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REMOVABLE SINGULARITIES^)
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ABSTRACT.   In this paper the authors define a capacity for a given linear

partial differential operator acting on a Banach space of distributions.   This

notion has as special cases Newtonian capacity, analytic capacity, and AC

capacity.  It is shown that the sets of capacity zero are precisely those sets

which are removable sets for the corresponding homogeneous equation.  Simple

properties of the capacity are derived and special cases examined.

Introduction.  In a previous paper [9]  the authors gave sufficient conditions

in terms of the Hausdorff measure of a set A  that the set A  be removable for

certain classes of solutions to a homogeneous linear differential equation (see

Definition 1.3 below).   There are various classical results which give necessary

and sufficient conditions for a set to be removable.   For example, if A   is a com-

pact subset of  R", then A   is removable for  L°°(R™)  and the Laplacian, A, if and

only if the capacity of A   is zero; or if A   isa compact subset of  C  then A   is

removable for  L°°(C)  and d/dz  if and only if the analytic capacity of A   is zero.

This paper is prompted by a desire to understand and generalize these two results.

(In particular, we obtain a new proof of these classical results.)

In § 1  we  introduce a notion of capacity for a differential operator  P(x, D)

on a Banach space  B.  This notion of capacity can be used to characterize remov-

able sets (Theorem 1.4) for a wide class of differential operators.

In §2 we give an  alternate   "dual"  definition   of capacity for  L    (l < p < oo);

and introduce a general concept of capacitary potential and capacitary mass.   A

uniqueness result for   1 < p < oo  is obtained.

In §3 we examine the  L°° -capacities for the Laplacian, the Cauchy-Riemann

operator, the heat operator, and the square of the Cauchy-Riemann operator.   In

particular, the classical notions of  L°° -capacity for the Laplacian and the Cauchy-

Riemann operator are seen to be special cases of the   L°° -capacity introduced in

Definition 1.2.   Perhaps our notion of  L°° -capacity for the heat operator will find
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application to a Wiener criterion for the Dirichlet problem for the heat equation.

At the time this work was done the authors were unaware of the related capa-

city studied by Fuglede ([61 and [7]), Meyers [ill and Reshetnyak [131-  While

the intersection of these two concepts is large neither contains the other.  The

two can be compared only when the differential operator has a fundamental solu-

tion  E  which is a kernel of the type considered in  [ill  and  [131, i.e. F  must be

positive and lower semicontinuous.  If E  has these properties then the difference

between the capacities is that in Definition 1.2 we consider potentials of distri-

butions u compactly supported in A, while Meyers and Reshetnyak only consider

potentials of positive measures.   There is an obvious inequality between the two

capacities.  An inequality in the opposite direction is sometimes true.   For the

Laplacian and the heat operator on  L°° this is shown in Theorems 3.1 and 3.2.

For (l - A)  '     and  Lp see  [ll.  However, analytic capacity probably cannot be

described in terms of measures.

The capacity of Meyers and Reshetnyak has nice set theoretic properties.   In

particular it is easily seen to be a capacity in the sense of Choquet. This is prob-

ably not possible  for our capacity.   (In particular, it is unknown in the case of

analytic capacity.) On the other hand the capacity defined in this paper has appli-

cation to problems in partial differential equations, as illustrated by Theorem 1.4,

and the uniform approximation results of  [121  for elliptic equations.

1.  Capacity and removable singularities. Suppose P(x, D) is a linear partial

differential operator with C°° coefficients defined on an open set ft C R".  Let B

denote a Banach space contained in Jb (ft).

Definition 1.1.  For each set A C ft, the B-capacity, denoted B-Cap (A, ft)

of A  with respect to  P(x, D)  is

sup||(P(x, D)f, 1)|: / £ B, 11/11 < 1, and  P(x, D)f is compactly supported in A\.

Suppose  P(D) has constant coefficients and F £ £ (R") is a fundamental

solution for P(D)-  That is,  P (D)E = 8.  The next definition is the same as Def-

inition 1.1 except that only functions  / of the form  E * u are considered.

Definition 1.2.  For each set A C R", the B-capacity, denoted B-Ca.pE(A), of

A  with respect to E  is

supi|(«, l)\:u eé'(R"), supp a C A,  E * u £ B, and  \\E * u\\ < 1).

