg, iúj^k, e„ X¡=±1. In case Fis not orientable,

tt^M) may be presented as (c^q^h \ rjf-ï c2 = hbY\k=1qi, [h,q¡] = 1, cihc-1=hBx,

qphfi^l), ISiSn, lúj^k.
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A Seifert fiber space M with nonorientable Seifert surface F and k singular

fibers of types (ax, ßx),.. ., (ak, ßk) has a double cover M, a Seifert fiber space with

Seifert surface F, the orientable double cover of F, and 2k singular fibers of types

(ai> ßi), (ai, ßi), ■ ■ -, (ak, ßA, (ak, ßk)- Hence we need only consider the case where

M has orientable Seifert surface. Furthermore, irx(M) is an extension of the normal,

infinite cyclic subgroup generated by h.

Hence we have reduced the problem to classification of the planar discontinuous

groups G(g, k\ax,..., ak) with presentation (a¡, b¡, q¡ | Flf=i fa, b^ = \\k=xqi, qfi

= 1), l£i£g, lèj^k.

Lemma 6.1. If g^2, or if g=l and fe^l, then G(g, k\ax,. . ., ak) is nonsolvable.

Proof. If H is the smallest normal subgroup of G(g, k\ax,..., ak) generated by

qx,..., qk, then G/H can be presented by (au b¡ \ YlUi [«i, bi]= ')> ifkiug- This is

also a presentation of the fundamental group of a closed 2-manifold of genus g.

Thus if g^2, G(g, k\ax,..., ak) is not solvable.

If g= 1 and feèl, then G(g, k\ax,..., ak) has a factor group //with presentation

(a, b | [a, b]ai= 1). The factor group H is obtained by factoring out the smallest

normal subgroup of G(g, k\ax,..., ak) containing the elements q2,...,qk. Let

T denote a torus with the interior of a disk removed. Let K denote the 2-complex

obtained by sewing the boundary of a disk D onto bd T in such a way that bd D

wraps a] times around bd T. Then by van Kampen's theorem ttx(K)x H. K has a

two-sheeted covering space K obtained as follows. Let T denote a torus with the

interiors of two disks removed. K is completed by sewing a disk onto each boundary

component of f so that each disk wraps ax times around the boundary component

onto which it is sewn. Then nx(K) is a subgroup of -rrx(K). By van Kampen's

theorem, ttx(K) has presentation (a, b, tx, t2 | [a, b] = txt2, rfi = ifi = I). 7rx(K) has a

factor group with presentation (a, tx \ r*» = l). But this is also a presentation for

the nonsolvable group Z * Zai. This completes the proof of Lemma 6.1.

If A and B are groups, and if </>: H ^ K is an isomorphism between the sub-

groups H of A and K of B, then we denote the free product of A and B amalga-

mated along the subgroups H and K by *(A, B, H, K, <f>).

Lemma 6.2. Let G = *(A, B, H, K, </>), where Aj-H and B^K. Then G is solvable

if and only if H is solvable and H is of index two in A and K is of index two in B.

Proof. If H is of index two in A and K is of index two in B, then observe that

G = *(A, B, H, K, </>) is an extension of H by the solvable group Z2 * Z2. Thus G is

solvable if and only if H is.

The statement of the sufficiency of the lemma is a special case of a lemma of

R. J. Gregorac [2]. Gregorac has shown that if G = *(A, B, H, K, </>) satisfies some

nontrivial identity relation, then H is of index two in A and K is of index two in B.

Since each solvable group must satisfy some commutator identity (e.g. a group

that is solvable of length two must satisfy the identity [[X, Y], [Z, W/]]=l), we

may apply Gregorac's lemma above to obtain our result.
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Theorem 6.3. G(0, k\aly..., ak) is solvable in exactly the following cases:

(1) k = 4 and a1 = a2 = o¡3 = oc4 = 2;

(2) k = 3 and (au a2, a3) = (2,2, a3), (2,3,3), (2,3,4), (2,3,6), (2,4,4), or

(3,3,3);
(3) k<,2.

Lemma A. If G(0, k\au ..., ak) is solvable, then k^4. If k = 4, then a1 = a2 = 0£3

= a4 = 2.

