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HYPERSURFACES OF NONNEGATIVE CURVATURE

IN A HILBERT SPACE
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LEO JONKER

ABSTRACT. In this paper we prove the following generalizations  of known

theorems about hypersurfaces in  R":   Let M be a hypersurface in a Hilbert space.

(1) If on M the sectional curvature  AC(cr)  is nonnegative for every 2-plane section

cr and if K(o~) > 0 for at least one   cr, then M is the boundary of a convex body.

(2) If AC(cr) = 0  for all  cr, then  M  is a hypercylinder.   The main tool in these

theorems is Smale's infinite dimensional Sard's theorem.

1. Introduction.   Throughout this paper  A4  denotes a Riemannian Hilbert mani-

fold; that is, M  is a  C°° connected manifold, modelled on a separable Hilbert

space, such that for each x £ M there exists an inner product   V , •)     in  M  , the

tangent space of M at x, which varies differentiably with x.  A precise definition

may be found in [4].   M  can be made into a metric space by letting the distance

d(x, y) between two points  x and y be the infimum of the lengths of differentiable

curves joining them.   ZM  is said to be complete if it is complete in this metric.

A C°° map cf:  M —► AA of a Riemannian Hilbert manifold  M into a Hilbert space

H is an immersion if the differential d¿ :  M   —» H is one-to-one and d£ (M ) C H
'x X ^X       X

is closed in  AA.   If ç is a homeomorphism onto its image, cf is called an embedding.

An isometric immersion is an immersion  çf : M —> H  such that  zAcf   : M   —» H

is an isometry at each point  x £ M.   If in addition  zz'cf (zM  ) C AA has codimension

one, we call  M a hypersurface in  H.  In this case we do not assume that cf is one-

to-one.

Just as in the case of finite dimensional manifolds, the metric on  M induces

a unique covariant derivative, and we may define the curvature tensor, geodesies,

and sectional curvatures.   This has been done in [5] where it is also shown that

every point has a convex neighbourhood and that completeness implies geodesic

completeness.

So far, relatively little is known about the global differential geometry of

Riemannian Hilbert manifolds, the most interesting exception being perhaps M. P.

doCarmo's partial  generalization of a theorem of Sacksteder ([l], [7]).   In his

paper, doCarmo shows that, if çf immerses  M isometrically in  H as a hypersur-

face,  and if at each x £ M all sectional curvatures are positive and bounded away
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from zero by a positive constant 8    depending only on  x, then  ff is an embedding

and ¿;ÍM) is the boundary of a convex body in  H.  The hypothesis of doCarmo's

theorem is a good deal stronger than that used by Sacksteder, who for a hypersur-

face in R"  gets the same conclusion by assuming only that all sectional curva-

tures are nonnegative, and that there is at least one section at one point at which

the sectional curvature is strictly positive.

In this paper we will present a method for reducing this kind of theorem about

hypersurfaces in Hilbert space to theorems about hypersurfaces in  R".   The idea

is very simply to intersect the given hypersurface  ç : M —► H with finite dimen-

sional linear submanifolds   L  of H.  Using Smale's infinite dimensional version of

Sard's theorem [8], we show in V 2 that for almost all choices of  L, M and  L ate

transverse (Theorems 2.6, 2.7).   After proving some technical  results in § 3, we

show in § 4 that, if L  and  M ate transverse, <f    (L) is a submanifold of M whose

sectional curvatures have the same sign as the sectional curvatures of the corres-

ponding sections of M.

In § 5 we apply our method to  obtain the infinite dimensional version of Sack-

steder's theorem with the weakest possible hypothesis (Theorem 5.1).

In § 6 we apply our method to obtain the infinite dimensional counterpart of a

theorem of Pogorelov [6] and Hartman and Nirenberg [2] which states that, if the

hypersurface  M has zero sectional curvatures, <f(zVl) is a hypercylinder (Theorem

6.1).

2.   Transverse linear sections.   Throughout this paper H will denote a fixed

separable Hilbert space, and M will denote a Riemannian Hilbert manifold im-

mersed in  £ as a hypersurface by an  isometric immersion  <f.  We will use  M    to

denote the tangent space to  M  at  x and   Tx to denote the linear subspace  d£ÍM )

C H.