We will be particularly interested in capacities modeled on three types of

Banach spaces: the spaces  L^ift) with 1 < p < oo, the Banach space BC(il) of

bounded continuous functions on ft with the uniform norm, and the spaces

Lip   (ft) with 0 < 8 <  1, consisting of continuous functions on ft which satisfy

a uniform Holder condition of order  8.  The norm in  Lip   (ft)  is defined by
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11/11.   S,      =II/L+    «up   (|/(x)-/(y)|/|x-y|S).

In these special cases the capacity of A  with respect to   P(x, D) will be denoted

by Lp-Cap   (A, Q), BC-Capp(A, Q), and Lip5-Capp(A, il) respectively; and the

capacity of A  with respect to E will be denoted by   Lp -CapE(A), BC-Capg(A),

and  Lip   -CapF (A) respectively.

The following properties of capacity are obvious:

(1.1) B-Capp(A, Q) > 0 for all A CQ,

(1.2) B-Capp(Aj,ß) < B-Capp(A2,fî) ifAjCA2Cfi,

(1.3) B-Capp(A, 0)  = sup{ß-Capp(K, Q): K C A  is compact!    for ail A C Q.

The capacity   ß-Cap£(A)  also clearly has properties (1.1), (1.2), and (1.3).

Let 3"  be a class of distributions in Í2.

Definition 1.3.  A relatively closed set A C ÎÎ  is removable for 'S with re-

spect to P(x, D) if each / £ j which satisfies   P(x, D)f = 0 in iî ~ A   also sat-

isfies  P(x, D)/= 0 in Í2.

If a set A C fl is removable for B with respect to  P(x, D) then obviously

the B-capacity of A  with respect to  P (x, D) is zero. In the following theorem we

establish the converse fact for a wide class of differential operators and special

Banach spaces.  Let P (a)(£)  denote  (d/d£)aP(g) for a polynomial  P(cf), and let

D1Ï«     (ii) denote the space of regular Borel measures on Í2.

Theorem 1.4. Suppose  P (D) has a fundamental solution E with P^a'(D)E €

!)!]     (R") for each a. Let A  be a relatively closed subset o/ OCC R".

(a) The set A   is removable for Lp.     (0),   1 < p < oo, if and only if

Lp-Capp(A, Q) = 0.

(b) The set A  is removable for C (Ci)  if and only if BC-Capp(A, ÎÎ) = 0.

(c) The set A  is removable for Lip,Soc(il), 0 < 8 < 1, iff Lip8 -Cap   (A, 0) = 0.

Remark 1.  The hypotheses of Theorem 1.4 are satisfied by elliptic and para-

bolic operators.  More generally semielliptic (see [10, p. 102]) operators satisfy the

hypotheses.  Moreover, the applicability of Theorem 1.4 is not limited to hypo-

elliptic operators.  For example, the wave operator d /dt2 - d2/dx     in  R2  satis-

fies the hypotheses of Theorem 1.4.

Remark 2.  Suppose  P(x, D)   is an elliptic differential operator with infinitely

differentia ble coefficients in Q, which has a fundamental solution.   (For example

this is always the case if the coefficients are real-analytic.) Then the analog of

Theorem 1.4 is true for  P(x, D).  The proof is essentially the same.

Proof.  Let B  denote one of the above Banach spaces and suppose that



186 REESE HARVEY AND J. C. POLKING [July

B-Capp(A, ft) = 0.  Assume that / £ B  satisfies  P(D)f =0 in ft - A.  Given

<j> e Cg (ft), let g = E * ((f>P(D)j).  Then  P(D)g = cf>P(D)f.   It suffices to show

that g £ B  because the hypothesis  B -Cap   (A, ft) = 0 would then imply that

(P(D)f, 0) = (<t>P(D)f, 1) = (P(D)g, 1) = 0.
Let  t/f £ C^(Ui).  Then by the generalized Leibniz formula we have

{<pP(D)f, <p) = (f, lP(D) ($</,))

= £((_l)M/a!)(/, Da0iP(a)(DV) = (Z((-l)l<x|/a!)P(a)(D)(/Da0), ty.

Consequently we have the adjoint Leibniz formula

(1.4) <pP(D)f=    Z    (~1},a Pla)(D)(fDa<f>).

\a\>0      a]

Therefore

(1.5) g = E*(</>P(D)/) =    Z   ^\^(P(a)(D)E)*(fDa<f>).
|a|>0       a-

For each of the Banach spaces  3  under consideration convolution by  P    \D)E,

followed by restriction to ft, is a continuous linear mapping of B   into B, since

P(a)(D)E eîlîloc(R") and ft CC R".  Consequently (since each /Dar/> e B) the

formula (1.5) implies that g 6 B.