Proof. Since k^4, we may write G = G(0, l\ax,.. .,ak) as G=*(A, B, H, K, <j>)

where A is the group presented by (qu q2 \ qfx = l), B is the group presented by

(z73,. . .,qk\ qf'=l), H is the subgroup of A generated by qxq2, K is the subgroup

of B generated by <73 • ■ -qk, and </> is the isomorphism of H onto K that maps qxq2

onto (q3- ■ •qk)rl. According to Lemma 6.2 if G is to be solvable, then H is of

index two in A and K is of index two in B. Thus A and B are each extensions of Z

by Z2. In particular both A and B are solvable groups. But A and B are free products

of finite groups and hence by Lemma 4.1 can only be solvable if A: = 4 and a1=a2

= a3 = ai = 2.

Lemma B. // al5 a2, a3 are pairwise relatively prime, then G(0, 31«!, a2, a3) is

nonsolvable.

Proof. If we abelianize G(0, 3|alf <x2, a3), we have that q"^ = 1, q22=l, qf3q23= 1.

Then ql2a3=qf2a3q2'2a3 = (ql3q2!3)c"2=l. Since at and a2a3 are relatively prime, we

have <|i = l. Similarly q2=q3= I. Hence G(0, 3|a!, a2, a3) is in fact perfect.

We are now prepared to narrow our list of solvable groups (7(0, k\au ..., ak) to

those given by Theorem 6.3. According to Lemma A, we need only consider the

case zi: = 3. Further, by Lemma B we need only consider groups (7(0, 3|ax, a2, a3)

when there exists a prime p that divides both a2 and a3. In such a case, we can

construct a homomorphism of (7(0, 3|a1( a2, a3) onto Zp by mapping qx onto the

identity element of Zp, q2 onto the generator of Zp, and q3 onto the inverse of the

generator of Zp. This map has kernel K which may be presented by (xt, q'2, q'3 \

(n?= d Xi)q2q'3 = 1, x?x = l,q'2a2= l,(73a:3=l), 0âz'</>, a'2 = a2/p, a'3 = a3/p under the

map Xi ̂ q2qiq2\ 0fii<p, q'2 \->-q$, and q'31—> ^§. Observe that K is isomorphic

With G(0,p + 2\au au .,.,«!, a2///, a3//>).

(1) C(0, 3\a,pq,pr), ## 1, r^ 1, (a, p, q, r)^(2, 2, 2, 2). This group has a non-

solvable subgroup G(0,p + 2\a,a,...,a,q, r).

(2) G(0,3\a,p,p), //S: 5 or // = 3 and a^4. If /zä5, then the subgroup

G(0,p\a,a,...,a) is not solvable. If // = 3 and «^4 then the subgroup

G(0, 3|a, a, a) is not solvable by the above if a is a prime or by (1) if a=p'q, pa

prime and ## 1.

(3) (7(0, 3|o£, p,pr), /•# l,//^5 has a subgroup G(0,p+ l|a, a,..., a, r) which is

not solvable.

(4) G(0, 3|cc, 3, 3r), r# 1 and a#2 or r/2. The subgroup G(0, 4|a, a, a, r) is not

solvable.
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(5) G(0, 3|a, 2, 2r), r^ 1 and aä5 or a = 4, rS3, or a = 3, z-^4. The subgroup

G(0, 31a, a, /•) is not solvable. If aä5 this follows from (2) if a is prime and by (1)

if a is composite. If a = 4 and r^3, this follows from (1). If a = 3 and rä4 this

follows from (4).

The only groups remaining to be considered are those listed in Theorem 6.3.

It is straightforward to show that each of these groups is solvable. We have the

following theorem.

Theorem 6.4. Let M be a Seifert fiber space such that rrx(M) is solvable. Then M

has Seifert surface F either the torus, the Klein bottle, the projective plane, or the

2-sphere. Furthermore, if F is the torus or the Klein bottle then M has no singular

fibers. If F is the projective plane, then M has no singular fibers, one singular fiber of

arbitrary type, or two singular fibers of types (2, ßx), (2, ß2). If F is the 2-sphere then

M has zero, one, or two singular fibers of arbitrary types, three singular fibers of

types (2, ßx), (2, ß2), («3, ß3); (2, ßx), (3, ß2), (3, ß3); (2, ßx), (3, ß2), (4, ß3); (2, ßx),

(3, ß2), (6, ß3); (2, ßx), (4, ß2), (4, ß3); (3, ßx), (3, ß2), (3, ß3); or four singular fibers

oftypes(2,ßx),(2,ß2),(2,ß3),(2,ßA.

