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THE VARIATION OF SINGULAR CYCLES IN AN

ALGEBRAIC FAMILY OF MORPHISMS

BY

JOEL ROBERTS(')

Abstract. (1) Let g: V —> Wm (zzzäz-) be a morphism of nonsingular varieties

over an algebraically closed field. Under certain conditions, one can define a cycle S¡

on V with Supp (St) = {x | dim«,, (ilXIY)(x) ä i}.

The multiplicity of a component of S¡can be computed directly from local equations

for g. If V"^Pn, and if g: V -> Pm is induced by projection from a suitable linear

subspace of P", then Si is cm _, + AN ® <B{ — 1 )), up to rational equivalence, where N is

the normal bundle of V in P".

(2) Let f: X —> S be a smooth projective morphism of noetherian schemes, where S

is connected, and the fibres of/are absolutely irreducible r-diniensional varieties. For

a geometric point tj : Spec (zV) —>- S, and a locally free sheaf E on X, let A"„ be the corre-

sponding geometric fibre, and En the sheaf induced on X„. If Ef,. . ., Em are locally

free sheaves on X, and if ix+ ■ ■ ■ +im = r, then the degree of the zero-cycle c,l(Ei„) ■ ■ ■

c,m(Emrl) is independent of the choice of -q.

(3) The results of (1) and (2) are used to study the behavior under specialization of

a closed subvariety '/'<=/>2r~1 which is the image under generic projection of a non-

singular V'<=Pn.

1. Introduction. Let V be a nonsingular /--dimensional projective variety over

an algebraically closed field k. If Kis projected generically onto v,(^P2r~l, then V

has a singular curve with finitely many points of a type known as pinch points

(cf. §5). Suppose that char(zV) = 0 and that V can be specialized (along with its

projective embedding) to a nonsingular variety Vx, defined over kx, which can be

projected generically onto V'x^P2r~1. We can ask whether V'x has the same number

of pinch points as V. The answer is "yes" if char (kx)^2; if char (kx) = 2, then

V'x has half as many pinch points as V.

In this paper we develop some techniques which enable one to answer this and

other enumerative questions of a similar nature. In §2, we prove a result which says

roughly that a Chern polynomial of weight r is constant in a connected family of

nonsingular projective varieties of dimension r (cf. Theorem 1). In §3 we recall the

definition of the dependency cycle of a set of sections of a locally free sheaf on V.

Mattuck [6] has shown how to express the rational equivalence class of this cycle

as a Chern class of E. We express the multiplicities of its components as the
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lengths of certain Fitting ideals (cf. Proposition 4). In the case that the set of sec-

tions is part of a Serre sequence, these results follow from Theorem 2.7 of [3]. In

§4, we define, under suitable assumptions, the singular cycles S¡ of a morphism

/: V -*■ Wm of nonsingular varieties (m^r). Intuitively, Supp (Si) is the set of

points where the kernel of the tangent map has dimension ä i. Our definition is

stated in a form which gives immediately the multiplicities of the components of

S¡. Let KcP", and let -n: V^ Pm be induced by generic projection. (See Lemma 3

for the meaning of "generic" in this context.) Theorem 2 says that the rational

equivalence class of S ¿it) is cm_r+1(A(g) (9(— 1)), where N is the normal bundle of

Fin Pn. Finally, §5 gives the application of the results of §§2, 3, and 4 to the prob-

lem stated in the first paragraph. We also give a concrete example to illustrate our

result.

We will deal with Chern classes constructed in the rational equivalence ring

s/(V). Our references for this topic are Grothendieck's appendix to the Borel-

Serre paper [4], and Séminaire Chevalley 1958, "Anneaux de Chow et applications."

As usual, Grothendieck's Eléments de géométrie algébrique is denoted EGA.

I would like to thank the referee, who suggested ways to clarify several obscure

points.

