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ORBITS IN A REAL REDUCTIVE LIE ALGEBRA

BY

L. PREISS ROTHSCHILD

Abstract. The purpose of this paper is to give a classification of the orbits in a real

reductive Lie algebra under the adjoint action of a corresponding connected Lie group.

The classification is obtained by examining the intersection of the Lie algebra with the

orbits in its complexification. An algebraic characterization of the minimal points in

the closed orbits is also given.

0. Introduction. Let gc be a complex semisimple Lie algebra, and g a real form

of gc. Gc = Ad gc will denote the adjoint group of gc, and G^GC the connected

subgroup corresponding to g. If a e Gc, we write a-x for the image of x e gc under

the action of the automorphism a. We shall classify the G-orbits in g by giving

representatives for the G-orbits in the set

Gcx n g = {y e g : y = a-x for some a e Gc}

for x e gc.

The orbits of maximal dimension for the action of Gc on gc have been classified

by Kostant [5, Theorem 8, p. 382] who has constructed a cross-section for them,

using the result that such orbits are completely determined by polynomials on gc

which are invariant under Gc. Analogous results for conjugacy classes in algebraic

groups have been obtained independently by Steinberg [14], using the group

characters in place of the invariant polynomials.

Ii is known that Gc ■ x n g is actually a finite union of G-orbits [1, 2.3 Proposition].

The number of such G-orbits for certain x e g (Corollary 2.6) is the same as that

obtained by Wolf [16, 4.7 Corollary] for the number of open G-orbits in the space

Gc/Bc where Bc is a Borel subgroup; this suggests close connection between these

two actions of G.

The plan of this paper is as follows. The first section introduces notation and

preliminary results, mainly on the conjugacy classes of Cartan subalgebras. In the

second section a decomposition of Gc ■ x n g into G-orbits is given for x semisimple,

using Weyl groups. A characterization of the elements closest to the origin in the

closed orbits is given in the next section, as well as an interpretation of Gcx n g

in terms of algebraic geometry. In the third section it is shown that the set of all
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nilpotents in g whose orbits have maximal possible dimension form a single orbit

under the automorphisms of g. Furthermore, the number of G-orbits in this set is

counted and is shown to be the same as the number of connected orbits in the set

of nilpotents of maximal orbit dimension in a complex symmetric space under the

action of a complex reductive group. (See Kostant and Rallis [8].) The last section

deals with finding representatives for the G-orbits in Gcx n g when x is an arbitrary

element whose orbit has maximal dimension.

1. Notation and preliminary results. If G'^GC is any reductive subgroup we

write G'-x = {a-x : ae G'}, the G'-orbit ofix e gc. x, y e gc will be called G '-conjugate

if G'x = G'y. Now let g = í + £ be a Cartan decomposition for g. All Cartan

decompositions are G-conjugate and there is a corresponding decomposition

G = Ä"-(exp p), where K is the connected (compact) subgroup of G corresponding

to f and exp denotes the exponential map.

The real form g is defined by a conjugate-linear involution o of gc defined by

CT|ö = F       H'fl = _1>

where " | " denotes restriction and i=(— I)1'2. The Cartan decomposition g = i + :p

defines a conjugate linear automorphism t of gc defined by r|l=l, r\p = —1 and

t(íx)= —¡t(x) for x eg. Then Qu = {x e gc : t(x) = x} is a compact real form. We

write Gu for the connected subgroup of Gc corresponding to gu.

The following simple result, which will be important for proofs involving con-

jugation by Gc, shows that Gcx n gu is always connected for x e gu. Essentially it

says that a similarity transformation of two skew hermitian matrices by a positive

definite matrix must be trivial.

Proposition 1.1. Gux = Gcx n gu for any x e qu. More generally, Xx,x2et

are G-conjugate iff they are K-conjugate; yx, y2 e p are G-conjugate iff they are

K-conjugate.

Proof. Suppose that a-x=y with a e exp ;'gu and x,ye g„. We claim that x=y.

Indeed, a-x=y = T(y) = T(a-x) = a~1-x, which shows that a2-x = x. If x^y, this

implies that a has at least one negative or nonreal eigenvalue, which contradicts

the fact that a is a positive definite transformation. Now since Gc = exp iqu-Gu, the

first assertion follows immediately. The first part of the second assertion follows

also since G = K(exp p) and exp p = exp z'gu. Finally, note that if yx, y2ep are

G-conjugate, then iyu iy2 e ip^Qu are G-conjugate and hence are A'-conjugate by

the above. This proves the proposition.

x e gc is called semisimple if ad x is a diagonalizable matrix. If x is semisimple,

x is called symmetric if ad x has all real eigenvalues; x is called elliptic if ad x has

all pure imaginary eigenvalues. An arbitrary x e g has a unique decomposition

x=xk + xp, where xk is elliptic, xv is symmetric, and [xk, xp] = 0. Since conjugation

by Gc does not change the eigenvalues these definitions are invariant. Hence, if

a-x = x', where x' = x'k + x'p, a e Gc, then a-xk = x'k and a-xp = x'p.
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We now state some known results concerning Cartan subalgebras which we shall

use implicitly in what follows. Detailed proofs can be found in [15].

Two Cartan subalgebras of g are said to be conjugate if one can be transformed

into the other by an element of G. (We shall show (Corollary 2.4) that this is

equivalent to conjugacy by Gc.) It is well known that every real reductive Lie

algebra has only a finite number of conjugacy classes of Cartan subalgebras. These

were first classified for all real forms by Kostant [7]; a complete list is given in

Sugiura [15].

There are two distinguished classes for each algebra, defined as follows. Any

Cartan subalgebra ft<=g has a unique decomposition h = hte + hp, where

hfc = {x e f) | x elliptic}   and    i)p = {x e h | x symmetric}.

f)k is called the toroidal part of h, and h„ is called the vector part of h. h is called

maximally toroidal (resp. maximally vector) if

dim fite =      max     {dim %}       (resp. dim hp =      max     {dimf)p})-
fi' Cartan of g \ h' Cartan of g /

Proposition 1.2 All maximally toroidal Cartan subalgebras ofiq are G-conjugate.

All maximally vector Cartan subalgebras o/g are G-conjugate.

Proof. (See Sugiura [15, pp. 380-381].)

A Cartan subalgebra Í) is called standard (with respect to the Cartan decom-

position g = f + £) if l) = t) ní + íf r\ p. Note that in this case f)fc = hnï is the

toroidal part of h, and hp = f) n p is the vector part of h.