In particular, we wish to call attention to the Seifert fiber spaces M with Seifert

surface a 2-sphere with three singular fibers of types (2, ßx), (3, ß2), (6, ß3); (2, ßx),

(4, ß2), (4, ß3); or (3, ßx), (3, ß2), (3, ß3) with the additional restriction that

ßxa2a3 + axß2a3 + axa2ß3+baxa2a3^Q. These manifolds have infinite, solvable

fundamental groups. However, in [18] Waldhausen has shown that these manifolds

are not sufficiently large. These manifolds constitute the complete collection of

compact, nonsufficiently large, />2-irreducible 3-manifolds with infinite, solvable

fundamental groups known to the authors.

(7) Nilpotent groups. In [16] Thomas classifies those nilpotent groups which

occur as the fundamental group of a closed 3-manifold. Here we provide a some-

what simpler proof of the results of Thomas and extend them to the bounded case.

If M is a torus bundle over S1, then we have an exact sequence 1 ->Z©Z

-> -rrx(M) -*■ Z -> 1. The generator of the infinite cyclic quotient group induces an

automorphism 8M:Z@Z^>Z@Z. The automorphism 6M determines the

fundamental group of M up to isomorphism. Each torus bundle over S1 is a P2-

irreducible, sufficiently large 3-manifold. Hence by a theorem of W. Heil [4], if

A is any other torus bundle over S1, and if 8M = 8N, then M is homeomorphic

with A.

Theorem 7.1. Let M be a compact 3-manifold such that tt2(M) = 0. Then irx(M)

is an infinite, nilpotent group if and only if M is equivalent to a manifold from the

following list:

(i) a disk bundle over S1;

(ii) ozz / bundle over S1xS1;

(iii) a torus bundle A over S1 with 6N of the form (¿ \), Y an integer.
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Proof. Since n2(M) = 0, it follows that M is P2-irreducible. If M has nonempty

boundary, then since ^(M) is solvable we may apply Theorem 4.2. Eliminating

the nonnilpotent fundamental group of the Klein bottle from the list of Theorem

4.2, we have that M is equivalent to either a disk bundle over S1 or an / bundle

over the torus.

If M is closed, we could again refer to the work in §4 on solvable groups; how-

ever, an easier approach is available. Since M is aspherical, it follows from Lemma

8.4 of [1] that ttAM) is torsion free. Hence ir^M) is a finitely generated, torsion

free, nilpotent group. It follows that ^(M) is poly-infinite-cyclic. Thus there is a

map/of iti(M) onto the infinite cyclic group. Furthermore, since ttAM) is poly-

cyclic, it follows that each subgroup of ^(M) is finitely generated. In particular

the kernel of the map/is finitely generated. It follows then from a theorem of

Stallings [15] that M is homeomorphic with a closed 2-manifold bundle over S1.

Since ttAM) is nilpotent, M is a torus bundle over S1.

We refer to Lemma 2 of Thomas' paper [16] for a proof that 6„ is of the form

(if).
Theorem 7.2. Let M be a compact 3-manifold such that rr2(M) ^0. Then -n^M)

is an infinite, nilpotent group if and only ifrr^M) is either Z or Z © Z2.

Proof. If tt2(M) is not generated as a ttx(M) module by its projective plane

boundary components, then by Theorem 5.1, irx(M) is either Z,Z®Z2 or Z2 * Z2.

Since Z2 * Z2 is centerless, it is not nilpotent.

If ir2(M) is generated by the projective plane boundary components of M, then

by Theorem 5.1, tt±(M) is a split extension of a nontrivial group G by Z2. Further-

more, Z2 acts without fixed points on G. Suppose the extension is split by a homo-

morphism that maps the generator of Z2 onto an element t of ^(/Vf). Then each

element of ttAM) can be written in the form gte where g e G and e is either 0 or 1.

Since 7Ti(M) is nilpotent, there is a nontrivial element go'6 in the center of nAM).

Since Z2 acts without fixed points on G, £=¡¿0. For otherwise g0te does not commute

with 1. Hence g0te = g0t- Then t'1g0t = t-1(got) = (got)t-1=go- Since Z2 acts

without fixed points on G, it follows that g0= 1. But then g0te = t and t does not

commute with any nontrivial element of G. Hence -n-AM) is a centerless group.