2. Chern classes and algebraic families. Let /: X -*■ S be a smooth projective

morphism of noetherian schemes. Assume that S is connected and that all fibres

off are absolutely connected. In particular,/is flat, and the fibre Xs=f'1(s) is an

absolutely nonsingular irreducible projective variety over k(s) for all se S, where

k(s) is the residue field of 6\s.

Let Eu...,Em be locally free sheaves on X. For each geometric point

r¡: Spec (k) -> S (k is an algebraically closed field), let X„ be the corresponding

geometric fibre, and let Elm ..., Emn be the sheaves induced on Xn by Eu ..., Em.

We will consider the Chern classes c,(EjA, which are elements of sé(Xf), the Chow

ring of Xn. For a rational equivalence class, z, of zero-cycles on Xv, we will denote

by deg„ (z) the degree of z. Finally, we note that the dimension of Xv is independent

of T¡.

Theorem 1. Let f: X—> S and Eu ..., Em be as above. If iu .. .,im is a sequence

of positive integers such that ix+ • • • + /m = dim (Xn), and ij á rk (E,), for j=l,...,

m, then the value of

deg„ (ch(Eu) ■ ■ ■ cim(Em„))

is independent of the choice of the geometric point, -q, of S.

Remark. The E{ need not be distinct.

Proof. We first consider the case where the E¡ are all invertible, so that c,(Ej^) = 0

for i> 1. Thus let r = dim (X„), and let Lx,..., Lr be invertible sheaves on X (not

necessarily distinct). Then

deg {ciiLxA ■ ■ ■ c1(LrA) = (Lu ■ ■ • LrA,
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which is the intersection number, computed on X„.  Using the techniques of

[7, Lecture 12], one shows

(LXn ■ ■ -Lr„)
r

= x(<Px,)-2 xiLfA)+2 xiLrA ® ljA)-+(-i)rx(¿iV ® • • • ® ¿r,1)-
i = 1 i < J

(By induction on the dimension, one shows that our expression is correct when

LX = 6V(D), with D very ample, and is linear in each variable.)

The fact that this intersection number is independent of tj is a consequence of the

following lemma.

Lemma 1. Let f: X -» 5 be a projective morphism, where S is noetherian, and let

E be a coherent sheaf on X which is flat over S. For afield, k, and a k-valued point

ii : Spec (k) -> S, let

X(E,V)= £ (-1)'dim,//<(*„, ¿7),

where En is the sheaf induced on the fibre Xn. If S is connected, then xiE, -q) is inde-

pendent of the choice of k andr¡.

This lemma is a consequence of EGA III.7.9.11 ; cf. also 7.7.4, 7.7.12(i), and 7.9.3

of the same chapter.

We will now reduce the general case to the case just considered. We claim that

there is a smooth projective morphism g: Y-> X with connected fibres such that

(1) For each 7, g*E, has a filtration of locally free subsheaves

EiX e Ej2 c . .. c EUPj = g*Eh

where 77, = rk (EA,, such that the quotients Ljv = EJV/EJ¡v_x are invertible.

(2) There are invertible sheaves, Als..., As, on Y and positive integers,

dx,..., ds, such that

(a) dx+ ■ ■ ■ +ds = d= dimension of any fibre of g,

(ß) gn*(cx(AXv)d> ■ ■ ■ cx(AsAd°)=lx„,

for all geometric points r¡: Spec (k) -* S, where g„ is obtained by base extension.

We will first use (1) and (2) to achieve the desired reduction. From (1) we have

(*) c((g*Ei)v) = Y[il+cxiLim)).
V

Next, let zesá(XA, and set y„ = (cx(AXv)di ■ ■ ■ cx(As,)d»). Using the projection

formula (cf. [I, p. 3-17]), and (2), we obtain

z = zlXt = z-gn*(y„) = g^(g*(z)-yv)-

In particular, this implies that

(**) deg„ (x) = deg„ (g*(z) -yn)
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if z is the class of a zero-cycle on Xn. Note that the expression on the right is the

degree of a zero-cycle on Y,r

We apply (**) in the case z=ch(Eu) ■ ■ ■ cim(Em) and use (*) to express g*(z)-y„

as a polynomial of degree r + dm the cx(Ain) and the Ci(Ljvv). In this way, we reduce

the question to the case of the theorem already proved.

