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A CHARACTERIZATION OF M-SPACES IN THE CLASS OF

SEPARABLE SIMPLEX SPACES

BY

ALAN GLEITÍ1)

ABSTRACT. We show that a separable simplex space is an A/-space iff the

arbitrary intersection of closed ideals is always an ideal.

Edward Effros in  [5, end of  §3] was unable to determine if an arbitrary

intersection of closed ideals in a simplex space was necessarily an ideal.  That

this was not true in general was shown by J. Bunce   [2] and F. Perdrizet. Here

we shall show that for separable simplex spaces this property is equivalent to the

simplex space being a  (Kakutani) M-space.

In  §1  we extend some of the results of [7].  We show that certain subspaces

of certain simplex spaces are again simplex spaces.  In  §2 we give the afore-

mentioned characterization.

I should like to thank the referee for his comments.  The much simplified

proof of Theorem 1.2 and its extension to the nonstandard case are due to him.

0. Conventions.  All vector spaces are assumed to have nonzero elements.

The term measure will always denote a regular bounded Borel measure.

We use  8iq) for the point measure at q.

1. An existence theorem.   An ordered Banach space   V with closed positive

cone is a simplex space if its dual is a  (Kakutani)  L-space.  If   Y  is a compact

Hausdorff space, we let  C(V) be the space of (real) continuous functions on   Y

with the natural pointwise order and the supremum norm.  Obviously, CiY) is a

simplex space.  Its dual,   C*(V), is the  space of all measures on   Y.  More gen-

erally, if X  is a Borel subset of   V, we let  C*(V; X) be the space of all mea-

sures on   V whose total variation on  X  is zero.  Then  C*(V;  X)  is an L-space

and the extreme points of the positive part of its unit ball are  {S(y)|y £ Y - X\(J

\0\ [7, Proposition l.l].

If V is a simplex space, we let

Received by the editors August 12, 1970 and, in revised form, August 28, 1971.

AMS  1969 subject classifications. Primary 4606; Secondary 4610, 4620, 4625.
Key words and phrases.   A/-space, simplex space, order ideals.

0) An NSF Postdoctoral Fellow supported by NSF development grant GU 2056.

Copyright © 1972, American Mathematical Society

25



26 ALAN GLEIT [july

P,(V) ={/ 6 V*\ ll/ll < 1,   fix) > 0 for each  x > 0}

and  EPAV) be its extreme points.  We take

EPj(V)+ = EPj(V) - i0},        ZiV) = weak* closure of EPj(V)+.

Since P,(V) is a simplex, each ç £ P.(V) is the resultant of a unique maximal

probability measure p. . We take n = p. -p. (i0})5(0). If V is separable, ii is

supported by  EP xiV) and zr    by EPÁV)  .

We may characterize V as the set of affine continuous functions on ZiV)

vanishing at zero.  Hence

V = {f e CiZiV))\fiq) = 77qif) for each  q e Z(V) - EP^X

Let

XiV) = \8iq) - rrq\q  £ Z(K) - EFjÍF^l

We shall always assume that  XiV) is given the weak* topology relative to

ciziv)).

We will be using the following well-known results repeatedly and include

them for completeness.  First, a map x —> r¡    of a topological space   E  into the

measures on a locally compact space   F is  weak* Borel measurable  iff x —»

77 (/)  is a Borel measurable function for each / £ CiF). It is  bounded if

sup \\r)  II < 00.  We then have   [l, V, §3, Proposition 2, Definition 3, Corollary to

Proposition  12]

Lemma 1.1. Let E and F be locally compact Hausdorff spaces. Suppose

x —> 77 is a weak* bounded Borel measurable map of E into the positive mea-

sures on  F.   Let p. be a positive measure on  E.

1. Then there is a measure  v on  E defined by

v = frlxdrlix)-

2. Suppose f is a bounded universally measurable function on  F.   Then

*^ jíiy)dr¡xiy)

is universally measurable and

ffiy)dv=fdliix)ffiy)drtxiy).