Under additional assumptions concerning the behavior of P^a'(D)E   near in-

finity, Theorem 1.4 can be improved considerably.  Let vj £ C°°(Rn)  denote a

function which vanishes in a neighborhood of the origin and is identically one

in a neighborhood of infinity.

Theorem 1.5. Suppose P(D) has a fundamental solution E with p'a'(D)E £

3lî, (R") for all a. Let A be a relatively closed subset of an arbitrary open set

ftCR".

(a) (1 < p <oo) Suppose  I/»P(a)(D)F £ LP(R") for all a.  The set A   is remov-

able for L^o   (ft)  if and only if Lp-CapE(A) - 0.

(b) Suppose  éP(a'(D)E £ L°° for all a. The set A   is removable for C (ft)  if

and only if BC-CapE(A) = 0.

Proof.  We assume the notation in the proof of Theorem 1.4.   The proof of

Theorem 1.5 is the same except that one must verify that each (P     (D)F) *

(/Da0)   belongs  to   Lp (R")   or   BC(R").    By hypothesis   (l - y» P(a)(D)E

is a compactly supported regular Borel measure while fDa<f> £ Lp(fí").  Therefore

((1 - iP)P{a)(D)E) * fD<f) £ LP(W).   By hypothesis, if,P<-a)(D)E £ LP(R"), while

fDa<p- £ Ll(Wl).  Therefore (tfjP(a)(D)E) * fDacf> £ L^R").

To prove part (b) of the theorem note that /Da<^>  is a compactly supported
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continuous function.  Since  (1 - if/)P^a'(D)E  is compactly supported measure and

ipP(a)(D)E £ L°°(Rn), this implies that (P(a)(D)E) * (/Da0) e BC(R").

The proof of Theorem 1.4 and Theorem 1.5 can be used to gain additional in-

formation about capacities. For example, if the capacity of a set is locally zero

then it is globally zero.  More precisely, under the hypothesis of Theorem 1.5 we

have

Corollary 1.6.  // Lp -Capp (A)== 0 then there exists a point x e.4   such that

Lp -CapE(A nßr^O ¡or every compact neighborhood K of x.

Similar results corresponding to Theorem 1.4 instead of Theorem 1.5 follow

just as easily as Corollary 1.6.

Remark 1.   Let  B  denote one of the three Banach spaces  Lp (Ù) (l < p < oo),

BC(Q)  or Lip   (ii).  Assume the hypotheses of Theorem 1.5 are satisfied.   It

follows from the proof of Theorem 1.5 that  B -Cap   (A, íí) = 0 if and only if

B-CapE(A)= 0.

Remark 2.  If íí CC R" and  P (D)  and  Q (D)  belong to the same semielliptic

class (for example if P (D) and 0(D)  are both elliptic of order m) then

Lp -Capp(A, Ü) = 0 if and only if  L^-Cap^A, Ü) = 0 for   1 < p < oo.   This fact

follows easily from the Fabes-Riviere inequalities  [5l (the Calderón-Zygmund

inequalities if P(D)  and  Q(D)  are elliptic).

Remark 3-  If  1 < p < oo  and the Hausdorff measure of A  in dimension n-mq is

locally finite then L^-Cap   (A, Cl) = 0 for all operators P(x, D) of order m.  This

follows easily from Lemma 3-2 in  [9]  and Theorem 2.1 in the next section.

Remark 4. If P(x, D) is elliptic of order m and has a fundamental solution,

then LipS-Capp(A,Q) = 0 if and only if \n_m + s(A) = 0 (see [4, p-9l]) and Theorem

4.4 in  [9l; A,   denotes k dimensional Hausdorff measure).

2.  Capacitary extremals.  The results of this section are similar to results in

Fuglede ( [6], [7]), Meyers [ll], and Reshetnyak [13]; however the proofs are

somewhat easier.

The next result gives an alternate definition for the  L^-capacity of a compact

set which is important in applications.   Here q  is defined by   \/q + \/p - 1.  No

assumptions on the operator  P (x, D)  are required other than smooth coefficients.

Theorem 2.1.  (l < p < oo)  LeZ  K denote a compact subset of íí.

Lp-Capp(K, fl) = inf\\\'P(x, D)g\\q: g £ C~(íi) and g ^ 1   in a  nhd of K\.