We now prove the existence of Y. In the case m=l, write E=EX, and take

F=Flag (E), the flag bundle of E over X (cf. [1, pp. 4-18 and 4-19.]). Thus, if

/7 = rk (E), we have a sequence of morphisms

i  = Pp-i —> Pp-2 —*• ■ • • —> Pi —> °o = X,

such that P1=P(E), and Pl + 1=P(F¡), for i>l, F( being defined by the exactness of

O->F,^0,*(Ff_1)->>0i>l(I)->0, where fciP,->.?,_!, and F0 = F. Now, it is

known that

/^x ft»»((Ci(<W(I))n)e) = 0,        e < p-i,

= 1,        e = p-i

(cf. [1, p. 4-13]). Letting &: F->F¿ be the composition Pp^1-*-...-+Pu we set

A^g-f^p^l)) and dt=p — i. Writing g=g0 and using (***) and the projection

formula repeatedly, we find

£zl*(Ci(Aln)p-1 • • • Ci(AP-i,„)) = lx„.

In the case m> I, we proceed by induction on m. Suppose that q: Z-> Xand the

invertible sheaves Au ..., As on Z have properties (1) and (2) relative to Eu ...,

£ra_i. Let F= Flag (?*£m), and let/-: Y-^Z. We pull back Au . .., As tor*A1;...,

z"*As on F and form p— 1 other invertible sheaves on Y by the process used in the

case m= 1, where/z = rk (£m). Setting # = (? ° z-, one uses the projection formula and

the fact that g„*=<7,,* ° rn* to check that the sheaves constructed on Y have

property (2).

3. Dependency cycles. In this section, V will be a nonsingular quasi-projective

variety defined over an algebraically closed field k, and E will be a locally free

sheaf on V, of rank// g dim (V). We will recall the definition of the dependency

cycle of a set of sections of E (cf. Mattuck [6, §4]), and we will give an expression

for the multiplicities of the components of this cycle.

Let Ê=P(<VV ® E*) (cf. EGA II, §4), where E*=Jtcm (E, <SV), and let n:Ê^V

be the natural projection. Let<r0: V ̂  £correspondtothesurjection 0V © E* -> 0V

which restricts to the identity on <BV and to the zero map on E*. Thus K=ct0(F).

Let seY(V, E), and let a: V'-> Ê correspond to the surjection 6V® E* ^(9V

which restricts to the identity on 0V and to the map dual to /j: <SY -> E on E*.

Under the assumption that cr~1(r70(F)) = {.v e V\ s(x) — 0} is of pure codimension

p in V, we say that the cycle of zeros of s is defined; this cycle is defined to be

tj*(a0(K)) and is denoted s*(0).
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Let us write s*(0) = ^ pzZ; the sum ranges over the irreducible components of

o~1(a0(X)). For a fixed Z, let x be the generic point of Z, and let U be a neighbor-

hood of x on which E is free. On Í/, we can write s = 2f= i ffii, where f e T(U, Gv),

and {<?!,..., ep) is a basis of F(U, E).

Proposition 1. With the above notation, pz = ^AÍ^!ifi, ■ ■ -,fp)), where A=0V,X,

and iA(M) denotes the length of the A-module M.

Proof. Since oa(V) and o(V) are locally complete intersections on Ê, one can

check that CA(A/(fx,.. .,fp)) is the multiplicity of the corresponding component of

o0(V)o(V).    Q.E.D.

Proposition 2. If s e V(V, E) is such that s*(0) is defined, then s*(0) = cp(E) in

sé(v).

The proof can be modeled directly after one given by Grothendieck [4,

Theorem 2].