This contradiction completes the proof of Theorem 7.2.

(8) Abelian groups. In [1] Epstein lists those finitely generated abelian groups

which can occur as the fundamental group of a (possibly noncompact) 3-manifold.

In this section we prove that if M is a 3-manifold with nonfinitely generated,

abelian fundamental group, then ^(M) is a subgroup of the additive group of

rationals. The authors wish to thank William Jaco for considerable help in proving

the theorems of this section.

An abelian group G is said to be of local rank one if each finitely generated sub-

group of G is cyclic. The primary algebraic tool that we shall require is the follow-

ing theorem which is proved in [6].
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Theorem 8.1. If G is a torsion free abelian group of local rank one, then G is a

subgroup of the additive group of rationals.

Lemma 8.2. If M is a 3-manifold with nonfinitely generated abelian group then

irx(M) is torsion free.

Proof. Suppose ttx(M) contains a nontrivial element .v of order k, and let H

denote the subgroup trx(M) generated by x. Then H is isomorphic with Zk. If k

is not two, then Theorem 8.2 of [1] allows us to write M as a connected sum

M=Q§R where rrx(R) is a nontrivial finite group. By van Kampen's theorem

Trx(M)XTTX(Q) * ttx(R). Then since irx(M) is abelian we have that irx(Q) = Ç> and

Trx(M) = trx(R). This of course is contrary to the assumption that ttx(M) is not

finitely generated.

Thus we have that each element of tx(M) is either of infinite order or has order

2. Let y denote a nontrivial element of -¡rx(M) other than the torsion element x

above, and let K denote the subgroup of irx(M) generated by the elements x and y.

If y were of finite order, then as noted above we would have y2 = 1 and so K would

be isomorphic with Z2 © Z2. But Theorem 9.1 of [1 ] assures us that Z2 © Z2 is not

a subgroup of the fundamental group of any 3-manifold. Thus y must be of infinite

order and so K is isomorphic with Z@Z2. Then by Theorem 9.5 of [1] Mean be

written as a connected sum M=Q§R with irx(R)xZ@Z2. Since rrx(M) is not a

free product, we have t71(jW)~Z©Z2. This is contrary to the assumption that

irx(M) is not finitely generated.

This completes the proof of Lemma 8.2.

We are now ready to prove the main theorem of this section.

Theorem 8.3. If M is a 3-manifold and ifvx(M) is a nonfinitely generated abelian

group then rrx(M) is a subgroup of the additive group of rationals.

Proof. In view of Theorem 8.1 and Lemma 8.2, we need only prove that rrx(M)

is of local rank one. Furthermore, it suffices to prove the theorem in the case that

M is orientable. For if M is nonorientable we consider the orientable double cover

M of M. Assuming the theorem known for orientable manifolds, we have the

exact sequence 1 -> nx(M) -» irx(M) -> Z2 —> 1 where irx(M) is torsion free and

irx(M) is of local rank one. It is then a simple exercise to show that rrx(M) is also

of local rank one.

Thus we need only establish that if M is an orientable 3-manifold with non-

finitely generated, abelian fundamental group then irx(M) is of local rank one.

The proof is by contradiction. Thus we assume that M is an orientable 3-manifold

with nonfinitely generated abelian fundamental group and ttx(M) is not of local

rank one. Then ttx(M) contains a subgroup H isomorphic with Z@Z. Let (A, P)

denote the covering space of M associated with the subgroup H of rrx(M) and let C

denote the group of covering transformations of (A, P).
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Lemma A. There exists an embedding f:S1xS1^N such that /* : -nAS1 x S1)

-*■ ttAN) is an isomorphism.

Proof. Let gx : S1 x S1 -> N be a map such that gu: rr^S1 x S1)^ "-i(A) is an

isomorphism, and let Kx denote a regular neighborhood of gAS1 xS1) in N. If the

boundary of Kx is compressible in N, then there is a disk D in Asuch that D n bd K±