Proposition 1.3. Every Cartan subalgebra of g is G-conjugate to a standard

Cartan subalgebra.

Proof. (See Suguira [15, Theorem 2].)

It follows from this that any semisimple x e g is G-conjugate to some x' e g with

x'k e t and x'p e p. x' satisfying the above condition is called normal.

It will often be convenient to use the centralizer of a semisimple element, which

is again a reductive algebra. If ê^gc is any commutative subset of semisimple

elements, and g' is any reductive subalgebra of gc, let q'* = {x e g' : [x, y] = 0 for all

y e §} the centralizer ofè in g'. If G' is the connected subgroup of Gc corresponding

to g', let G'i = {a e G' : ax = x for all xeS}.

Proposition 1.4. Two Cartan subalgebras of g are G-conjugate iff their vector

parts are G-conjugate iff their toroidal parts are.

Proof. The first equivalence is contained in [15, Theorem 3, p. 385]. For the

second, suppose that t)x and i)2 are arbitrary Cartan subalgebras of g with conjugate

toroidal parts. Then we may assume that 1/ and h2 are standard and that f)x n ï

= f)2 n f. But then ^njj and i)2 n p contain maximally vector subalgebras of

g^n! j-Jence they are G^in,-conjugate.
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We shall be concerned mainly with elements, both semisimple and nonsemi-

simple, whose orbits are of maximal possible dimension, i.e. whose centralizers are

of minimal possible dimension. xegc is called regular if dim G cx=maxyei {dim Gc-y},

where dim X is the topological dimension of X. If x e g, this is equivalent to

dim Gx = max!/eB {dim G-y}. x is not assumed to be semisimple in this definition.

For example, if g = sl (n, R), a matrix A e g is regular iff its characteristic poly-

nomial equals its minimal polynomial. If g' is any reductive subalgebra of gc, x e g'

is called regular-in-Q' if x is regular as an element of g'.

Lemma 1.5. If x = xk + xp is semisimple, then x is regular iff xk is regular-in-§x*

iff xp is regular-in-af*.

Proof. It is easy to show that x is regular iff g* is commutative, from which the

lemma follows immediately.

Proposition 1.6. Ifè is any commutative subset ofiQc, then Gl is the connected sub-

group of Gc corresponding to g*.

Proof. It suffices to prove that G| is connected, which is proved in [5, Lemma 5,

p. 353].
Proposition 1.6 is false if Gc is replaced by G and gc by g, since Gä is disconnected,

in general.

We conclude this preliminary section with some results which will be needed in

studying orbits of nilpotents. For any reductive algebra g', let gc = g' + i'g' and G'c

the adjoint group of gé. Put N(a') = {a 6 G'c : ag' = g'}, the normalizer o/g' in G'c.

If g' = g then we will simply write N instead of Ar(g). (In terms of algebraic geom-

etry, N is the set of real points in Gc.)

Let u<= p be a maximal abelian subspace, and let {al5 a2,..., ar} be a set of simple

restricted roots for a. There exist eh j=l, 2,..., r, such that oLt(e¡) = htj for all j;

£j is called the dual of a¡. {e¡} forms a linear basis for the vector space a. (The reader

is referred to Helgason [3, Chapter VII] for results on restricted root systems.)

Any x e a can be written .x = 2i riEi- Since the ef commute, exp ix = Y~[j exp (ir^).

Let F be the group generated by {exp ix : x e a and (exp ix)2= 1}. From the above

remarks it is easy to show that Fis generated by {exp iries,j=\, 2,..., r}.

Proposition 1.7. G is the connected component of the identity in N. Furthermore,

N=GF.

A proof of the above, as well as calculations for all real forms, may be found in

Matsumoto [10].

Now let 0be the complex linear automorphism of gc defined by 0|f = 1, d\p= — 1.

8 extends uniquely to an automorphism of Gc, which we shall also denote by 8. Let

KB = {a e Gc : 9(a) = a}. Kostant and Rallis [8] have classified the orbits of Ke acting

on pc = £ + /£. It is also shown that Ke = KcF.

Proposition 1.8. Let Fx^Fbe any subgroup. Then Ke/Kc-FxxN/G-Fx.
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Proof. It suffices to show that if fie F, then fie Kc-Fx iff feG-Fx. Suppose

fie Kc-Fx. Then

f = (exp /XiXexp ix2)

with exp ixx e Kc = K(exp it) and exp ix2 e Fx, xx, x2 e a. Since exp is 1-1 on /gu,

exp ixx e K. Hence fie K-FX<^G-F. Conversely, if feG-Fx, then

/ = (exp iyx)(exp iy2)

with exp iyx e G,  exp iy2 e Fx, yx,y2ea.  Since  G = K-(exp p),  it follows that

exp iyx e K so that fie K- FX^KC- Fx.

2. Orbits of semisimple elements. Our first result shows that if ad x has all real

eigenvalues, then the orbit Gc-x n g is actually connected.

Theorem 2.1 Let x, y e p. Then x and y are Gc-conjugate iff they are G-conjugate.

Proof. Clearly G-conjugacy implies Gc-conjugacy. Conversely, suppose x and y

are Gc-conjugate. ix and iy are in ip,= Qu = l + ip. By Proposition 1.1, two elements

of gu are Gc-conjugate iff they are Gu-conjugate, where Gu is the subgroup of Gc

corresponding to gu. Hence ix and iy are Gu-conjugate which implies x and y are

G^-conjugate. Since Gu = K(exp ia)K we have Cxac2x=y, where cx,c2eK,

a 6 exp ia. Then a-(c2-x) = c1~1-y. Since c2-x and cy-y are in p and are /^-conjugate

to x and y respectively, it suffices to replace them by x and y and to assume a-x=y

for aeexpia. Let a be as in §1. Then y = o(y) = a(a-x) = o(a)a(x) = a'1-y since

a eexp ia. Hencea2-.x; = xanda2-j=y. The reductive subalgebra g"2 has the Cartan

decomposition a."2 = ta2 + pa2 with x, yepa2. We claim Ia2 and pa2 are invariant

under a.  Indeed, 6(a-z) = a~1-z = a-k for z et, and 6(a-q) = a~1-q = a-q for q e p.