Let qlkp, and let sx,. . ., sq e T(V, E). Now, sx,...,sQ define a map of (9V-

modules, <f:<3\\->E; by duality we get <f>*\ E*->0qv. Let P=VxPq~\ and let

it: P-> Kand p: P-> P"1 be the two projections. Then </>* gives rise to a map of

CF-modules: tt*£* -> p*G>(l). Tensoring with 6( — 1) and dualizing, we obtain

s e Y(P, tt*E ® 6(1)). We will make two assumptions :

(1) s*(0) is defined;

(2) -n- sends every irreducible component of s*(0) to a subvariety of codimension

p—q+ 1 in V.

When these assumptions are satisfied, we define the dependency cycle, D(Z) of the

set 2 = {sx,.... ij to be 7r.|.(i*(0)).

Proposition 3. Let Z^ Y(V, E) and s e F(P, w*E ® 0(1)) be as above. If DÇL)

is defined, then D(Z) = cp-q+x(E) in stf(V).

For a proof, see Mattuck [6, Theorem 2].

We will now give a local description of the section s e Y(P, tt*E® <P(l)). Let

C/=Spec (A)<= V be an affine open set on which E is free, and let {ex,. .., ep] be a

basis of Y(U,E). Thus, si = ^=xfijej, where fu.e Y(U, 0V), for i=l,...,q. Let

Tx,...,Tq be a basis of r(7T_1i7, &(!)), and let Um be the open subset where

Tm#0, for l-¿m^q. It is easy to verify:

(*) s\Um= (J   2 (h/tM/e) ® Tm,

where r(|£7m=(ít/íJ-(rm|(Jm). This implies

(**) s\(/r~W) = 2fu(ei®Ti).
i.7

Relation (*) also implies that x e Supp (£>(£)) iff ii,..., sQ become dependent in

E ® k(x).
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Assume that D(L) is defined, and let Z>(£) = 2 ,uz-Z. For a fixed Z, let x be a

generic point of Z, and choose (7C V, as above, so that x e U.

Proposition 4. With the above notation and assumptions, Pz — ̂aÍA/I), where

A=0ViX, and I is the ideal in A generated by the qxq minors of the qxp matrix

(fij). Thus, I is the Oth Fitting ideal of Coker (</>x), where c/> : 0\ -> E is defined by

S±, .  . ., Sq.

Proof. Every qxq minor of the matrix (/;) vanishes along IF=Z n U. Assump-

tion (2) implies that some (q-l)x(q-l) minor of (fi,) is nonzero at .v. We may

assume that this minor is nonzero at all points of U. Thus, some subset of X, say

{sly..., s„_i}, is a subset of a basis of Y(U, E).

Let Jc:Y(U, &v) be generated by the qxq minors of the matrix (fi,). Since E\U

is free, J is the (p-q)th Fitting ideal of Coker (Y(U, (9v)q -*• Y(U, £)). Hence J is

independent of the choice of basis of Y(U, E) (cf. Fitting [2, Hauptsatz]), and we

may assume that e¡ = í¡, for i= I,.. ., q— 1. Therefore J is generated by the

p — q+ 1 elements/3¡i,. . .,fqp. Moreover, the relation (**) becomes

s\(n-1U)= 2 (e, <g> Tf+fje, <g> Tq))+ J, Ufa ® TA.
2=1 2=9

Thus, Supp (s*(0) n t/)c U„. Now, (*) becomes

»Wt = 2 Oi+Àktié ta+2 Me, é ta,
2 = 1 2 = a

where we have set tq= 1. Let Z' be the unique component of s*(0) lying above Z,

let y be the generic point of Z', and let B = Ogty. If pz, is the multiplicity of Z' in

s*(0), Proposition 1 implies that pz' = ^b(B/T*), where

*       =   ('l A-fql, .  ■ ., /g-l +Jq,Q-l,Jqq, ■ ■ ■ ,Jqp)B.

Further, we have isomorphisms

B/I* S (A/I)[T,,..., r<J_1]/(r1+/1,..., Tq. i+fq,q.i) £ .4/7.

This implies that (i) A and 5 have the same residue field, and (ii) t'A(A/I) = (B(B/I*).