Proof.  Let c denote the infimum defined above. First suppose / £ LP(Q),

ll/IL < !  and  suppP(x, D)f C K; and that g £ C™(Cl)  satisfies g = 1   in a neigh-

borhood of  K.   Then by Holder's inequality
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|(P(x, D)f, 1)| = |(P(x, D)f, g)\ = |(/, lP(x, D)g)\ <  \\lP(x, D)g\\q.

Consequently  L^-Cap   (K, ft) < c.

To prove the converse, pick h £ C^(ft) with h = \ in a neighborhood of  K.

Then c  is the distance in  L9(ft)  from the point   'P(x, D)h to the subspace

lP(x, D)C™(Q, ~ K).  By the Hahn-Banach theorem there is a linear functional / £

LP(Q) with  11/11    = 1  such that / annihilates the subspace  'P (x, D)C™(tt ^ K)

and (/, lP(x, D)h) is the distance in  Lq (ft)  from the point   'P (x, D)h  to the sub-

space  'P(x, D)C~(ft ^ K). Since (/, 'P(x, D) ci) = 0 for all 0 e C~(ft ^ K) we

have  P(x, D)/= 0 in ft ~ K.  Consequently,

c = (/, 'P(x, D)h) = (P(x, D)f, h) = (P(x, D)f, 1) < Lp-CaPp(K, ft).

Remark.  The proof shows that the norm of the linear functional    P (x, D)h

acting on the subspace N = \f £ Lp(ü): P(x, D)f = 0 in ft ^ KÎ of Lp(ft) is the

same as the norm of  lP(x, D)h in the quotient space, L9(ft) modulo the closure

of  'P(x, D)C™(Q, ̂  K). Note that the closure of lP(x, D)C™(Sl ̂   K) in  L9(ft)

is the annihilator of N.

Theorem 2.2.  (1 < p < x)  Let  K denote a compact subset of ft.

(a) There is a unique function f £ Lp(il) with  ||/||    < 1  and P(x, D)f = 0 in

ft ^ K such that (P(x, D)f, 1) = L"-Capp(K, ft).

(b) There is a unique function  v € Lq(ft)  belonging to the closure of

Vp(x, D)g: g € C^(ft) and g = \   in a nbd of K\ such that \\v\\    = Lp-Cap   (K, ft).

(c) The extremals in (a) and (b) are related by

v = Lp-Capp(K, ü)([/\f\)\f\p/q,      /= (L"-Capp(K, Ü))-q/p(v/\v\)\v\q/p

and the product f • v  is a positive integrable ¡unction on ft with   f_ / • vdx =

Lp-Czpp(K, ft).

Proof.  Let h £ C^(ft)  with h = 1   in a neighborhood of  K and let  F = {/ £

Lp(ti): \\f\\p< 1  and   P (x,  D)f = 0   in   ft ~ K\.   Then   Lp-Capp(K, ft) =

sup,  _ | (/, lPh)\.  Since by Alaoglu's theorem   F  is weakly compact, this supremum

is attained at a point / £ F, which provides an extremal / for part (a).  Since the

set  \lP(x, D)g:g £ C^(ft), g = 1   in a neighborhood of   K, and  \\tP(x, D)g\\     <

2LP-Cap (K, ft)|  is weakly relatively compact in  L9(fl)  there exists an extremal

v for part (b).

To prove part (c) let / and  v be any such extremals.  Since  (P(x, D)f, l) =

(/, lP(x, D)g) for all g £ C^(ft)  with g = 1   near  K, we have the important fact

that
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(P(x, D)f. l) = (/, v).

Consequently,

Lp-Capp(K, Q) = (P(x, D)f, 1) = (/, v) <  \\f\\p \\v\\q < Lp-Capp(K, ii).

Therefore we must have equality throughout and in particular we must have equal-

ity for Holder's inequality.   This proves that / and v  satisfy the relations of

part (c) and are therefore uniquely determined,

The unique extremal function / in part (a) of Theorem 2.2 will be called the

Lp-capacitary function for  K with respect to  P(x, D)  and íí.   The unique extrem-

al   v   in part (b) of Theorem 2.2 will be called the Lp-capacitary mass for K with

respect to  P(x, D) and íí.

Next we investigate the analogs of Theorem 2.1 and 2.2 for p = oo.   Another

capacity arises in this case.  Let  C    (ÍÍ)  denote the space of continuous functions

in   ÍÍ which vanish at infinity and at the boundary of ÍÍ.  Consistent with the

notation of §1, let

C^-CappU, Q) = supi|P(x, D)f, 1)|: / 6 Cjtt), ||/L< 1 and P(x, D)f = 0 in ii- K|.