Let u be any polynomial on pa2 which is Ga2-invariant; i.e. u(g■ x) = u(x) for any

xep"2, g e Ga2. The function au, defined by au(x) = u(a~1-x), is again a poly-

nomial on p"2, since a leaves p"2 stable. In fact, a~1-u is #a2-invariant, since

(k-(a-1-u))x = (a~1-u)(k-1-x) = u((a-k-1)-x), for any k e Ka2. But aka-1 e Ka2

since a leaves ka2 invariant. Hence u((ak~1)-x) = u((aka'1)(ak'1)-x) = u(a-x)

= a_1-u(x) so that a'y-u is /^-invariant. We claim that a~1-u = u. Since every

element of pa2 is À^-conjugate to an element of a"2, u is completely determined

by its values on a"2. But a'1 leaves aa2 pointwise fixed since a'1 eexp ia, so that

a'1-u = u for all invariant u. Hence u(y) = u(a-x) = a'1-u(x) = u(x) for all such u.

This shows that every Â^-invariant polynomial on pa2 agrees on x and y, which

implies that x and y are Aa2-conjugate [3, Chapter X, Lemma 6.20]. This completes

the proof of Theorem 2.1.

In general no theorem like the above is true for semisimple elements which have

complex eigenvalues.

Corollary 2.2. If x, y are symmetric, then Gx=G-y iffGc-x = Gc-y.
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Proof. This is immediate from Theorem 2.1 since x and y are G-conjugate to

elements in p.

Corollary 2.3. Ifz e g is semisimple and y e Gc-z n g, then there exists y' eG-y

such that z e h and y' e t)for some Cartan subalgebra h, and y'p = xp.

Proof. By Corollary 2.2 we may assume yp = xp, up to G-conjugacy. Then yk and

zk are elliptic elements in the subalgebra a.Xp- If rj is a maximally toroidal subalgebra

of qxp containing xk, then zk is G*p-conjugate to some element of B. Let y' be that

element.

Corollary 2.4. Let h, h' be any two Cartan subalgebras ofq. Then i) and t)' are

G-conjugate iff they are G ¿-conjugate.

Proof. It suffices to prove that if h and t)' are Gc-conjugate, then they are

G-conjugate. Suppose g- h = h' for some g e Gc. Choose some regular element xet),

and let y=g-x. Then x and y satisfy the conditions of Corollary 2.3 so that there

exists g' e G such that g'-x et)'. Hence g' ■ t) = t)'.

If h = i)fc+ï)j, is any Cartan subalgebra of g, let i)c = t)-|-(— l)1'2!) be the complexi-

fication of f). t)c is a Cartan subalgebra of gc. Let Wc be the Weyl group of gc. It is

well known that x, y e hc are Gc-conjugate iff there exists w eWc such that w-x=y.

Let (Wc\ = {we Wc : w-t) = t)}. Now let W^ = NK(t))IZK(\)), where NK(t)) is the

normalizer of h in Kand ZK(t)) is the centralizer of h in K. Let W^p = NK^p(t))IZ¡^p(ty),

where N¡pp(t)) and Z^pty) are the normalizer and centralizer, respectively, taken in

the group K}p.

Lemma 2.5. Let I) be a maximally toroidal subalgebra of g. Then x, y et) are

G ¿-conjugate iff they are ( W^-conjugate.

Proof. It suffices to assume that h is standard and to show that if x, y are

Gc-conjugate then they are (IFc)6-conjugate. By Proposition 1.1 if x, y are Gc-conju-

gate they are Gu-conjugate, so there exists ae Gu such that a-x=y. Since h and

a-t) are both maximally toroidal standard subalgebras of g", there exists b e Gl such

that ba t) = t). Then ba-x=y and ba-t) = t). Hence x and y are (PFc)h-conjugate.

We may now state our result for the decomposition of Gcx n g into G-orbits

for any regular semisimple x e g.

Theorem 2.6. Let xe g be regular semisimple and í) = í)fc+í)p the unique Cartan

subalgebra containing x. Then

Gc-xna. = \JG-(wrx)

is the decomposition of Gcx n g into distinct G-orbits, where {w¡}m is a set of

representatives in Gc for the coset space W¿p¡ W^p. Furthermore, the result is still

true when W\p\W^p is replaced by the quotient space (WC\IW^.

Before proving Theorem 2.6, we need some lemmas.
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Lemma 2.7. Let I) = t)k + t)p be a Cartan subalgebra of g. Then there exists xet),

x = xk + xP, xk e t)k, xp e t)p, having the property that g** = g^ and g*>> = gV

Proof. Since QXf¡ = Qxk (~\ g, we need only show that Q.ck = C&k> and similarly for xp.

Suppose no such xk e t)k exists. Then choose x'k e t)k such that

dim gfk = min {dim gj! | y e t)k}.

Now let A be a set of roots for hc = ft + /ft. Then g? = ftc + Z<»6,d;<i.<x)=o 9?- If g?^flSs

as assumed, then there exists y et)k and <p e A such that i/i(y)^0, but i(i(x) = 0. We

claim there exists a real number r such that dim g? + r!'<dim gjf. Indeed, choose r

sufficiently large so that for any tj> e A, if <j>(y)^0, then \<¡>(ry)\ ><¡>(x). Then for an

arbitrary -neA, 7¡(x + ry) = 0 iff r¡(x) = 0 and r¡(y) = 0. But then <¡>(x + ry)^0 when-

ever </>(x)/0. Hence dim g£ + r!/<dim qx. This contradiction shows that the desired

xk e t)k exists. Similarly we may find an xp satisfying Qxr = a.\ which proves the

lemma.

If x = xk + xp satisfies the conditions of Lemma 2.7, then x will be called generic.

Lemma 2.8. Let i) = f)k + t)p be a maximally toroidal Cartan subalgebra, and let

x and y et) be regular. Then if x and y are G ¿-conjugate they are (Wc\-conjugate.

Proof. If x and y are Gc-conjugate, there exists w e Wc such that w-x=y. Let 8

be the linear automorphism of gc defined in §1. Then 8\t) is an element W of the

Cartan group of h. We show that we W^by proving that 8w8 ~l = w, or equivalent^/,

6w8~18w=l. Since Wc is a normal subgroup of the Cartan group, 8w'18we Wc.

Since x is regular, it suffices to prove that 8w~18w-x=x. Let x=xk+xp, y=yk+yp

By Corollary 2.3 we may assume that xp=yp, so that w-xp = xp. Then we have

8w-18w-(xk + xp) = W-tety&M) = 8w-\yk-yp)

—   V(Xk     Xp) = Xk + Xp = X,

which proves Lemma 2.8.

Proposition 2.9. Let x=xk + xp,y=yk+yp,x,yetj such that Gcx=Gcy. Then

x and y are G-conjugate iffxk andyk are G-conjugate iff x and y are W^- conjugate.