Now, (i) implies that 77Sc(Z')=Z. Using (ii), we obtain pz = ¿aÍA/I).    Q.E.D.

4. The cycles S¿. Let/: V -> Wm be a morphism of nonsingular varieties over

the algebraically closed field k, where m^r. Let flv/w be the sheaf of relative

differentials, and let S^V be the closed subset {x | dim,^ (Üv/W (g> A(jc))^i}, for

each z'^1. We will say that S¡ has the proper codimension iff every irreducible

component has codimension i(m — r + i). If S¡ has the proper codimension, we

define the cycle S¡ by

S. = Z,vz-Z;
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the sum ranges over all components, and vz = ¿cA®AJ), where x is the generic

point of Z, and J is the (/— l)st Fitting ideal of (QVIW)X. We must check that vz is

finite. We have an exact sequence of ^-modules

Oit/* ® Ox -^> %xm —> &kie* —► 0,

where y=f(x). The first two terms in this sequence are free of rank m and r re-

spectively. If we choose suitable bases for these modules, then <f> is described by an

mxr matrix, and J is generated by its minors of rank r — i+l. Since Z is the only

component of St containing x, the maximal ideal m* is the only associated prime

ofJ. Therefore vz is finite. We will call the cycles S¡ the singular cycles off.

Lemma 2. Suppose that Sx is of the proper codimension. Let Z be a component of

Sx, with Z<£S2, and with generic point x. Then vs~^ej\^viw)x)-

Proof. Since (í¿y/w)x is generated by one element, (ÍAylw)x^Ox/J, where J is the

0th Fitting ideal.    Q.E.D.

If x is a closed point of V, then x e St iff dimk(mx/(my(9x + m2))^i, where

y=f(x), and mx and my are the maximal ideals of Ox and Oy. In particular, suppose

that KcP" and that/= 77: V'-*■Pm is induced by projection from an (n — m—l)-

subspace L^Pn such that L n V=0. For a closed point xe V, it follows that

x e Si iff dim (L n tVx)^i— 1, where tViX is the z~-subspace of Pn tangent to Kat x.

(This can be checked using the techniques of the proof of Proposition 3 of [8].)

Lemma 3. Let rHm<n, and let Kr<=Pn be nonsingular. Then there is a dense open

subset of the Grassmann variety G = G(n, n — m—l) consisting of linear subspaces

L<^Pn such that L n V = 0, and Sf^r) is purely of codimension i(m — r+i) for all i,

where v. V'-» Pm is induced by projection from L.

Proof. For each i, consider the correspondence Z^VxG consisting of all

(x,L) such that dim (L n tv,x)^i— 1. By a counting of constants which uses

standard facts about Schubert cycles on G (cf. [5, Chapter XIV, §2]), one finds that

dim (Z¡) = dim (G) + r-i(m-r + i).    Q.E.D.

Henceforth we will fix an (n — m— l)-subspace L^P = Pn, such that L n V=0,

and St = Si(ir) is of the proper codimension for all i, where 77 : V ̂  Pm is induced by

projection from L. We will also fix a basis, {T0,..., Tn} of Y(P, &(!)), such that L

is given by T0= ■ ■ ■ =Tm = 0.

Theorem 2. Let V, L, and n be as above. Then

Sx = cm_r+1(JV® <M-1))    in s/(V),

where N is the normal bundle of V in Pn, viz., N=(I/I2)* =3nfomev (I112, 0V), where

J=Ker(0P->OV).

Proof. For 7 = 0,...,«, let T, be as above, and let Uj<=-P be the open set

{x I T,(x)#0}. Choose t0=l, tx,..., tnek(P) such that Ti = (tiltj)Tj on U}. Thus,
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Y(Uj, Op) is the polynomial ring k[t0/tj,..., tn/t¡]. For OS/'á« and z'#/, let Du be

the derivation  of Y(Uj, (VP) given by Du(tv/tj) = oiv (Kronecker delta), and  let

Djj= —2(#í iti/tj)D¡j. We can extend these derivations to derivations of the func-

tion field k(P) = k(t1, ...,/„) and check that Dij=(ti/tk)Dih for all /',./', /;.