Since  Coo(Q)  is a closed subspace of  L°° (ÍÍ), C^-Cap   (K, ÍÍ) < L°°-Cap   (K, Q).

The  dual space  C    (ÍÍ)    consists of all regular Borel measures with finite total

variation.   For v £ C    (ÍÍ)    the norm of v is the total variation of v.  With this
oo

topology  L   (il)  is a closed subspace of   C    (ÍÍ)'.

Theorem 2.3-   Let  K denote a compact subset of Ü.

(a)  There exists a function f £ L°° (Cl) with  ||/||     < 1  and P(x, D)f = 0  in

ii ^ K such that (P(x, D)f, l) = L°°-Cap   (K, ii).

(b) L°°-Capp(r<;, ii) = inf {||'P(x, D)g\\y : g e C~(ii)  and g = 1  in a neighborhood of K\.

(c)  There exists a measure v £ C    (ÍÍ)'   belonging to the weak* closure of

\lP(x, D)g: g £ C^ (ii) and g = 1   in a neighborhood of K\ such that  \\v\\ =

C^-Cap^K, ii).

Remark.   Let  R  denote the closure of lP (x,  D)C™ (ii ~ K)  in  L l (ii)  and let

R denote the weak    closure of the same subspace in  C    (ii) .   Pick h £ C°? (ii)

with  h = 1   in a neighborhood of  K.   Part (b) of Theorem 2.3 can be interpreted as

saying that L°°-Cap (K, ii)  is equal to the distance in  L   (íí) from  tP(x, D)h  to

R.   Part (c) on the other hand says that  C   -Cap   (K, ii)  is equal to the distance

in  C^tíí)'   from  lP(x, D)h to P.

Proof.  The proof of part (a) is the same as the proof of Theorem 2.2 (a).   The
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proof of part (b) is the same as the proof of Theorem 2.1.   To prove part (c), notice

that the set  F = \lP(x, D)g: g £ C^(ft), g = 1  in a neighborhood of  K, and

||'P(x, D)g\\ j < 2L°°-Cap   (K, ft)S  is weak* relatively compact in  C^ift)'.  Conse-

quently there is a net \g j C F which converges in the weak* topology to a mea-

sure  v £ C    (ft)'   which has the property that  ||v||   is the distance from    P (x, D)h

to  R.  Here we use the notation of the above remark.   The continuous capacity

Cx-Cap   (K, ft)   is bounded above by   ||w||   since if / e C^vft)  satisfies   H/H^ < 1

and P(x, D)/= 0 in ft -v, K, then ||(P(x, D)f, l)| = |(/, lP (x, D)ga)\ = |(/, v)\ <

ll/ILHI ¿ IN-   That  IIH! < Coo"C^Pl.(K' &) can be seen as follows.   For each

e > 0, there is a function /    £ C°° (ft)  with  ||/   ||     < 1   such that /    annihilates

lP (x, D)C^(ft ^ K) and (/ , P (x, D)6) + f is greater than the distance from

'P(x, D)h to R.  Hence  \\v\\ < (/f, 'p(x, D)6) + e = (P(x, D)/f, 6) + e.   Since f£

annihilates   lP(x, D)C™ (ft ~ K),   P(x, D)/   =0 in  ft <v K.   Consequently

(P(x, D)/f, Â) = (P(x, D)/£, 1) and   ||v|| < C^-Cap^K, ft) + £ for all  e > 0.  Hence

The previous results of this section have analogs for the capacities

L?-CapE(K).

Theorem 2.4.  (l < p < oo)   Le/   K denote a compact subset of  R".

Lp-CapE(K) = infill ̂ ||   : xfj £ C~(R") and E * if, = 1  in a neighborhood of K\.

Proof.  The proof is a modification of the proof of Theorem 2.1.  Let  c denote

the infimum defined above. First, if E * u £ LP(R"),   ||F * «||    < 1,   u £ Ê^(R"),

and  iff e C°°(R"), with  E * ifj = 1   in a neighborhood of  K, then   |«(1)| =

\(u, E * tff)\= \(E * u, if,)\ < ||i/f||   , by Holder's inequality. Hence L^-Cap^K) < c.

To prove the converse, pick h £ C°? (R") with h = 1  in a neighborhood of  K.

