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A COMPARISON PRINCIPLE FOR TERMINAL

VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS

BY
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ABSTRACT. A comparison principle for a terminal value problem of an ordinary

differential equation is formulated.   Basic related topics   such as the existence of

maximal and minimal solutions of terminal value problems are investigated.   The

close relationship between the existence of the extremal solutions of a terminal

value problem and the concept of asymptotic equilibrium of the differential equa-

tion is explored.   Several applications of the terminal comparison principle are

given.

1. Introduction.   The comparison principle has proved to be very useful in the

study of various qualitative problems in ordinary differential equations.   Previous-

ly, comparison principles have been formulated in terms of initial value problems

and, in this setting, the applications are numerous.   For an excellent discussion

of the comparison principle and many of its applications, see the monograph by

V. Lakshmikantham and S. Leela [6].

In this article the fundamental theory of a scalar comparison principle for a

terminal value problem is developed.   First, the concept of extremal solutions,

which plays a basic role in any comparison principle, is discussed in a terminal

setting.  Asymptotic equilibrium of a differential equation is shown to be closely

connected to the existence of these extremal solutions of terminal value problems.

A terminal comparison principle has been stated in [7]; however, the proof

given there for the case of weak inequalities needs some modification.   Since we

require additional hypotheses as well as the hypotheses of Mamedov [7] in our

principle below, the validity of the comparison principle in the full generality of

[7] remains an open question.

2. Preliminary hypotheses and definitions.   The solution of the initial value

problem that consists of the scalar differential equation

(1) dr/dt = git, r)

and the point  itQ, rQ) will be denoted by  rit, tQ, rQ).   In (1), we assume that  g is
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continuous from R+x R to R where R+ denotes the nonnegative real numbers. It

will be tacitly assumed that, given any rQ £ R, there exists a t ei?+ such that

each solution rit, tQ, r ) of (1) exists on [tQ, °°) and Urn ^rit, t~, rA) exists. A

solution of the terminal value problem that consists of equation (1) and a terminal

value r will be denoted by rit; r ). This terminal value problem will be written

as HD?rJ.

A solution  r,,it; r   )  is the maximal solution of the terminal value problem
¡V\      '     oo ' ■

¡(1); r   |  o72 the interval I provided any other solution  u(t; r   ) of the terminal

value problem i(l); r   } which is valid on  / satisfies the inequality u(t; r   ) <

r„ U; r   ) for all  t £ I. A solution r    (t; r   ) of the terminal value problem 1(1); r   \
Moo ,/2 00 * v       '    oo

that exists on the interval / is called the minimal solution of the terminal value

problem j(l); r \ on I provided any other solution u(t; r ) of i(l); r \ satisfies

u(t; r ) > r (t; r ) for all t in /. Either of these special types of solutions will

be referred to as an extremal solution oí the terminal value problem.

For initial value problems, the hypothesis g £ C[R+ x R, Ri is sufficient to

ensure the existence of maximal and minimal solutions [6, p. 11]. However, even

if the continuity of g in t is extended to the interval [0, oo], then extremal solu-

tions of terminal value problems need not exist. For example, all of the solutions

of the differential equation

(2) dr/dt = (t + 1)_1>

are convergent but the terminal value problem í(2); 0¡  has no extremal solutions.

A topic that is closely related to the existence of extremal solutions of ter-

minal value problems is asymptotic equilibrium.  A. Wintner, in a sequence of

papers [8],  [9], [10], and F. Brauer [l], [2] have studied the asymptotic equilibrium

problem; also, see [6, p. 88].

The concept of an extremal solution is a local property of a differential equa-

tion.  The close connection between extremal solutions and asymptotic equilibrium

leads to the next definition which is a local analogue of asymptotic equilibrium.

Equation (1) is locally in asymptotic equilibrium about r     provided there exists a

constantS > 0 with the property that whenever rQ satisfies the inequality   \r„- r   \

< 8  then the terminal value problem {(1 ); r_ Ï has a solution.  It is clear that (1) is

in asymptotic equilibrium if it is locally in asymptotic equilibrium about  r     fot

every  r     £ R.

3.  Results on extremal solutions and asymptotic equilibrium.

Theorem 1. Suppose that initial value problems of (1) have unique solutions.