For each (/',/), Du induces an element Du e Y(Uj, (I/I2)*)- We define

sif = Â;. (x) Tfx e Y(U,-, N ® 0( - I )).

Since AíI^j n Uh = (tj/th)Dih\Uj n (7,„ the various % (for each i) fit together to

give sections s0,. .., sn e Y( V, N <g> &( - 1 )).

Let .v be any closed point of V. Since L n K=0, we have F,(jr)^0 for some

<7¿/«. We may assume q = 0; thus .ve UQ. Let g1(.. .,£„-, generate / in a neigh-

borhood of x, and let a,: I/I2 -^&Y be given locally by o-i([gj]) = oij. With these

notations, we find that

*i= 2W*V/0,«X«'/®Jo-1)
2 = 1

in some neighborhood of .v. (The g, are polynomials in tu ..., tn.) In particular, it

follows that sm+1,. . ., sn become dependent in (A® 0(— I)) (g) k(x) iff x e Sx. To

see this, we note that L n tVmX^0 iff there are elements bm + 1,..., bn e k, not all

zero, such that 2"=m+i bf($g\fx$t-f%x)=Q, for i= 1,.. ., n—r. Since 5X is purely of

codimension m — r+1 =(« — /•) — (« — /«)+1, it follows that /9(2) is defined

(2 = {sm + !,..., j„}), and Supp (D(S)) = Supp (SA- Proposition 4 implies that

D(S) = 2 MzZ, where fiz=^e>JPxlJ'), with .v the generic point of Z, and 7' the ideal

in <9X generated by the minors of order (n — m—l) of the (« — /-) x (« — /«— 1)

matrix   (ôgi/dtj)lstÉn-rtm+l^J£n.   Finally,   Proposition   3   implies   that   DÇZ) =

cm-rUN®&v(-\)ím^{V).

Since Sx and D(£) have the same irreducible components, it will follow that

St = D(£) if we can show that the ideal J' defined above is the 0th Fitting ideal of

Ü4>xi0y (y = rr(x)). This will complete the proof. Thus, let U=Pn-L= U0 u • • •

u £/,„. The projection -n: Pn — L^>- Pm has the property that tt\U¡ looks like the

projection Am x An~m -> Am. Hence in the exact sequence of CV-modules

I/I2 -> t%,p» ® Gy -► ü^p« -> 0,

the first two terms are free. Moreover, if x e U0, and if gu ..., gn_r generate Ix,

then 8 is given by

s([&]) =   2   VgJtoiMi ® O,
j = m + 1

for i= 1,. . ., n — r. We conclude that J' is the 0th Fitting ideal of Qy;j>».    Q.E.D.

Corollary 1.  With the assumptions of Theorem 2,

»=0-,» /m+i\

;=o    \    7    /
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where h is the divisor class of a hyperplane section, (l—yx+y2—---+(—l)ryr)

= c(Qy)~1, andq = m — r+l.

Proof. With P = Pn, let Du be the derivations of k(P) defined above. Let 0

= (Q7)7 and let s0, ...,sne Y(P, 0 ® <9P(-1)) satisfy J(|t/j= Du ® Tf1. The s¡

give a map >f: (9f, + 1 s- 0 (g) <Pj»(—1) and thus an exact sequence

0 -> Í2¿ -> (9P(- l)n + 1 -» ¿7 -> 0.

This gives c(Q¿) = (l-/z)'l + 1.

On K we have an exact sequence

0 -> (I/I2) -> Llj, ® 6\ -> Llv -* 0.

Thus c(N*)=j*(c(Ll},))-c(ilv)-1, where7: V~^P. The rest of the computation will

be omitted.