= bd D and bd F is a nontrivial curve in bd K-,. If fln int Kx = 0, then we set

g2 = gi, and K2 = KX u ^¿(D, A). Otherwise we have D<=K1. We change g,. by a

small isotopy if necessary so that gx is a general position map with respect to the

disk D. Then gï^gAS1 x S1) n D) consists of a collection of mutually exclusive

simple closed curves on S1xS1. If a is a component of gï1(gAS1 xS1) n D)

then gi(a)c:D so that gx(a) is contractible in A. Since gu is an isomorphism, it

follows that a is contractible on S1xS1. Thus each simple closed curve a in

gî1igAS1xS1) n F) bounds a disk Da on S1xS1. Choose new base points if

necessary so that the base point of S1 x S1 does not lie on any disk Da for a a

component of gî1(gAS1 xS1) n D). gu remains an isomorphism. Now let a

denote a fixed component of gï^gAS1 x S1) n D). Define g2: S1 x S1 -> N as

follows. We set g2\cus1xs1-Da) = gi\cns1*s1-Da), and g2\Da is a contraction of g2(a)

in D. We then change g2 by a small homotopy so that g2(Da) lies on the proper

side of a regular neighborhood of D. Now gx=g2 outside a regular neighborhood

of Da, and each loop lin S1 xS1 is homotopic relative to the base point to a loop

/' in S1xS1 such that /' n Da = 0. It follows that g2.: n^S1 x S1) -^ttx(N) is an

isomorphism. Continuing in this fashion we see that it is possible to construct a

map gr: S1xS1 -> N such that gr<: -nAS1 x S1) ->irx(N) is an isomorphism,

gr(S'1xS,1)c:*i> and D r\ gT(S1xS1) = 0. Then we set K2 = cl(Kx-W(D, N)).

If bd K2 is compressible in A, we repeat the above process to construct K3.

Eventually we arrive at a map gs: S1 x S1 -*■ A and a compact manifold Kt^N

such that gs. : tt^S1 x S1) -*■ tti(N) is an isomorphism, gs(Sr x SA^K,, and bd Kt

is incompressible in A.

Define g's: S1 xS1 -> Kt by g's(x)=gs(x). We have the following commutative

diagram where /* is induced by inclusion.

/"Ol .,   Ol\          °s.    . fLr\
TT1(SLY.b)   -*■    TT^K.)

ÖS. ^v

^\^      1 '

«iW

Now gs. and z* are injections and gs, is an isomorphism. Hence g's, and z* are also

isomorphisms. Thus Kt is a compact 3-manifold with ir1(Kt)=Z © Z. It then follows

from a theorem of Heil [4] that Kt is equivalent to an / bundle over S1 x S1. Since

A is orientable we have that in fact Kt is equivalent to S1 x S1 x /. Let /: S1 x S1
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-> Kt be an embedding such that/*: rr^S1 x S1) -*■ tt^/Q is an isomorphism. Then

fis the map required by Lemma A.

Let f(Sx x SA = F. Since /*: 777T) -> rrx(N) is an isomorphism F must separate A.

Lemma B. Let t be a covering transformation of(N,p) such that F n t(T) = 0.

T/it?« Fzjwi/ r(T) cobound a manifold Kz such that Kz is homeomorphic to Fx [0, 1 ] § R

where R is a possibly noncompact, simply connected 3-manifold.

Proof. Since F and t(F) both separate A, F and r(F) cobound a manifold Kz.

Since F and t(F) are incompressible in A, we have that 7'*: rrx(Kt) ^ ttx(N) is a

monomorphism. We have the following commutative diagram of maps induced

by inclusion.

777/7 —*■*-> "AW

j*

Since each map is a monomorphism and k* is an isomorphism, we have that /*

is also an isomorphism. Thus each loop in t(F) is freely homotopic in Kz to a loop

in F. Then proceeding closely along the lines of Lemma 5.1 of [17] we are able to

construct a pair of annuli A, B such that bd A=ax u a2, bd B = bx u b2 with the

following properties:

(1) A meets B transversely in a single arc k with endpoints kx, k2,

(2) kx=a, n bx, k2 = a2n b2,

(3) ax, bx is a pair of nontrivial simple closed curves in t(F) that meet in a single

transverse intersection point kx,

(4) a2, b2 is a pair of nontrivial simple closed curves in F that meet in a single

transverse intersection point k2.

Let X denote a regular neighborhood of F u t(F) u ^4 u B in A7 We note that

bd A' is a 2-sphere in Kz. Since t71(A'i) is not a nontrivial free product, we must

have that bd X bounds a simply connected manifold R* in Kz. Lemma B follows.

Lemma C. C, the group of covering transformations of(N, p), contains an element

of infinite order.