If (1) is locally 272 asymptotic equilibrium about r    then the terminal value problem

¡(1); r   ! has both extremal solutions.
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Proof.   If the terminal value problem  i (l); r^j does not have a maximal solu-

tion, then there exists a sequence  \t  }, where  /    £ R ,,  n = 1, 2, • • • ; and
* n n + '

lim^^c«^ = oo, and there exists a constant  rx > rx such that the solution

rit, t  , rA of (1) satisfies lim,_00Kí, '  , r.) = r^.   The hypothesis of the theorem

implies that there exists a  8 > 0 such that whenever  r. satisfies the inequality

S > rQ > r^ then the terminal value problem  i(l); r.\ has a solution.

Choose any such r. with r^ < r. < r The integer N may be chosen suffi-

ciently large so that the solution rit; r.) is equal to the solution rit, tN, r;) for

some t e R . This contradicts the assumption that initial value problems for (1)

are unique and shows that  i(l); r^} has a maximal solution.

It can be shown in a similar manner that the terminal value problem i(l); r^J

has a minimal solution.   This completes the proof of Theorem 1.

As an immediate consequence of the definition of asymptotic equilibrium and

Theorem 1 we obtain the following:

Corollary.   Suppose that initial value problems of (1) have unique solutions.

If (I) is in asymptotic equilibrium, then all terminal value problems have both

extremal solutions.

Remark.   The terminal value problem which consists of the differential equation

10, r>l,
(31 dr/dt = {

l-r+ 1,        r<l,

and the terminal value  r^ = 1  has a maximal solution.   However, (3) is not locally

in asymptotic equilibrium about  r    = 1.   The example also demonstrates that a

terminal value problem may have one extremal solution but not the other extremal

solution.

In fact, it is possible for a terminal value problem to have both extremal solu-

tions and yet not be locally in asymptotic equilibrium on either side of the termi-

nal value.   For example, the problem  ir' = -rir- l)(r+ l); 0} has extremal solutions

but is not locally in asymptotic equilibrium about  r^ = 0.

Theorem 2.   // all terminal value problems of (1) have both extremal solutions,

then (1) is in asymptotic equilibrium.

Proof.   If the conclusion of the theorem is false, then there is a terminal value

problem  i(l); r^} which has no solution.  We assert that there must exist a con-

stant  rM where   r., > r^ and with the property that the terminal value problem

i(l); /■„} has a solution.  If this is not the case; then, since all solutions of (1)

that are valid for large   / are convergent, there must be some terminal value prob-

lem of (1) that does not have a maximal solution.   In a similar manner, it can be

shown that there exists an  r   ,  r    < r   , such that  i(l); r   } has a solution.
m       m oo 'm
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Define

r* = inf[r0|rM > rQ > r^  and the problem  Kl); rQ] has a solution!.

If  r* = r^ then a sequence of solutions   \r it; r )\, n = 1, 2, • • • , can be constructed

with the following properties:

(i) lim     „r   = r   ;v    ' 7J-.00     72 °°

(ii) rit; r ) is the minimal solution of the problem  j(l); r  \; and

(iii) \rit; r )\ converges uniformly to a function  rit) on  [7, oo).

Property (iii) follows from Ascoli's theorem by observing that the closure of

the sequence  \rit; r )\ is compact in the space of continuous functions on

[7, oo) having limit at infinity, with the topology defined by the supremum norm.

For each  72 = 1, 2, • - • ,  rit; r ) is a solution of the integral equation

Property (iii) implies that the limit of the sequence   rit) is a solution of

■it) = rM-  (°°gis, r(s))ds,        t£R+.
•J   t

Therefore, rit) is a solution of the terminal value problem  i(l); rM|.   This

contradicts our original assumption and implies that  7* > r

If

7* = supjr0| 7^ > 7Q > rm  and the problem  !(l); rQ\ has a solution!,

then an argument similar to the one above can be used to establish that  r* < r^.

Using the above techniques, it can also be shown that the terminal value problems

[(1); 7*j and  1(1); r*! have solutions.   Let  r*il) denote the minimal solution of

1(1); r*! and  rtU) denote the maximal solution of  1(1); rt\.

Numbers   r. e R  and   T £ R+ can be chosen in such a manner   that the solu-

tion  rit, 7, r ) of  (1) satisfies r*(') < rit, T, r ) < r*it), t>T.  These inequali-

ties lead to a contradiction of the definitions of  r* or  rt.   This means that the

terminal value problem  1(1); r   \ has a solution; therefore, (1) is in asymptotic

equilibrium.