Corollary 2. Ifm = r=l, and if the curve Kc pn has genus g and degree d, then

2g-2= -2d+   2   ^((iiv/P1)*).
xeSx(.n)

This is a special case of Hurwitz' formula for the genus change under a morphism

of curves. For a proof, use the exact sequence

o^i/i2^j*(ühlk)->nvlk^o

(withy: V-^Pn)to show that deg (A ® &(-l)) = 2g + 2d-2. Lemma 2 shows that

the summation on the right side of the formula also is deg (A ® c*>( — 1)).

Generalization. It is also possible to express the cycles S¡, /> 1, in terms of

Chern classes. Thus let G' = G'(n, n — r—l) be the Grassmannian which parameter-

izes (n — z-)-quotients of rank n+ 1 free sheaves, and let d>: CJ71 -> E be the uni-

versal surjection. There is a morphism u: V'-> C such that <5 pulls back to

(/>: f?y+1 ̂ * A® @v(— 1). The Chern classes of E can be expressed in terms of

Schubert cycles on G'. On the other hand, it seems clear that the Schubert cycles

which pull back to the cycles St can be expressed in terms of the Fitting ideals of

Coker (<5). Thus, one should obtain formulas which are similar to formula (10) on

p. 357 of [5].

5. Enumeration of pinch points. Let V be a nonsingular projective variety over

an algebraically closed field k. One can find a projective embedding V<^Pn such

that there is a finite morphism 77: K->P2r_1 induced by projection from an

(n — 2z-)-subspace L<^Pn satisfying

(I) Sx(tt) is purely 0-dimensional, and Tt\Sx(-rr) is injective. Moreover, if zä2, then

■n-\-rr(x)) = {x) for all X 6 Sx(ir).

(II) If x e Sx(rr) and y = tz(.v), then (Pv¡x and ¿7.27-1,, can be identified with formal

power series rings B = k[[tx,. .., tr]] and A=k[[tx,..., /2r-i]] so that 77 induces the
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homomorphism f: A^> B given by

f(U) = r, for i = l,...,r-l,

f(t,) = t¡_r+xtr    for i = r,. . .,2r-2,

f(t 2r-l)   =   t? + t?.

(If char (zV)^2 we can replace t? + t? by t2.)

In fact, if z-^2, a suitable embedding may be found by replacing any given em-

bedding by the embedding determined by hypersurface sections of degree <7ä2,

and Theorem 3 of [8] states that if L is chosen generically, then 77 has the following

properties which imply (I) and (II). If V =ir(V), then V is birational to V, Sing (V)

is purely of dimension 1, and V has singular branches at only finitely many closed

points y e V'.If V has a singular branch at y, then @V\y is isomorphic tof(A), where

f: A^> B is as above. (Recall that if {.v} = 7r~1(j), then .\- e Sx(tt) iff y has a singular

branch at y.)

If r = 1, and V is of genus g, one embeds V by using a complete linear system of

degree^2g+ 3 and uses techniques like those used in the proof of Theorem 3 of

[8] to obtain (I) and (II).

Proposition 5. Let -n: V^P2'-1 be as above, and let Sx = 2* vx ■ x, where the

summation extends over all points of Supp (Dy,/02'"1)-

If char (k) ̂  2, then vx = 1 for all x.

If char (k) = 2, then vx = 2for all x.

Proof. Let x e Sx(rr) and y = 7r(A7 Since 77 is finite, &x=Rm, where 7? is a semi-

local ring which is a finite ^-module, and m is maximal. Hence, R^ R ®<r: (9y, and

(9x^R/a, where a is generated by idempotent elements. Therefore, ü.1SxiSy= Q}>xicy

® (9X, so that the Oth Fitting ideal of Û1^'! is I-®x, where / is the 0th Fitting ideal

of QvxiOy. Let A = k[[tx,..., fsr-i]], B = k[[tx,. . ., tr]], and let/: A -> Bhe given as

above. Then 4767//) = 4(5//), where J is the 0th Fitting ideal of Íi¿/A. We have

an exact sequence of ß-modules

".4/lc ®A B-7» iiß/Jc ► "BM > 0-

(Cf. EGA 0IV, 20.7.17.3 and 0T, 7.3.5.) The first two terms are free, and u is given by

u(dt¡ ® 1) = dtj for 1—1,..., r — 1,

u(dt¡ ® 1) = tr dti^r + x + ti_r+x dtr   for i=r,. . ., 2r — 2,

u(dt2r.x® I) = (2tr + 2,t2) dtr.