Proof. Since C is an infinite group, there is a covering transformation t in C

such that F n T(F) = 0. Let F separate A into components Nx and A2. With no

loss of generality we assume that t(F)^Nx. We have either t(A!) = c1 (Nx — Kz) or

T(N2) = cl(Nx-Kz). If r(Nx) = cl(Nx-Kz), then • • ■ ̂ t2(Nx)^t(Nx)^Nx. Hence

t would be of infinite order. Thus we assume that t(Nx) = N2 u Kz, and t(A2)

= cl (Nx — Kz). By Lemma B we can write Kz = Kff R where AT is compact and R is

simply connected. Since for each ae C, a(F) is incompressible in A, it is not

possible that a(F)<^R for any o e C. Thus if o e C, then o-(F) n Kz^0 if and only

if o(F) n K+0. Since K is compact we have that there are only finitely many
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covering transformations a such that a(F) n K%^0. Thus we are able to find some

XeC such that X(F) r\Kz = 0.\f X(F)<=N2 we put Xx = tX; otherwise, Xx = A. Thus

we have Xxe C such that XX(F)^NX-KZ. We have either A1(A1) = cl (Aj-Ff^) or

A1(A2) = cl(A1-FAl). If Xx(Nx) = cl(Nx-K,), then ■ ■ ■ ̂X2(Nx)çXx(Nx)çNx.

Hence Xx is of infinite order. We are left with the case that A1(A2) = cl (A-l —FAl)

gcl(A1-FI) = r(A2). Then • • • S^'WMteO^AiXJVaSA2. Hence r"^

is of infinite order. This completes the proof of Lemma C.

The supposition that ttx(M) is not of local rank one has now led us to the

following situation. H is a subgroup of -rrx(M), and H is isomorphic with Z@ Z.

Furthermore, since -rrx(M)/H is isomorphic with the group of covering transforma-

tions of (A, p), we have that irx(M)/H contains an element of infinite order. It

follows that ttx(M) contains a subgroup K isomorphic with Z@Z@Z. We note

that Z©Z@Z is the fundamental group of the closed, aspherical, 3-manifold

S1 x S1 x S1. Then Theorem 8.8 of [1] allows us to write M as a connected sum,

M— Q # R where K is of finite index in ttx(R). By van Kampen's theorem, nx(M)

~ttx(Q) * ttx(R). But irx(M) is not a nontrivial free product. It follows that

Trx(M)XTrx(R) contrary to the assumption that nx(M) is not finitely generated.

Thus we have in fact that rrx(M) is a torsion free, abelian group of local rank one.

It follows that ttx(M) is a subgroup of the additive group of rationals.

We do not know if a nonfinitely generated abelian group can occur as a subgroup

of the fundamental group of a compact 3-manifold. However each subgroup of

the additive group of rationals is the fundamental group of some 3-manifold.

In order to show this, it clearly suffices to construct a 3-manifold with fundamental

group the additive group of rationals. The example that we shall provide seems to

be well known, but we include it for the sake of completeness. The example is a

noncompact 3-manifold M which is the complement of a solenoid in S3. We

construct M as follows.

Let kx be an unknotted simple closed curve in S3, and let Tí denote a regular

neighborhood of kx. Let Ff = cl (S3 — Tl). Let xx denote the generator of ttx(TI)

and yx denote the generator of -nATI). Beginning with Tl and Ff we construct two

sequences of solid tori Ff cFf <=•••, Tl=>Ti=> ■ ■ ■ where Tl+X and T2+x are

constructed as follows. Let kn + x be a simple closed curve in the interior of Tl

such that kn+1 is unknotted in S3, and kn+x is homotopic in Tl to xl + 1 where xn

is the generator of irx(Tl). Let Tl+X denote a regular neighborhood of kn+x in Tl,

and put F2+1 = cl (S3 — Tl+X). Let xn+x be the generator of ttx(TI+x), and let

yn+x be the generator of 7r!(F2+1).

Set M=iJn = i Tl. Using van Kampen's theorem we obtain a presentation for

tti(M) as a direct limit of infinite cyclic groups. rrx(M) is presented by

(yi,y2,y3,--- Iji = yl,y2 = jei,• • ■)•

Then ttx(M) is isomorphic with the additive group of rationals under a map which

takes yn onto 1/«!.
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