Our first result identifies   V    for  V  a simplex space.  Throughout, we

always consider   Vasa subset of  CiZiV)) and not as a subset of  C(Pj iV)).

Theorem 1.2.   Let  V be a simplex space.   Let  Z= Z(V).   Then  v"" Ç C*iZ)

may be identified as follows:
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'*-b £C*iZ) there is a measure v on  Z such that

wif) =j i8iz) - nz)ij)dv for each f £ C(Z)i.

Proof.  Let  w £ V  .We may assume that   ||iíí|| < 1.  Writing  w - w    — w , we

obviously have   \\w   || <_ 1,   \\w  || <  1.   Let

u/j = w+ + (1 - ||^ + ||)O(0), w2 = w~ + il- ||uT||)r3(0).

Then  w , w    are probability measures on  P AV).   Let  h be a continuous affine

function on  P AV).  Then  h = f + ¿(0)1   for some  f £ V.  Since  w~il) = ||w_|| and

w   if) - w   if) = wif) = 0   for  / £ V, we have that   w   (h) = wAh).  Hence,

w.   and  w    have  the same resultant.   Let 72  be the unique maximal measure

dominating both w.   and  w      Then  [8, Theorem 30, p. 232]

72= f ft dw  iq) = f udwiq).

Since  w , w    are supported by ZUlOj  and recalling that  77    = p   - p (!0¡)S(0)

we get

W. - 72 =f  (S{q) - rrq)dw.iq) + c.SiO), 2=1,2,

for suitable constants   c ..   But then
1

w = f  iSiq) - 77  )d(wr - w2) + c5(0)

for a suitable constant  c.  Noting that  ?r0 = 0, we may write  v = w. — w. +

c8i0) to get the required representation.

Conversely, any w £ C*iZ) which has the representation

w = j    iSiq) - 77 )dv

for some measure  v obviously annihilates   V.

Corollary 1.3.   Let  V  be a simplex space.   Let Z = ZiV),  E = EP.iV) , and

X = XiV).  Suppose  E  is a universally measurable subset of Z.   Then  V   C

C*iZ) may be identified as follows:

V   = linear span (co(X))

= {w £ C*iZ) there is a measure v on  Z such

that w = I (<5(z) - 77 )dv>.
JZ-E z      )

Proof. For each z e E, we have S(z) = 77 and so the second representa-

tion is clear. The first follows from the second by approximating v by atomic

measures.
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A simplex   K  is  standard if it satisfies

1. The extreme points of  K, denoted by  F(K), is a universally measurable

subset of  K.

2. Each maximal measure is supported by  EiK).

By Lemma 1.1 above, condition (2) is equivalent to

2'.  The maximal measures representing each point in the closure of  EiK)

ate supported by  EiK).

We call a simplex space   V a standard simplex space  if  P^V)  is a standard

simplex. Note that all separable simplex spaces are standard.

We are now prepared to show that certain subspaces of standard simplex

spaces are again simplex spaces.

Theorem 1.4.   Let  V be a standard simplex space.   Let  Z = Z(V) and

E = EP.iV) .   Let  q. e Z — E.   Suppose   Y  is a closed set in Z satisfying

1. YCMZ- E) = \q0\.

2. it, (E- Y)/0.

Then A - \f £ V|/(y) =   rrq if) for each y £ Y\  is a nontrivial simplex space with

the relative order and norm.   Further, A*   is isometrically order isomorphic to

C*iZ; (Z - E)\JY) and so EPjU)+ = E - Y.

Proof.  We divide the proof into several stages.  Throughout, we take  77 „  to

be n-    .  Let a = Z70(V).  Then
q0

(1.1) 0 <770(E - Y) <  1 - a.

A.  First, let us consider the space  D defined by

D = ¡/ £ C(Z)| fiy) = 770(/)  for each y £ Y\.