Proof. Suppose xk and yk are G-conjugate, so that a-xk=yk for some a eG.

Since ax and y are Gc-conjugate, a-xp and yp are Gc*-conjugate. Since G%* is con-

nected by Proposition 1.6, we may apply Corollary 2.2 to show that a-xp and yp

are G**-conjugate, which proves that x and y are G-conjugate. The opposite

implication is obvious, so the first equivalence is proved. To prove the last equiva-

lence it suffices to show that if x and y are G-conjugate they are IFs-conjugate. By

Proposition 1.1 applied to xk, yk and xp, yp separately, jc and y are G-conjugate iff

they are /^-conjugate. Since x is regular, the conjugation by K leaves i) invariant

since y e ft. Hence x and y are ^-conjugate.

Lemma 2.10. If x, y are any two regular elements oft) = t)k + t)p, then Gcx n g

and Gcy n g consist of the same number of connected components. More precisely,
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for any w e (Wc)t,, w-x represents the same G-orbit as x iff w - y represents the same

G-orbit as y.

Proof. Let x = xk + xv, y=yk+yv. Then w-x=w-xk + w-xv with w-xket)k. If x

and w-x are G-conjugate, then w-x = a-x for some a e G. Since x is regular, this

means that w|ftc = a|ftc, so that y and w-y are also G-conjugate.

By interchanging the roles of x and y, the proof of Lemma 2.10 is completed.

Proof of Theorem 2.6. By Lemma 2.10 it suffices to assume that x = xk + xp is

generic. We show first that, for any yea, such that x and y are Ge-conjugate, there

exists w e Gc, a representative of some coset in W¿p¡W^p such that w-x and y are

G-conjugate. By Corollary 2.3 we may assume, up to G-conjugacy, that y e ft and

yp = xp. Hence xk and yk are G?»-conjugate. Since x is generic, a,xp = c$p and, since

by Proposition 1.6, Gcp is connected, this proves that Gxp = G\p. By Lemma 1.5,

xk and yk are regular-in-g*?. Hence by Proposition 2.9 it follows that xk and yk are

(rFc'p)h-conjugate, where (Wàp\ is the subgroup of W6* which leaves ftfc stable.

Since t)k contains a compact Cartan subalgebra of $p, all of W¿p leaves ftfc stable.

Therefore, x and y are W^p-conjugate, which proves the above assertion.

To complete the proof of the assertion about W¿p¡Wl)p we must show that if

w e W¿p, then x and w-x are G-conjugate if and only if w e Wl)p. As before, w-xk

and xk are regular-in-gxp = gV By Proposition 2.10, x and w-x are G-conjugate iff

they are IF-conjugate iff they are IF^-conjugate. To prove the assertion about

(Wc\IWi„ it suffices to show that if w-x e g, then w e (Wc\. By the above, up to

G-conjugacy, x and w-x are conjugate by an element of W¿p^(Wc\ Since G-con-

jugacy of regular elements in ft always leaves ft invariant, the above assertion is

proved. This completes the proof of Theorem 2.6.

If s is a set, we shall let #(s) denote the cardinality of s.

Corollary 2.11. Ifxeqis semisimple, then the Gc-orbit of x in g, Gcx n g, is

the union of at most #(IFC)/#(H/) G-orbits.

A real form g is said to be of split rank if all its Cartan subalgebras are conjugate.

Corollary 2.12. If a. is of split rank, then Gcx n g is a single G-orbit for any

semisimple x e g.

Proof. In this case the semisimple part of g^ is a compact Lie algebra so that

W¿p= W\ by Proposition 1.1.

Corollary 2.13. If t) is a compact Cartan subalgebra, then Gcx n a, is the union

of#(Wc)/#(W) G-orbits for any regular xet).

Proof. In this case ftp = 0.

Remark. Theorem 2.1 and its corollaries are used to prove a one-to-one corre-

spondence between the conjugacy classes of Cartan subalgebras of g and the con-

nected components of the image of the regular semisimple elements under the

invariant map u: g -> C defined in [5]. (See [11] for details.)
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3. Geometric properties of the closed orbits. It is well known that an orbit

Gx is closed iff x is semisimple. (See e.g. [1, 10.1. Proposition].) We shall show that

for x regular semisimple, Gx is Zariski closed only when Gcx n % — G-x. For all

topologically closed orbits we shall show that the points of minimal distance from

the origin in an appropriate metric are exactly the normal points defined in §1.

\fxe gc, then Gc-xç,{y e gc : fi(x)=f(y) for all Gc-invariant polynomials/on gc},

with equality holding iff x is regular and semisimple. The Zariski closed orbits in

gc are exactly those of semisimple elements. For any semisimple x, y e a,c,f(x)=f(y)

for all Gc-invariant polynomials/iff Gcx = Gcy. Hence the invariant polynomials

separate the closed orbits in gc. The results of the previous section show that in

general this is not true for the closed G-orbits. (Note that every G-invariant poly-

nomial on g is obtained as the restriction of a Gc-invariant polynomial on gc since

G is a Zariski dense subset of G.)

The separation of orbits by invariant polynomials can be explained by consider-

ing the Zariski topology on g as a real algebraic variety. Since G is Zariski dense in

Gc, the Zariski topology on g is induced from that of gc.

Proposition 3.1. Ifi x e g is regular semisimple, then Gcx n g fe the closure of

Gx in the Zariski topology on g. In particular, Gx = Gcx n g iff G-x is Zariski

closed in g.

Proof. Since G is Zariski dense in Gc, Gcx is the smallest Zariski closed subset

of gc containing Gx. Hence Gcx n g is the smallest Zariski closed subset con-

taining G-x in g.

We return to the problem of characterizing points of minimal distance in the

topologically closed orbits, i.e. those of semisimple elements. These will be the

normal elements, i.e. those which are contained in standard Cartan subalgebras

for a fixed Cartan decomposition g = í + p. By Proposition 1.1 it follows that two

normal elements in g are G-conjugate iff they are Ä-conjugate.

Let a be as defined in §1. Let B be the Killing form of gc. Then \x\ =B(x, ax) is

a À-invariant metric on g.

Theorem 3.2. Let x e g be semisimple; x is normal iff \x\ ú\a-x\ for all a eG.