4.   A terminal comparison principle.   Mamedov [7, Theorem l] has stated a

comparison principle similar to the result given below.  As was mentioned previ-

ously, the second part of the proof in [7] requires some modification.   The diffi-

culties arise because the existence of a solution of the terminal value problem

1(1); uA need not imply that the terminal value problem \du/dt = git, u) — l/ra;

uQ + \/n\, 72 = 1, 2, • • • , has a solution.   For example, the differential equation

(1) with  g = 0 illustrates this point.

In many instances, the asymptotic equilibrium of (1) is invariant when (1) is

subjected to an integrable perturbation.   Two situations in which this occurs are
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the following.  We assume that (1) is in asymptotic equilibrium.

(i) If g is nonnegative and nondecreasing in   r for each fixed  t £ R +, then

the equation

(4) du/dt = git, u) + hit)

is in asymptotic equilibrium for each   h £ LAR+) H C[R +, R].   (This result follows

from the Lemma in [4].)

(ii) If (1) is uniformly convergent in variation, then (4) is in asymptotic equi-

librium for each  h £ LliR +) t\  C[R +, R].   (This result is contained in [3].)

For later use in connection with the comparison principle, it is convenient

to introduce the following terminology.   The terminal value problems  i(l); rx\

allows perturbations in   L  (R +) Cl C[R+, R] provided the equation (4) is locally

in asymptotic equilibrium about  r^ for each   h £ L  (R +) C\ C[R+, R].

In the next results, D* denotes the upper right Dini derivare.

Theorem 3  (Terminal Comparison Principle).   Suppose that initial value

problems of (I) have unique solutions.   Suppose that the terminal value problem

i(l); r^}  allows perturbations in L  (R +) C\ C[R +, R].   Let r„(z; r   ) be the maxi-

mal solution of the terminal value problem ¡(1); z^j and suppose that rMit; r   )

exists on ]. = [tQ, oo).   // V it) is a continuous function that satisfies the differ-

ential inequality

(5) D*Vit)> git, Vit)),       te]Q,

and the terminal inequality

(6) V(oo) < rx,

then

<7> Vit)<rMit;rJ,        t e JQ.

Proof.   If all of the inequalities in both the hypothesis and the conclusion of

Theorem 3 are replaced by strict inequalities, then the theorem is valid even if

rATZ; O is replaced by the minimal solution of the terminal value problem

i(l); z'00}.  See [7, Theorem l] for the proof of this statement.

The terminal value probler :m

(8) \du/dt = git, u) - e~l/n; r^ + l/n}

has a solution   uit; r^ + l/n) provided  n is sufficiently large, say  n > N.

From (5) and (6), it follows that

D*Vit) > git, Vit)) - e~l/n,        V{°°) < r^ + l/n.
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The above result of Mamedov implies that

(9) Vit)<uit;rgo+l/n),        t £ Jn,  72 > N.

Proceeding as we did in the proof of Theorem 2, the sequence   jzz(/; r^ + I/72)!,

72 > N, can be shown to be uniformly convergent on  Jr..  Since the function

uit; 7^ + I/72) is a solution of the integral equation

it follows that lim uit; r    + l/n) is a solution of the terminal value problem
n -.00        '    00 r

1(1); rM!.  The conclusion (7) now follows from the inequality (9) by letting  72 go

to infinity.

5.   Applications.   Let   || • ||  denote some norm of 72-dimensional Euclidean

space, Rn.  Suppose that for  x £ Rn and  t £ R +,

(10) \\fit.x)\\<git,\\A\)

where  / £ C[R + x R", Rn], g £ C[R + x R +, R J, and  g(r, r) is nondecreasing in

7 for each fixed   t £ R +.   If it is assumed that

/oo   CT+1     , .      ,/      git, k)dt<oo

lot all  A > 0 and some   a > 0 then all of the solutions of

(12) dx/dt = fit, x)

that are valid for large   I ate convergent (see [2] and [4]).  Suppose that a solution

x = xit) of (12) has limit  xx, then the expression   e it) = \xit) - x^H will be called

the  error function associated with  x.  In many computational problems, it is

useful to have an estimate on the magnitude of the error function.   As a first appli-

cation of the terminal comparison principle, we present a new result in this direc-

tion.

Theorem 4.   Suppose that the functions f and g satisfy conditions (10) and

(11).   For each constant c, suppose that initial value problems of dr/dt =

- git, r + c) have unique solutions.   Then, each solution x = xit) of (12) that is

valid for large  t satisfies  tae  (/) e L™iR+) O LpiR +) for all p > 1.