Let  X(D) = io(Y) - Z7n|y £ Y\.   As y —► 8iy) is continuous and   Y  is compact, Y

is homeomorphic to  X(D).  Let  m be a measure on  X(D).  Then there is a mea-

sure  À on   Y  induced by  m.  So, for / £ CiZ),

(1.2) / xif)dmix) = jfiy)d\ - 770(/)MY).

Let

\w eC*iZ) there exists a measure  À on   Y  such that

wif)=ffiy)d\ - tt0(/)A(Y)  for each  / £ C(Z)|.

Approximating À by atomic measures clearly yields

F = linear span (co (X(D))).

Clearly, the weak* closure of  E  is  D  .  To show that  E  is weak* closed it suf-

fices to show it is norm closed  [3, V, 5.9].
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In order to show  F  is norm closed, we consider a  w £ F.   Then there is a

measure À on  Y  such that

wif)=ffiy)d\-n0if)\iY)

for each / £ CiZ).   By Lemma 1.1, for each Borel set  B C Z,

wiB) = \iBDY) - 7T0iB)\iY).

For each Borel set  A C  Y we easily get

A(A) = wiA) + 770(AMY)/(1 - a)

and so w uniquely determines  A.  Further

|A|(Y) <  \w\iY) + 770iY)\wiY)\/il - a)

and so

||A|j = |A|(Y)<  \\w\\{l + a/(l -a)).

It should now be clear that  F  is norm closed.  Hence   F = D  .

B.   The determination of A  .   It is clear that A = DDV and so

A    = weak* closure (D    + V ).

We claim that  D    + V    is already weak* closed.   From the representations for

D     in    A    and   V    in Corollary 1.3,

D" + V"1" = linear span (co (X(V) (J X(D)))

and so again we need only demonstrate that D    + V    is norm closed.  We let

W = < w £ C*iZ)    there exists a measure  v on  Z and a

(1.3) measure   À on   Y  such that, for each / e CiZ),

wif) =fz_EiSiz) - nz) if)du +ffiy)d\ - 770(/)A(Y)|.

Then, from the representations for  D     in    A    and   V    in Corollary 1.3, W =

D    + V .   Let  w £ W be determined by measures  v on  Z and  A on   Y.   Then,

using Lemma 1.1, for each Borel set  ß C Z,

(1.4)'        ««(G) = "(ßO(Z - F)) _ f       77 (bVf + A(BO V) - 77n(ß)A(Y).

In particular, for Borel  A C Z — E — \q0\ ,

(1.4)" viA) = „(A).

Also, i/(lg0i) + A(j(70l) = wi\qA).  We may, by transferring an atom if necessary,

take A(ig0S) = 0. Hence

(1.4f A\q0\) = wi\q0\), A(j?0l) = 0.

Finally, for Borel  CÇY - \q0\ ,
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(1.4)"" \{C) = w(C)+f        niC)dv + nAC)\iY)
J Z — E   z

with  A(Y)  found by consistency.  With the choice  (1.4)'", v\iZ — E) = w\iZ — E)

and so we may rewrite   W as

W= iw £ c*iz) there exists a measure  À  on   Y without

(1.5) an atom at  q0  such that, for each / £ CiZ),

"(/) = fz_E^U) - Tz) if)dw + ffiy)d\ - 770(/)A(Y)|.

In this representation, we note that if w e C*iZ) is determined by the measure

À on   Y, then again

||A|| <  H (1 + a/(l - a)).

So clearly  W is norm closed.  Therefore   W = A   .

C.   The determination of A*.   The dual of  A  is   C*iZ)/A  .  To complete the

proof we need only show that  C*iZ)/A     is isometric order isomorphic to

C*iZ; (Z — E){JY). We claim that each class of A*  contains one and only one

member of  C*iZ; (Z — E)\JY).  Indeed, let  m e A*  and suppose  n., n2 £ m each

were in  C*iZ; (Z - E)\JY).   Then  »j - n., = w £ WHC*(Z; (Z - E)UV).   Hence,

there is a measure  À on   Y  such that for each Borel  B C Z (using  (1.4)'  and

the representation  (1.5) for  W)

(1.6) wiB) = wiBC)iZ - E)) - i 77 iB)dw + A(BOy) - 77n(B)A(Y).
JZ-E   z u

If zí' vanishes on  Z - E, then  z^(S) = A(ßPlY) - 77n(B)A(Y).   Using  z^(Y) = 0 we

get A(Y) = 0.   But then, since  w vanishes on   Y, A = 0  and so w = 0.  Thus

nx =n2.