Proof. Since the regular elements of g are dense, and the limit of normal elements

is normal, it suffices to assume x is regular. We claim that it suffices to prove that

(1) d |exp ty-x\/dt = 0   for all y e g

iff x is normal. Indeed, let r be any number > \x\, and let Sr be the closed ball of

radius r in g. Then V=G-x n Sr is a closed compact set since G-x is closed and

the function z -* \z\ is differentiable on V. Hence \z\ must have a minimum on V

and since r> \x\, the minimum cannot occur on the boundary of Sr. Hence the

derivative must be 0 at the minimum, so that (1) holds if x is such a point. If (1)

holds only if x is normal, then no nonnormal point can have minimal norm. Hence
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there exists xx e V normal such that \xx\ ^ \a-Xx\ for ail a eG. Since |  | is AT-invari-

ant and all normal elements in Fare À-conjugate, every normal element must have

minimal norm.

Since

-j \exp ty-x\2 = -j B(exp ty-x, a(exp ty-x))

= B(.[y, x], ax) + B(x, a[y, x\) = 2B([ay, ax], x),

it suffices to prove the following.

Lemma 3.3. B([z, ax], x) = 0for all z e g iff x is normal.

Proof. Let ft be the unique Cartan subalgebra containing x. Then x is normal

iff ft =a(t)), since ax e ft iff [ax, x] = 0. Therefore, it suffices to show that B([z, y], x)

=£0 for some zea, iff j ^ ft. We may prove this by assuming that z e gc. Then

z = z+ +z° + z~, where z +, z° and z~ are positive, zero and negative root vectors,

respectively, for some choice of roots on ftc. Then if y e ft, t=[z, y] has the decom-

position t = t+ +t ~, so that B(t, x) = 0. If y e ft, then y=y+ +y°+y~, where either

y+ or y~ ^0. Suppose, therefore, that y+ =2*eA+ V*» where the e^ are positive

root vectors, with r^^O. Taking z = e_^,1, we get

B([z,y], x) = B(r^[e^lt etl], x) + 0

since x is regular. This proves the lemma, so that Theorem 3.2 is proved.

In the previous sections it has been shown that two semisimple elements in g are

Gc-conjugate (resp. G-conjugate) iff any normal elements in their respective

G-orbits are Gu-conjugate (resp. À-conjugate). Theorem 3.2 shows that the normal

elements in each orbit are exactly the elements of smallest norm. Hence the decom-

position of Gcx n g into G-orbits for x semisimple reduces to the decomposition

of G„7 n g into À-orbits, where y is any element in G-x of lowest norm. Then

Theorem 3.2 shows that if x is symmetric, the elements of smallest norm in Gc • x n g

form a single À-orbit. In general, the elements of smallest norm in Gc-x n g form a

finite number of A"-orbits, the exact number of which can be obtained from Theo-

rem 2.6.

4. Orbits of nilpotent elements. A nilpotent is an element e e g such that ad e is

a nilpotent operator.

e will be called ^-regular if the dimension of its orbit is maximal among all

nilpotent orbits in g; i.e. dim Ge^dim G -f for any nilpotent f e g. Let N={a e Gc :

û • Ö = S}> the normalizer of g in Gc. Note that in general g does not contain a regular

nilpotent. We shall prove the set of all g-regular nilpotents in g forms a single

/V-orbit. We also determine N-e as the union of G-orbits.

A subalgebra u<=g will be called a three-dimensional simple subalgebra (TDS)

if u is isomorphic to St (2, R), the Lie algebra of all 2 x 2 real matrices of trace 0.
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A TDS is spanned by {/ x, e} satisfying the relations [e,f] = x, [x,e] = e, and

[x,/]= —/. The set {/ x, e} is called an S-triple. x is called the monosemisimple

part, and e and/are called the nilpositive and nilnegative parts of {/ x, e}, respec-

tively. The importance of TDS's in the theory of nilpotent orbits in g comes from

the following embedding theorem due to Morosov.

Theorem 4.1 (Morosov). Let e be any nonzero nilpotent in g. Then e is the

nilpositive part of some TDS in g.

Proof. See Jacobson [4, p. 100, Theorem 17] or Kostant [6, Theorem 3.4].

A subalgebra ttcc:gc isomorphic to St(2,C) will be called a complex TDS.

Complex TDS's have been studied extensively by Kostant in [6]. In particular, the

following result will be crucial in reducing the conjugacy of nilpotents to that of

semisimple elements.

Theorem 4.2 (Kostant) [6, Theorem 4.2]. Let ex, e2 be any nonzero nilpotents

in gc, and {fix, Xx, ex}, {/2, x2, e2} S-triples containing ex and e2 respectively as nil-

positive part. Then ex and e2 are G ¿-conjugate iffxx and x2 are Gc-conjugate.

Let pc = p + ip. Rallis and Kostant have studied the orbits of maximal dimension

of the action of Ke on pc. In particular, it is shown that there exists a nilpotent

e0 e pc whose orbit has maximal dimension. More precisely, the following holds.

Theorem 4.3 (Kostant-Rallis) [8, Theorem 2]. There exists a nilpotent er e pc

such that dim K0 ■ er =i dim Ke ■ y for all y e pc. The set of all such nilpotents is Ke ■ er.

We shall write m = {yet : [y, z] = 0 for all zea}, M=Ka, and MC = KC. Note

that M and Mc are not connected in general.

The correspondence between nilpotents in pc and nilpotents in g is established

through the Cayley transform. The nilpotent e epc may be embedded in a complex

TDS, uc, spanned by {/, xr, er} with er,fT e pc and xr g iï [8, Proposition 4]. Then

the Cayley transform is defined as u = exp (7r/4)1/2(er—/). Then v-er e g and v-xr e p.

Proposition 4.4. Let eT e pc be as above. Then v-ere a. is a Q-regular nilpotent.

Furthermore, any Q-regular nilpotent is obtained this way, up to G-conjugacy.