Proof.   From the definition of  e  (t), it follows that   ||x(r)|| < e  it) + ||x   ||.

Using this estimate and inequality (10) we obtain the terminal differential inequal-

ity

\D*exit) >  - git, exU) + ||xj|); <?x(oo) = 0}.
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Next, we note that the associated terminal value problem

(13) \dr/dt = -git, r+ ||xj|); 0}

allows perturbations in   L  (R+)  O C[R+, R].   In fact, it can be shown that (11)

implies that the equation  dr/dt = - git, r + Ux^JI) is in asymptotic equilibrium.

The proof is a standard application of the Schauder-Tychonoff fixed point theorem.

It is similar to the proof of the Lemma in  [4] and for this reason will be omitted.

It follows from Theorem 1 that the problem (13) has both extremal solutions.

If  ffÁt', 0) denotes the maximal solution of the problem (13) and  z-„(z; 0) exists on

] = [i     oo) then the Terminal Comparison Principle gives the inequality

(14) exit) <  rMit; 0),        t £ /Q.

The solution  r¡Át; 0) of the terminal value problem (13) must be a solution of the

integral equation

rM^0^f]Vs(s-rMis;0)+\\xJ)ds.

Since  g  is nondecreasing and  rMit; 0) is bounded, there exists some constant

S > 0 such that

(i5) ^a/'; 0) ̂  -"Tr^5' B)ds~

The right side of inequality (15) is in   L™iR+) by virtue of (11).  An integra-

tion of the right side of (15) shows that  t^r^t; 0) is in  LlÍR +).  Therefore,

tarmit; 0) is in  L~(R+) D  LpiR+) for all  p > 1.   The combination of this result

with inequality (14) gives the conclusion of the theorem.

Remark.   Theorem 4 is an extension of a result in [5, Theorem l].   A similar

proof of Theorem 4 could also be given here.  The idea to use the Terminal Com-

parison Principle in the proof of Theorem 4 originated in a discussion with

Professor V. Lakshmikantham.   The author also wishes to express his thanks to

Professor Lakshmikantham for calling his attention to reference [7].

A weight function other than   t    can be used in (11) and a result analogous

to Theorem 4 may be obtained.

For example, let  </> = cSu) be a continuously differentiable function with

<p" > 8 > 0 on   R+ and such that   f °°<JS'(z)g(z, \)dt < oo for all  A > 0.   Then, the

maximal solution  r^it; 0) of (13) satisfies  (ß(t)rMit; 0) £ LQ(R+)   C\LPÍR+) fot all

p>l.

As another application of the Terminal Comparison Principle, a terminal ana-

logue of the Perron Uniqueness Theorem [6, p. 48] is formulated.

Theorem 5.   Suppose that f e C[R + x R", Rn], g £ C[R + x R+, R+], and
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<16> I/O, xj-fit, x2)\\< git, ||x,  -x2||)

for ail t £ R .,  x  , x? £ R".  Suppose that the equation

(17) dr/dt = - git, r)

has unique solutions to initial value problems.   Let the problem 1(17); OÍ allow

perturbations in LliR+) O C[R _., R] and suppose that the only solution of

1(17); 0! is rit) = 0.   Then, the terminal value problem 1(12); x^J  has at most one

solution.

Proof.   Suppose that there exist two solutions  x At), x At) oí the problem

1(12); xj.  Defining  mit) = \\x {it) - x2(/)||   and using (16), we obtain  D*mit) >

- git, mit)).  Theorem 3 implies that  mit) < 0 which proves the theorem.

As a final application of the Terminal Comparison Principle, we present a

terminal integral inequality whose initial analogue has been very useful in many

qualitative problems in ordinary differential equations.

Theorem 6..   Suppose that g £ C[R + x R, R +] and that git, r)  is nondecreasing

in r for each fixed t £ R +.   Let (17) have unique solutions to initial value problems

and suppose that the terminal value problem 1(17); r   \ allows perturbations in

L  ÍR +) O C[R+, R\.   Let the maximal solution <"„(/; r   ) be defined on Jn =

[z„, oo).   If mit) is a continuous function defined on /., such that  mit) < r    +

ft°°gis, mis))ds,  t £ ]0, then mit) < rMit),  t £ JQ.

Proof.   By defining   Vit) = r^ + f°°gis, mis))ds, the hypothesis states that

mil) < Vil) for  t £ J0.  Also, V' (/) > - git, Vit)) and   V(oo) = r.  The Terminal Com-

parison Principle yields the conclusion.
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