Let  R  denote the closure in   L9(R")  of the set of cß £ C~(R")   such that  E * <ß =

0 in a neighborhood of  K.  Then  c  is the distance in  L9(R") from the point

P (D)h to the subspace  R.   By the Hahn-Banach theorem there exists a linear

functional / £ L^R")  with   ||/||    = 1   such that / annihilates  R  and (/, 'P(D)h)

is the distance in  L?(R")  from the point  lP(D)h to the subspace  R.  Since /

annihilates 'P(D)C~(R" ~ K), we have  P(D)f = 0 in R" - K.

Let u = P(D)f.  Since  (E * u, <f>) = (u, É * </>)  for all  0 £ C~(R"), the dis-

tribution  E * u, and hence f - E * u, annihilates  R.  Also  P (/ - E * u) = 0 in

R".  Given g eC; (R"), let  0 = ¿ Ë * g  and if, = g - 'P<f>.  Then g=iP(ß+if, with

<£ 6 C°°(R")  and E * i/í = 0 in a neighborhood of  K.  Consequently, (f - E * u, g) =

(f - E * u, 'P </>) + (/ - E * u, if,) = 0.  Therefore f = E * u and hence c =

(/, 'P (D)A) = (P(D)/3 A) = («, 1) < Lp-CapE (K).

Theorem 2.5.  (l < p < oo)   Le/   K denote a compact subset of R".
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(a) There is a unique ¡unction f = E * u £ Lp(Rn) with  \\E * u\\    < 1  and

u £ é¿(R") such that (u, l) = Lp-CapR(K).

(b) There is a unique function  v £ Lq(W)  belonging to the closure of the

set of if/ £ C^(R") with È * xfj = 1  in a neighborhood of K such that   \\v\\    =

Lp-CapE{K).

(c) The extremals in (a) and (b) are related by

v = Lp-CapE(K)Q/\f\) I/]*/*,       / = (Lp-CapE(K))-«/p(v/\v\)\v\«/p

and the product f • v is a positive integrable function on  W with J     f • v =

Lp-CapE(K).

The proof is the same as the proof of Theorem 2 2.   The extremals  / and v

will be referred to as the   Lp-capacitary potential and the  Lp-capacitary mass, re-

spectively, with respect to  F.

The analog of Theorem 2.3 is

Theorem 2.6.  Let  K denote a compact subset of  R".

(a) There exists a function f = E * u £ L°°(R") with   ||/||     < 1  and u £

&K(W) such that (P(D)f, 1) = L°°-CapE(K).

(b)  L°°-CapE(fO = inf JII^Hj.- if; £ C~(R") and E * iff s 1  in a neighborhood of K\.

(c) There exists a measure  v £ C    (R")    belonging to the weak    closure of

\\f> £ C~(Rn): E * ifrs 1   in a neighborhood of K\ such that   \\v\\ = C^-Capg (K).

The proof is essentially the same as the proof of Theorem 2.3-

Notice that  p = oo  is allowed in part (b) below.

Proposition 2.7.  Suppose   K   D  K. 3 • • • is a sequence of compact sets and

';  -1     j

(a) (1 < p < oo)  Let f. be the  Lp-capacitary potential of K. with respect to

E.   Then the sequence  [f .\ converges weakly in  Lp (W)  to f, the  Lp-capacitary

potential of K with respect to  E.

(b) (1 < p < oo)  Lp-CapE(K) =lim.^x>Lp-CapE(K).

Remark.  The same theorem holds with  Lp-CapE replaced by   Lp-Cap  .

Proof.  Since the sequence  \f .\ is bounded in  L   (R"), it has a weakly conver-

gent subsequence.  It suffices to show that every weakly convergent subsequence

Í/.  Î converges to /.   Let g be the weak limit of  [/.  j.  Then g  is a potential,

P(D)g = 0 in  R"^ K and  ||g||    < 1.  Consequently,

(2.1)        Lp-CapAK) > (P(D)g, 1) =   lim {P(D)f¡  , l) =  lim L^-Cap^K    ).

The reverse inequality is true by (1.2), so we have  Lp-Capp(fv) = (P(D)g, 1).
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Since the capacitary potential for  K is unique we have g = f.  This proves all

but part (b) with   p = oo.   By the above reasoning the sequence  j/.i has a conver-

gent subsequence  \f.  \, with  lim,    ^ L°°-Capp (K . )   = L°°-CapF(K).  Since

L°°-Capp (K .)  is a nonincreasing sequence this proves that  L°°-Capp(/0 =

lim;_TO0'L00-CapE (K;.).