Proof. Kostant and Rallis have shown that, up to AVconjugacy, one may

assume that t'(xr) = 2 «i, where the e, are the duals of the simple roots. Then gc as

a uc-module has all odd-dimensional irreducible components. Hence dim g^r'

= dim gc(x'}. Now let eeg be any g-regular nilpotent, and {/ x, e} an S-triple

spanning TDS, tt'. We may assume, up to conjugacy, that xe g. Then dim g*^

dim g*; more precisely, dim g* = dim gj iff gc has all odd-dimensional irreducible

components as a tt'-module. It is easy to show that gvu'> = m + a, where

m = {yet : [y, z] = 0 for all z e a}.
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Since g*^m + ct, dim g£(*r>^dim g?, or dim G r(xr)ädim Gx. Since e is g-regular,

dim Ge ê dim G-v(er). Since dim geädim g*ï:dim g^r^dim g"'6'' it follows that

dim G-v(er) ä dim Ge,

with equality holding iff all the inequalities are equalities. In particular, v(er) is a

g-regular nilpotent. Furthermore, since dim ge = dim qx, it follows that gc is the

sum of odd-dimensional irreducible u'-modules. Up to G-conjugacy we may

assume x = 2 »¡«f. Since x is the monosemisimple part of an ^-triple, it follows that

n¡ — 0, \, or 1 for each i. (For proof of this see Kostant [5, Lemma 5.1] or Dynkin

[2].) Since all the irreducible components are odd-dimensional, it follows that

n^\ for all /. For if some nio = \, then there is an irreducible component of the

u'-module gc having i as a weight of x. However, an odd-dimensional representa-

tion has only integral weights. We claim that «,= 1 for all i. If some «¿ = 0, then

g*3tn + a, so that dim g"(*r><dim g*. Hence «¡=1 for all /', so that x = v(xr). By

Theorem 4.2 above, this implies that e is Gc-conjugate to v(er), which shows that

every Gc-conjugacy class of g-regular nilpotents is obtained from nilpotents of

maximal dimensional orbit in pc, proving Proposition 4.4.

We may now prove the following :

Theorem 4.5. The set of ^-regular nilpotents forms a single N-orbit; i.e. any two

Q-regular nilpotents are N-conjugate.

Remark. This theorem was proved by Springer [12] in the case where g con-

tains a nilpotent which is actually regular. Orbits of regular nilpotents will be

discussed in §5.

Proof. Let 11 be a set of simple restricted roots for a. Kostant and Rallis [8] have

shown that e = 2a,en ^«, is a g-regular nilpotent in g, where ea¡ is a root vector for at,

x = 2i=i et is a monosemisimple part of a TDS containing?, and any other g-regular

nilpotent in g is Gc.-conjugate to e. Let e0 be any g-regular nilpotent in g and let

x0 e g be the monosemisimple part of an ^-triple containing x as nilpositive. We

shall show that e0 is N-conjugate to e. Since e and eQ are Gc-conjugate, so are x and

x0. By Theorem 4.2 x and x0 are G-conjugate. Hence we may assume that .v = .v0.

Since [x, e] = 2e, it now follows that e0 = eaí + <?a¡¡ + • ■ • + ë„T where the ëa are simple

restricted root vectors. (The ea¡ may not be the same as the ea¡ since the restricted

root spaces are not, in general, one-dimensional.) By Kostant's result [6, Theorem

4.2] e and e0 are Gc-conjugate. Since

Gx = exp m exp im exp (a + ia),

it follows that

exp mx (exp im2)(exp y)-e0 = e,

for some mx, m2 e m, and some y e a + ia. Since exp Wj e G,

exp mx(exp im2)(exp y) ■ e0 e a   iff   (exp z'm2)(exp y) ■ e0 e g.
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(exp y) ■ e0 = 2 (exp y) • ea = 2 yaea, where ya is a constant depending on a. Since

exp im2-ea is again a root vector for the simple root a, it follows that

(exp i>n2)(exp y)■ e0 e g    iff   (exp im2)ya-e.eg,

for all a.

Let ea = eaic + eap with eaic e t and eapep. Since m2et, exp im2-tc = tc and

exp /'w2pc = iic, where fc = f + /f and pe=p+ip, exp im2-yaea is in g iff (exp im2)-

yaeaic is in f and (exp im2)-(yaeap) is in p. However, yaeak cannot be conjugate to

an element of f unless ya is a real number, since yaeak has eigenvalues which are not

pure imaginary unless ya is real, and every element of f has pure imaginary eigen-

values. Hence yaea e t. By Proposition 1.1, since exp im2 e exp iqu, the conjugation

by exp im2 must be trivial. That is, exp im2-yaettk=yttettlc. By a similar argument,

exp im2-yaeap=yaeap, whereya is real for all simple restricted roots a, it follows that

exp y e N. Since exp (mx) e G, this completes the proof of the theorem.

We now express N-e as the union of G-orbits.

Theorem 4.6. Let F'^N be the subgroup generated by {^ | dim gai> 1}, and let

{«!, «2,..., ws} be a set of representatives in N for the quotient group N/G-F'. Then

for any ^-regular nilpotent eeq,{nx-e,n2-e,...,ns-e}isa complete set of representa-

tives for the distinct G-orbits of regular nilpotents.

Proof. Let e = eai + ea2 + ■ ■ ■ + eUr, where 0#ea(Eg"i and dimgai=l, 7=1,2,

..., s, and dim ga¡ > 1, t = s + 1, s + 2,..., r. To each coset representative of N/G ■ F'

we associate a g-regular nilpotent of g, unique up to G-conjugacy, as follows. For

any subset/ç{l, 2,..., s}letw¡ e N be the element w, = T~[jel w¡, where w¡ = exp irUjt

and let

s r

;' = 1 t = s + l

where

sgn I, = -I   iff eI,

= +1    if/*/.

Every element of N/G ■ F' has a representative of the form w, for some /, and every

w¡ represents some element of N/G ■ F'.

We define the mapp: N/G-F' -»■ {g-regular nilpotent G-orbits} by p(w¡) = (G■ e,),

where w, is the class of w¡ in N/G-F'. We claim first that this is well defined. For,

suppose w,= l in GF', i.e., w, = rq for some r eG,qe F'. We want to show that

Ge = G-e¡, i.e. there exists r' e G such that r'e = e¡. We know (rq)-e = e,, so it

suffices to show that there exists me M such that me=qe. An element q e F' acts

as scalar multiplication by ± 1 on those ea¡ where dimgaol. For any e' e gai,

e' ̂  0, one has

[rrt + ct, e'] = gai    and   dim [a, e'] = 1,
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so that [m, e'] is of codimension 1 in gai. Hence exp m = M° is transitive on the

unit sphere of gai, i^s+l, since dim ga'^2 for i = s+ 1, s+ 2,..., r. It follows that

M° is transitive on the products of the unit spheres of the components of gas + i

x gKs + 2 x • ■ • x Qar. Hence the map p is well defined.