On the other hand, let  n £ m.  We define a measure  A(n) on   V  by

A(n)(i9o}) = 0,

(1.7) r
A(n)(A)=J   _    7TziA)dn + niA) + n0iA)ÁÍn)ÍY)

for each Borel  A C   Y - i?0l, where  A(n)(Y)  is found by consistency.   Let  win)

be the element of  W determined by  n  and A(n) by  (1.3).  Then n — win) 6 m.

Using (1.4)" to  (1.4)     and (1.7) one easily verifies that t^(n)(B) = n{B) fot

each Borel set  B Ç (Z - E)\JY.   Hence, n - win) £ C*iZ; (Z - E) [J Y) and the

claim is established.

The element  n — win) depends only on the class  m and not on the particu-

lar representative  n.  We may therefore define a map c/>: A* —» C*iZ; (Z — E)(JY)

by  </>(t7z) = n — z^(n)  for each  zw e A*   and any representative  n e m.   Obviously,

</>  is a linear, one-to-one map of  A*   onto  C*(Z; (Z — E)iJY).  It is positive.
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Indeed, let  m be positive and so  n is positive.  We must show that  in — win))iB)

>_ 0 for each Borel  B C  Z.  This is trivial for  R C (Z — E)iJY so assume  B C

E - Y.   But then (1.4)'  yields

(1.8) win)iB) = -j        nzÍB)dn-n0ÍB)Xin)ÍY)

and so n — win) is indeed positive.

Last, we need show that r/>  is an isometry to complete the proof.  Let

n em e A*.  Then

■ 10(772)11 = \<f>im)\iE - Y) = \n - vA,n)\{E - Y) <  \n\ ÍE - Y) + \w{n)\(E - Y).

For any Borel B C E — Y, using (1.7) and (1.8), we get

win)iB) = -f     EirziB)dn - 770iB)(jz_EnziY)dn + n(Y)V(l - a)

-L&(B) + 7r(Y)-^-)dn-niY)     °
1 - a / 1

Then

Mn)|(E- Y)< Jz_£(t72(E- Y) + t7z(Y) W\E_a Y))d\n\ + |n|(Y)
Z70(E - Y)

1 - a

X (z7z(E - Y) + 77z(Y)V|n| + |n|(Y)    by  (1.1)
'Z-E

< |n|(Z- E)+ |n|(Y).

Thus, we finally get   \\<f>{m)\\ <  |n| (E - Y) + |n| iZ - E) + \n\(Y) = |n| (Z) = ||«||.

Since  ||m|| = infnera||n||, we have  ||w|| = \\<f>{m)\\.

The same proof also establishes the following  [cf. 7, Theorem 1.2].

Corollary 1.5.   Let  V, Z, E be as in Theorem 1.4.   Let  X  be a closed

proper subset of Z — E.   Let x —> fi    be a weak* continuous map of X into

P^iCiZ)).   Let X = X,UX2  where X2 = '* e ^l^x = ^x^-   We assume

1. For each x e XDiZ — E), ¡i   = 77 .

2. For each x e X,,  /^(XjLHZ - E)) = 0.

3. XjU(Z - E)/Z.

Then A = ¡/ £ V\ fix) = //  (/) for each x e X\  is a nontrivial simplex space with

the relative norm and order.   Further, A* is isometrically order isomorphic to

C*iZ; XjU(Z- E)).

2.  The characterization.  A subset  E of a convex compact set  K  is called

a face if it is convex and satisfies the following condition:   if  ax + (1 — a)y e F

with x, y £ K and 0 < a < 1, then x, y e F.   The following extension theorem is

a well-known consequence of the Edwards separation theorem  [4].