3.   Examples.   For d/dx  in  R the analysis is extremely easy.  A fundamental

solution is the Heaviside function   Y(x) (the characteristic function of the posi-

tive real axis).   If  K C R is compact and nonempty, then  L°°-Capy (K) = 1.   One

can easily check that the   L°°  capacitary potential for  K is uniquely determined

on the unbounded components of R - K.  In fact, it is equal to  0 on the negative

unbounded component and equal to   1   on the positive unbounded component.

The results for d = óyete  are similar, although the verifications for d/dz ate

not all trivial.  Let  E (z) = 1/772  denote the usual fundamental solution for d/dz,

and let   K denote a compact subset of  C.  It f £ L°°(C)  and  df/dz = u £ ë' (C),

then / has a holomorphic extension across  00, and f = E * u  if and only if /(oo) =

0, by Liouville's theorem.   Let ÍÍ denote a bounded open set containing  K with

dCl smooth.   Then

(3-D (± f, l) = Uf, x) = £  I   /W* = „/'(»).

The integration by parts is valid since the singular supports  of / and  y     are

disjoint; and the last equality follows from the change of variables w - l/z.  If

ll/IL <l,let

g(z)=(/(oo)_/(2))/(l_/(oo)/(z)).

Then gU) = 0, \\g\\^ < 1   and   |g'(oo)| = |/'(oo)|/(l -|/(«,)| 2) > |/'(oo)|.  Consequent-

ly,    L°°-Cap^(K) = L°°'CapE(K).  The analytic capacity Lx'-CapE(K) was intro-

duced by Ahlfors  [2]  and developed further by Garabedian  [8].

If the complement of  K in the Riemann sphere is simply connected then, as

is well known, the extremal problem

supil/'Wh/eL^C),   df/dz = 0 in C~K,   /(oo) = 0, and  ||/L<l|

has  as unique solution the Riemann map of the complement of  K onto the unit

disk with /(oo) = 0 and / (00) > 0.  Hence the  L°°-capacitary potential is the Rie-

mann map in this case.   In general, the  L°°-capacitary potential is unique in the

unbounded component of  C -v K (see  [4]  for a proof).

Let E (x) = - i/o  _,(n— 2)|x|"-2 denote the usual fundamental solution for

the Laplacian  A in  R"  (n > 3).   Let  K denote a compact subset of R".   Let  F

denote the generalized solution to the Dirichlet problem for   R" ^ K with boundary
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values equal to one on dK. That is, F is the balayage of the function 1 on R"

relative to K. Then F is a superharmonic function on R", i.e. - AF is a posi-

tive measure.  Also  AF = 0 in  R" ~ K, f = E * AF, and  HF^ = 1.

Theorem 3.1-  (a) T^e  L°°-capacitary potential is unique in the unbounded

component of R" -v, K and coincides there with — F.

(b)   L°°-CiipE(K) = supjfi(l): p  is a positive  measure on K and \\E * p\\     <l\.

The constant (a  _  (n — 2))        times the right-hand side of the above equa-

tion is usually taken as the definition of Newtonian capacity.

Proof.  Let B = B (0, R)  be a ball which contains   K in its interior and let

p = - (n — 2)a/R  where o is the induced Lebesgue measure on  dB.  Then  E * fjt =

1   in B°■  Let / be any  L   -capacitary potential for  K.  Since   |/(x)| < 1,  / van-

ishes at oo  and / is harmonic in   R" ~ K, the maximum principle  implies that

|/(x)| < F (x)  in  R" <v K.  Then  F + / > 0 in  R" ~ K so

(A(F + /), 1) = (A(F + f),p * E)

= (E * A(F + /), p.) = (F + /, ¿i) < 0.

Consequently, ( - AF, l) > (A/, l)  so - F  is an  L°°-capacitary potential.   Then

by (3-2) we have  (F + /, ¡j) = 0.  Since  F + / > 0 and (i is a strictly negative

measure, we must have  F + / = 0 on  dB  and hence by the maximum principle / =

— F  in the unbounded component of  R" ~ K.

Remark.   Now using part (b) of Theorem 3.1 it follows as in [4, p. 15] that

C   -CapP   (K) = L°°-CapP   (K)  for all compact sets   K C R".