We now show./? is 1-1. Suppose GeI-Ge]. We want to show that w, = Wj in

N/G-F'. But e} = Wj-e and e¡ = r-ej = rwj-e for some r e G. Then wJr~1-e, = e

= r'(wj-e,), for some r'eG since GF' — F'G, and w¡-ev = er, for some /'ç

{1, 2,..., s}. Hence it suffices to prove that G- e, = Ge implies w¡ eG-F'. So assume

re = e¡ for some r eG. Then e and e, are nilpositive elements of ^-triples {/ x, e}

and {/, x, e,}, respectively, for some nilpotents//, where x = 2í=i £¡. We claim

we can choose r' e G such that r'-e = e¡, r'-x = x. Indeed, if r-x = x', then x and x'

are Ge'-conjugate by the argument given by Kostant [6, p. 986] applied to G

instead of Gc. Hence there exists r' e MA such that r'e = e¡. Since M—Ka, it

follows that any element r' e M can be written

{%■¥
r' = lexpTTil 2, eil\j(expm)a,

where ef„j= 1,2,..., r, can be chosen so that exp 77/(2 e>,) e M, mem and ae A.

a acts as a scalar, ca. >0, on each g"'. Hence

(eXP77ll1£i'))-(il1C^')

since exp m acts trivially on the 1-dimensional root spaces. The above expression

equals

(expmy 2 e,'))(exp,r\2    £¡*)'(2 (Ca,e<,,))

where /'t^s and i',+ 1^í+1.

(exp 77/ ( 2 %)) ■ ( 2 c«/e^ +   2    c'«ke°k)
\ \, = x      'I     V»l Jc = s+1 /

where  the  cj^ are new coefficients   >0. But since r'-e = e,, this implies that

{ix, i2,..., it} is the same as the set /. Hence exp w/(25-i e¡í) = W;. Since

exp 77/1   y   eje F',
( i -)

exp me M, ae A, and /'"'eG, and the equation above shows that w, equals their

product, it follows that w¡e F' G = GF'. Hence w¡ equals the identity coset in

N/G-F', which proves that p is 1-1. Since every g-regular nilpotent G-orbit is

/^-conjugate to one of the form Ge, for some /by Theorem 4.5, it is obvious that/7

is surjective. Hence p is bijective, which proves Theorem 4.6.

We shall now apply this result to express Kg-e as the union of AVorbits.
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Corollary 4.7. Let {n[, n2,.. ., n's) be a set of representatives in K0 for the

quotient group Ke/Kc ■ F'. Then {n'x-e, n'2e,..., n's< ■ e} is a complete set of representa-

tives for the distinct K-orbits of KB-e. Furthermore, Ke/Kc-F'xN/G-F'.

Proof. By Proposition 1.8, if ax, a2,..., ase exp ia are representatives for the

quotient group N/G-F', then they are also representatives for the quotient group

Kq/K-F'. Now let ex and e2 be any two nilpotents in pc whose A"9-orbits have

maximal dimension, i.e. by Theorem 4.3 this means K0ex = Kee2 = Kee. Let vx

and v2 be Cayley transforms associated to ex and e2 respectively, where {/, xx, ex}

and {/, x2, e2} are TDS's with xx, x2 6 it. Since ex and e2 are conjugate we may

assume that Vx(xx) = v2(x2). The action of the Cayley transforms is given as follows:

vi(xt) = (-lßil2)(ei+fi)epc,

t;i(e¡) = (/721'2)xi + (//21'2)(e¡-/),

Viifd = (Í/21'3)*, - (i/2^)(e¡ -/),       / = 1, 2.

A simple computation shows that b ■ v(er) = v(e2) iff b ■ ex = e2, for b e Gc. It suffices

to show that er and e2 are /X"cF'-conjugate iffvx(ex) and v2(e2) are G-F'-conjugate.

Suppose first that a-ex = e2 for a e KCF'. By the above, we may assume a e MCAC.

Now (Kc-F' n McAc) = (exp i)(exp it)F'. As in the proof of Theorem 4.6, exp it

acts trivially on g by Proposition 1.1, so thata'r,1(e1) = f2(e2)forsomea' e exp t-F.

Conversely, if b'-Vx(ex) = v2(e2), for b' e G-F', then since (GF' n MC-AC) = M-F'

<=KCF', it follows that ex and e2 are /CcF'-conjugate.

5. Orbits of regular elements. The study of orbits of arbitrary regular elements

can be reduced to that of semisimple and nilpotent elements by the following. Any

x e g can be uniquely written x = xs + xn, where xs is semisimple, xn nilpotent, and

[xs, x„] = 0-gxs is again reductive since xs is semisimple. Furthermore, x is regular

iff xn is regular-in-g*». (A proof of this latter fact is given in [5, Proposition 13].)

In view of the above, we shall be concerned with determining when g*s contains

a nilpotent regular-in-g*». (If g is actually complex, this is always the case.) In the

real case g** is characterized as follows.

A real form g0 of gc is called quasi-split if there is a subalgebra E>0c9o such that

ft = b0 + /'b0 is a Borel subalgebra of gc.

Proposition 5.1. g contains a regular nilpotent iffg fe quasi-split iff a. contains a

regular semisimple element x such that ad x has all real eigenvalues.

Proof. Suppose that g contains a regular nilpotent e. By Theorem 4.1 there is an

5-triple {/ x, e} with e as a nilpositive part. Kostant has shown that e regular

implies that x is also regular, so that g contains the desired regular semisimple

element, since all the eigenvalues of ad x are real. To show that g is quasi-split, it

suffices to show that the involution a defining g leaves invariant a set of simple

positive roots. Let ftc be the Cartan subalgebra of gc containing x, and let ft0 be the
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real subspace of ftc spanned by the roots of ftc. Then since ad x has all real eigen-

values, we may assume x e ft0 and therefore since x is regular it is contained in an

open Weyl chamber C of ft0. But since <j(x) = x, a(C) = C also, so that a leaves

invariant a set of positive simple roots.

Conversely, suppose g is quasi-split. Then the involution a defining g leaves

invariant a set of positive roots II. We may assume up to conjugacy of a that there

is a set of simple root vectors {ea} where ea e g£ such, that a(ea) = e(!(a). Then the

element 2 ea is fixed by a and therefore is in g. Kostant [5, Theorem 5.3] has shown

that this element is always regular. It is obvious by the above that g is quasi-split

iff g contains a regular semisimple element x with ad x having all its eigenvalues

real, so that Proposition 5.1 is proved.

Corollary 5.2. xs is the semisimple part of a regular x e g iff g*<¡ fe quasi-split

iff there exists y e g symmetric, xs+y is regular, and [y, xs] = 0.

Proof. Apply Proposition 5.1 to the reductive algebra g** to find a nilpotent e

regular-in-g*». y can be chosen as the monosemisimple part of a TDS in g** con-

taining e (Theorem 4.1).

We now turn to the problem of finding representatives for the orbits of g-regular

nilpotents in g.