Lemma 2.1. Let F be a closed face of a simplex K. Suppose fv f. are continuous
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affine functions on K.   Let g  be a continuous affine function on  F satisfying

a > g >_ f., f7 for some a £ R.   Then there exists a continuous affine extension

g of g to  K which satisfies o. >_ g >_ f,, /-,•

Lemma 2.2.  Let  V be a simplex space.   Let q £ Z(V) - EP.iV).  Suppose

there exists p esupp77 CiEPAV)    and a net f*o!Ç. EP.iV)    - \p\ which con-

verges weak* to q.  Suppose, further, there is an element f £ V such that

1. xßif)=Q = qif)  for all ß.

2. pif) > 0.
Then there exists a collection of closed maximal ideals I „ such that f]I„ is not

an ideal.   If the net is a sequence, then the collection of ideals is countable.

Proof.   Let  F „= jax,,|0 < a <  lj.  Then   F„ is a maximal face containing

zero of  PAY).  Let  Iß be the annihilator of F„ within   V.  Then  I„ is a closed

maximal ideal [5, Corollary 3.2]. Since xoil) = 0, / £ l„ and so / eCl/o-

Suppose Dig is an ideal.  Then there would be a  v £ V ,   v £ D/o, and v >_f.

Thus, v £ In for each ß and so x Av) = 0.  Therefore  qiv) = lim x Av) = 0.  Since

v £ V  , it is zero on the smallest closed face containing  q and so  piv) = 0.

However, this contradicts the assumptions that pif) > 0 and  v > /.

We are now prepared for our characterization.

Theorem 2.3-   Let  V  be a separable simplex space.   Then the following are

equivalent:

1. V is an M-space.

2. The intersection of an arbitrary collection of closed (maximal)  ideals is

always an ideal.

3. The intersection of a countable collection of closed (maximal) ideals is

always an ideal.

Proof.   (l)=>(2)=î>(3) are obvious.

Not (l)=î>not  (3).  Assume   V is not an  M-space.  Let  Z = Z(V) and  E =

EPj(V)  .  Then there is an element  q £ Z — E such that  supp77    has at least

two points ([10, Theorem 2], [6, Corollary 2.6]). So choose distinct points  p.,

p2 £ £P)supp77  .  Since  q  is in the closure of  E, there is a sequence  \x  \ C

E — \p , pA such that  limx    = q.

Let  A  be  defined by  A = \v £ V\ xniv) = qiv) = 77 iv), n = 1, 2, - • • !.  Then

A  is a nontrivial simplex space with  EPAA)   = E - {x   | 72 = 1, 2, • • • ! by

Theorem 1.4. Hence, pl  and p2 ate in  EPxiA) .  Let  F = \o.pl + ßp2\0 < a,

0 < ß, a + /S <  11.  Then  F is a closed face of the simplex P^A). On E, define

continuous affine functions g.  and g~7  by

g\iapl + ßp2) = a-,        g2iapx + ßp2) = ß.
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Then g.>. 0,   z = 1, 2, on  E and so there exist elements  g., g. e A  such that

g . > 0 and g .\F = g    by Lemma 2.1.  Since  P,ig,) = 1   and  P2^2^ = *' we must

have qigx)>0 and ?(g2) > 0.  Let

/=«! - MgiW^W
Then obviously / £ A C  V,   qif) = 0 and  pxif) > 0. Since / £ A, we also have

x (/) = 0, n = 1, 2, - • ■ . Hence, Lemma 2.2 implies that (3) is not true.

We note that Theorem 1.4 and Lemma 2.2 allow us to conclude more than

just Theorem 2.3.  Let   V be a standard simplex space and suppose  q £ ZiV) -

EP.iV)    does not lie in the rays of  PAV). Suppose we could find a net  \x„} C

EPAV)    converging to  q such that   Y = \x„ }    satisfies the hypotheses of

Theorem 1.4. We could then conclude the existence of a collection of closed

ideals whose intersection is not an ideal.
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