For the heat operator H = d/dt - A  in  R"       the results are similar to those

for the Laplacian.  The fundamental solution for H is

E(x, f) = (477/)-"/2y(z)exp(-|x|74/)

where   Y (t) is the Heaviside function.  Suppose   KCR"       is compact and con-

tained in the half-space  Í (x, /): t < t A.  Let y denote the characteristic function

of this half-space and let  S denote Lebesgue measure on the surface  t = /      No-

tice that  x = £*§.  li f = E * u where u £ ë^(R" + 1) then

(3.3) (Hf, l)=(u, x) = (u, E*8) = (E*u, 8)=f   f(x,tQ)dx.
r"

The next to last equality follows by Fubini's theorem if u £ C^(R"    ) and then for gener-

al  u £ ë^-(R"    )  by approximating and using the fact that  (E * u) ( • , t Q) £

L   (R").  This provides an alternate definition of the  L°°-capacity of K.

(3-4) L°°-CapE(K) = supj|J/(x, tQ)dx \
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where the supremum is over potentials  / which are bounded in absolute value by

1  on  R"     .   In regard to (3-4) see the remarks in Aronson [3l.

Let  K C R"      be compact. Denote by F the generalized solution to the

Dirichlet problem for R"      % ft and H with boundary values equal to one on  dK.

That is, F  is the balayage of the function 1  on R"       relative to  K. Let ft„ de-

note the set of points in <v, K which can be reached from  t = ¡x by a curve with

strictly decreasing t coordinate.

Theorem 3-2.  (a) The  L°°-capacitary potential is unique in  ft,,  and coincides

with  F there.

(b)      L°°-CapF(K) = suplid): p  is a positive measure on K and \\E * pW^K l\.

Remark.  It can easily be shown that the capacitary potential is not unique on

the whole unbounded component of  R"      ~ K.  An example will suffice to illus-

trate what happens. Let  K = [ (x, t): 0 < t < 1,   1 < |x| < 2\ U I (x, /): 1 < t < 2,

\x\ < 2Í.  Let g  be any continuous function defined on 0 = |(x, /): 0< t< 1, |x| < 1¡

such  that   0 <  g <  2,    Hg(x, t) = 0 in Q°and g (x, 0) = 0.   If g  is extended by

0 to all of  R"     , then  F - g  is a capacitary potential for  K.

Proof.  Choose  tQ such that  K is contained in the half-space  I (x, /): / <tA.

Let   /   be  any  capacitary potential  for   K.   Since   |/(x, /)|  <   1   and  Hf = 0 in

R" + 1 ̂  K, the definition of  F  implies that  |/(x, t)\ < F(x, t)  in   Rn+I ^ K.

Hence, by (3.3),

(3.5) (fl<P - A 1) =/[F(x, tQ) - f{x, tQ)]dx > 0.

Consequently, (HF, l) > (Hf, 1), so  F  is an  L°°-capacitary potential for  K.  Then

by (3.5) we have  F(x, ZQ) = f(x, tQ) for all x.  Since  F(x, t) > f(x, t)  for all

(x, t) £ R"+1 ^ K we have  F (x, t) = f(x, t)  for all  (x,  t) £ ftK  by the maximum

principle.

Since  F is an  L°°-capacitary potential for  K  and H F is a positive measure,

part (b) follows immediately.

The next example shows that the   L°°-capacitary potential need not be unique.

Let  (9     denote the elliptic operator d /dz2    in  C.  The function E(z)~z/nz

is a fundamental solution for   d    .  Using the homogeneity of  E  we see that

L^-Cap^UA) = L°°-CapE(A)  for all A> 0 and for all sets  A C R2.   Hence  if A

is  bounded   we have  L°°-CapE(A) = L°°-Capp.(|0i) = n.  It is then obvious that if

K   is  compact and z    £ K the  function  ttE (z -z )  is a capacitary potential for

K.    Consequently we have a high degree of nonuniqueness for the   L°°-capacitary

potential.

Remark.  Suppose  P (D) has only constants for bounded entire solutions and has

a fundamental solution   E  such that each  P^a'(D)E vanishes at infinity.   Then
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L°°-CapE(A) < L°°-Capp(A) < 2L°°-CapE (A).

This  can be seen as follows.

If f £L°°(W),   ll/L < 1, and  P/= 0  in  R" ~ K, then f - E * Pf = c.

Since E * Pf=E * (0P (D)f) = £(P(a)0>)F) * (/Da0), where 0 e C~(R")

with 0=1  in a neighborhood of   K,  E * Pf vanishes at infinity, and hence

\c\ < 1.  Therefore E * Pf £ L°°(R") with  ||F * Pß^ < 2.

This remark applies to four of the five operators discussed above. In fact,

one can easily show that L^-Cap (A) = 2Ltx>-CapE (A) if P (D) is d/dx, A, or

H, and as noted above L°°-Cap^-(A) = L°°-CapP (A).
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