Theorem 5.3. Let g be quasi-split. The set of all regular nilpotents in a. forms a

single N-orbit; i.e. any two regular nilpotents in g are N-conjugate. Furthermore, the

N-orbit of regular nilpotents is the union of#(N/G) G-orbits.

Proof. (Note that if g is a normal form then this follows immediately from Theo-

rem 4.6 since F' = 1 because dim ga= 1 for all restricted roots a.) We define the map

p: N/G-> {G-orbits of regular nilpotents} by p(w¡) = e¡, where /£(1, 2,..., r),

w,= n exp 7T/'e;, and

r

e, = 2 sgn he«,,
i = l

where

sgn Ij = - 1    if y e /,

= +1   if/*/.

As in the proof of Theorem 4.6, it suffices to show that/? is 1-1. In fact, it suffices to

show that w,-e = e implies w/= 1 in N/G. Let {/ x, e} be an S-triple containing e.

Since w¡-x is Gc-conjugate to x by Theorem 4.2 there exists reG such that

r-x = w,-x. But by the argument given by Kostant [6, pp. 986-987] we can choose r

satisfying re = e. Therefore r~1w, leaves {/ x, e} pointwise fixed, which proves

that r~1w¡ is the identity, since {/ x, e} spans a "principal" TDS in the sense of

Kostant [6]. This proves Theorem 5.3.

We shall now give the decomposition of Gcx n g into G orbits for any regular

semisimple x e g. Our main result is the following.
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Theorem 5.4. Let x = xs + xn e g be regular and let ftc g be a maximally vector

Cartan subalgebra ofa,x*. A set of representatives for the distinct G-orbits in Gc-x O g

is given by {w¡ ■ xs+gjr ■ x'„} where wx, w2,. . ., wmo is a set of representatives for the coset

space Wcp/W^p and {gjr}, r= 1, 2,..., t, is a set of representatives for the quotient

group N(a.wixs)/Gwïx*.

Proof. Let Sx = {z e g | z=ys for some y e Gcx n g}, and for any z e Sx, let

Rz = {e e g2 | z = qs and e=qn for some q e Gcx n a.}. We shall first prove the

following two statements.

(a) Sx= Uí"£i G(Wj-x^) as a disjoint union. That is, every z e Sx is G-conjugate

to exactly one w¡ ■ xs.

(h) For each/ 0^j^m0, there exists an e¡ nilpotent and regular-in-g"ï*s.

We claim that (a) and (b) will prove Theorem 5.4. We must first show that if

_FEGc-xng, then there exist w} e W6p/W^p and gue N(qxs)/Gx° such that

y e G(WjXs+gjr-e,). By definition, yseSx. Therefore, by (a) there exists

Wj e W¿p/W\ such that wrxs = g-ys for some g eG. Since wrxs e Sk, by (b) there

exists e¡ a nilpotent regular-in-g*V*s. Since e¡ and g-yn are both nilpotents regular-

in-g"V*s, Theorem 5.3 implies e¡ is A(g*s)-conjugate to g-y\. It follows immediately

that y eG(Wj-xs+gjr-e¡).

To prove that the orbits are distinct, note that wj-xs + g,r-ej = wd-xs+gdr -e

implies w¡-xs = wd-xs which means that j=d, by (a). Since the above also implies

gjT-es is G"V*s-conjugate to g,r-e, we have gir=gir. by Theorem 5.3.

To prove (a) we shall need the following.

Lemma 5.5. There exists q et) such that xs is regular-in-Q" and SX = G(SX).

Proof. By Theorem 4.1 we may embed xn as the nilpositive element of an S-triple

with monosemisimple q. By conjugacy we may assume that q e ft, since [q, xJ =0.

It suffices to show that for any y e Sk there exists y' e Sx such that y and y' are

G-conjugate. Let z=y + zn e Gcx n g and let qf' be the monosemisimple element of

an S-triple in gy containing zn as nilpositive. Since z„ and xn are Gc-conjugate so are

q' and q since the nilpositive parts of an S-triple are Gc-conjugate iff the mono-

semisimple parts are by Kostant's result [5, Theorem 3.6]. By Corollary 2.2 we have

q' and q are G-conjugate since q and q' are symmetric elements. This proves

yseG-sx.

Finally, to prove that xs is regular-in-g", it suffices to show that q is regular-in-g**.

Since the TDS is principal-in-g*», its monosemisimple elements are regular-in-g*» by

Kostant's result [6, Lemma 5.1]. This proves Lemma 5.5.

Lemma 5.6. Choose q as in Lemma 5.5. If y e Sx, then xs and ys are G%-conjugate.

Furthermore, Sx = GQc-xs n g?.

Proof. By definition of Sx, ys and xs are Gc-conjugate, so that there exists gc e Gc

such that gc-ys = xs. Since q is the monosemisimple element of a principal S-triple

in gvs go'? is the monosemisimple element of a principal S-triple in gf». Since q is
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also such an element in gj«, it follows that q and q' are G-conjugate, by the result

cited above [6, Theorem 3.6]. If go 6 Gx> satisfies g'c-(gc-q)=q, then gc(gc-ys) = xs

with g'cgc e Gc, which proves the first assertion. This also shows immediately that

SQX^ G?-x8ng«.

To show the opposite inclusion, let zs e Gqc ■ xs n g«. To show that zs e Sx it

suffices to find zn, a nilpotent regular-in-gss, such that zs + zn is in Gc-x n g. Since q

is regular-in-g2* and q is symmetric, it follows from Corollary 5.2 that ga» is quasi-

split, so that there exists z„ nilpotent reguiar-in-g3». Since x and zs + zn are both

regular and xs and zs are Gc-conjugate, it follows that x = zs + zn, which proves that

z5 e Sx, completing the proof of Lemma 5.6.

Since q is symmetric and vfrxseg" for all q, (b) follows immediately from

Proposition 5.1 and its corollary.

Lemma 5.7. Let q be as before, and let ft be the unique Cartan subalgebra of qQ

containing x. Then

m0

Sx = U G"-(wrxs)
i = l

is the decomposition of Sx into G"-orbits.

Proof. By Lemma 5.6 and Theorem 2.6, we have S%-G%x, n a^=(Jfix Gq-

(w',-xs), where w[, w'2,..., w'm'0 is a set of representatives for the coset space

( IFc)V( rVqyp. However, since q e ft, this latter coset space is the same as W¿v/W^p,

proving Lemma 5.7.

Theorem 5.4 now follows immediately from Lemmas 5.5 and 5.7.
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