The 0th Fitting ideal is thus J=(tx,. . ., tr_x, tr) if char (k)j^2, and

J = (tx,...,tr.x,t?)

ifchar(Â:) = 2. The length of B/J is 1 (resp. = 2) if char (k)^2 (resp.=2).    Q.E.D.

Remark. As a consequence of Proposition 5, the number of points in Sx(tt)

is independent of the choice of projection center, L, provided (I) and (II) are

satisfied.
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We will now see how the number of points varies as V is specialized. Thus, let

A be a noetherian ring, and X a closed subscheme of F¿ = Proj A[T0,..., Tn];

assume that p: A'^Spec(^) is smooth and has absolutely irreducible fibres of

dimension r. Assume that « ä2r — 1 and that X does not meet the closed subscheme

given by 770= ■ ■ • = 772r_1=0. We define N to be the normal bundle of X in

P = PnA; thus N = (I/I2)*, I~TSdet(fir-*Gx).

We consider geometric points r¡: Spec (k) -> Spec (A) (k = k) such that the

projection nn of the geometric fibre I,c//j from the linear subspace 77o= ••■

= 772r_1=0 satisfies (I) and (II) above. Now, the bundle N„ induced on X„

by N is just the normal bundle of X„ in P%. Thus, by Theorem 2, the degree of the

cycle 5i(7rn) is deg (cr((N <g> 0X( — 1 ))„)). By Theorem 1, this is independent of r¡.

Using Proposition 5, we obtain the following conclusion.

Proposition 6. Let A and /Yep« be as above. Assume that Spec (A) is connected.

For i= I, 2, let r¡t; Spec (kt) -*■ Spec (A) be geometric points such that the corre-

sponding projections -rrn. both satisfy (I) and (II). If char (k¡) and char (k2) are both

#2 or both =2, then ^(points in S1(ir„l)) = #(points in Si(tt„2)). //char (kt)=2 and

char (Ar2)#2, then #(points in S1(irvA) = \(§(points in Si(irnA)).

If z-â2, we substitute #(pinch-points of irVi(X„.)) for #(points in S^ir^J) to obtain

a statement about the behavior under specialization of the number of pinch-points.

If r—l, we obtain a similar statement about the behavior under specialization of

the number of ramification points of the covering V^-P1.

Example. Let V2<=P5 be the Veronese surface, i.e. the image of P2 embedded

by the complete linear system of conies. Explicitly, let points of F5 have homo-

geneous coordinates (yu) with 0£i£j&2. Then (xa, xu x2) e P2 is sent to the point

of F5 with yu = XiXj. Let it: V^P3 be induced by projection from the line y01

=yo2=yi2=yoo+ynA-y22 = 0. Thus, the composed map P2 -»■ F3 sends (x0, xlt x2)

to (xiX2, x0x2, x0X!, Xo+xf + x2), and the image is the surface V'^P3 whose

equation is to2tí + t2t22 + tlt2-t0tit2t3 = 0. The singular locus of V consists of the

three lines A0, Al5 and A2 given respectively by ti = t2 = 0, t0 = t2 = 0, and /0 = /1=0.

If char (k)^2, then V has 6 pinch-points, two of which lie on each of the lines A,;

if char (k) = 2, then V has 3 pinch-points, one on each A¡.

To see this, note that C¡ = 7r"1(A¡) is a plane conic for each i. The projection

center meets the plane of C¡ in a point which lies on two tangent lines of C¡ if

char (k)\£2, but on just one tangent line of C¡ if char (k) = 2. (The thing to note is

that if char (k) = 2, there is a point, not on the projection center, which lies on every

tangent line of C¡.) It might also be noted that the plane conic provides the simplest

example of the case /■= 1 of Proposition 6.
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