By a linear submanifold of £ we mean a set of points of the form

L + p = \q + p\q £ L\

where  L  is any linear subspace of H and p  is a point in  £.   If ¡L,, ■ ■ ■ , L, \ is a

set of linear submanifolds of H we shall use  [L y, ■ • ■ , Lfe] to denote its linear

hull; that is,

[Li' • • • • Lk] = \p e » p = X vpe Pi c L, £ y = if.
' z=l !=1 )

Occasionally we will also use  \[L {, ■ ■ ■ , L J|   to denote its convex hull; that is,

\[L1,...,Lk]\ = \p£H p = ¿A'p¡,  Pi£L., 2><=1, A!>0  .
I z=l ,=1 )



1972] HYPERSURFACES OF NONNEGATIVE CURVATURE 463

If L  , • • • , Lk ate all finite dimensional, the set ÍL j, • • • , Lfei is said to be in

general position whenever

k

dim[Lj, ■■•, Lk] = £dimL.+ (k - l).
i = \

Throughout this paper we will use  G(AA, k) to denote the space of all linear k-

manifolds in H (k < oo), and if N £ G(H, n), n < k, we will let G(AA, k, N) denote

the space of all linear ¿-submanifolds of H that contain  ZV.  We regard  0 as a

linear ( - l)-manifold in  AA; so we identify  G(H, k, 0) = G(H, k).

Now let L 0 £ G(H, k) pass through the origin of AA, let AC be the orthogonal

complement of LQ and let II: H —» LQ and II : AA —► AC be the orthogonal projec-

tions.   Let

V(L0) = \L £ G(H, k)\ II|L is one-to-onei.

It is clear that  these sets cover  G(AA, k).  We may then  define a coordinate map on

V(L .) depending on a fixed basis  v ., • • • , v.   foi  LQ :

cp: V(LQ)^ Kk + l

is defined by

(i) f>(D = (ñdllD-Ho), IKntfcV-Mfj), ■ • •, IKBIL)-1^».

The following lemma may be proved by a straightforward computation:

Lemma 2.1.   G(AA, k) is a C°° manifold with the structure given by (1).  More-

over, ¡'/Of AVj C N 2,  G(H, k, N 2) is an embedded C°° submanifold of G(H, k, zVj);

and G(H, k, AVj), of G(H,.k).

Whenever for L 6 G(AA, k) and tf(x) £ L we have  (L - cf(x)) + Tx = AA we will

say that  L  and M are transverse at  x (or at  ef(x)).

For any  N £ G(H, n),  n < k, let  S(H, k, N) C Hk~n be the set of  (k - 72>tuples

^72 + 1'' " ' Pk) e Hk~" such that  '/V' P„ +i ' * •• ' Pz.!  is in general  position.   We

will also write  S(H, k) tot S(H, k, 0).   This will be standard notation throughout

this paper.  We also introduce A : S(H, k, N) —» G(AA, k, N) defined by

(2) Upn + r---'PkU[N-Pn+i>--->Pk]-

The following lemma is easy to prove:

Lemma 2.2.   If N £ G(H, n),  k < n, then S(H, k, N) is a fibre bundle over

G(H, k, N) with projection A and a fibre of dimension k(k - n).   Thus A : S(H, k, N)

—» G(H, k, N)  is a Fredholm map of index k(k - n).

A  C     map A between   C°° manifolds is called a Fredholm map if at each
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point the image of dA is closed and if dimker  aW  and codimima'A are finite.   The

index at a point is then given by

(3) index A = dimker.iA - codimima'A.

Corollary 2.3.   Let  L £ G(H, k, N) contain points p.,. • • , p .   T¿e7Z for a

given 8 > 0 there exists a neighbourhood V of L  in G(H, k, N) so that, if L   £

V,   L'   contains points p ' , • • •, p '  with  \\p ' - p .|| < 8, j = 1, • • • , r.

Finally, throughout this paper we will also let   S y(H, k, N) C M x £

denote the set of (k - 22)-tuples (x, pn      . .. ,pk) e M x Hk~n~ l  so that

(£(*), pn+2, ■■■, Pk) eS(£, k, N).

With Sj(£, k, N) we associate the mapping Aj :Sy(H, k, N) —» G(H, k, N) defined

by

(4) A! =A°(zfx(id,/-*-1).

Lemma 2.4.   The maps A   : Sy(H, k, N) —♦ G(H, k, N) are smooth Fredholm

maps.

Proof.   Clearly, letting  LQ = A yix, pn+2, • • • ,pk) - p where p £ N, or p e

Aj(x, pn+2, • • • ,pk) if N = 0, and letting K, ft, ft be defined just as before, we

have, for zz e T , u. £ H, j - n + 2, •• • ,k,
x J

dAyiu, un + 2, ■■■,uk) = íftd¿;íu), ñíun + 2), ..., UXuk)).

Hence,

(5) kera-A,=(T   nUxL^"-1, imziA, = iftT ) x Kk~n-1,
1x00 1 x

so that

index dAy = dimker dAy - codimim dA{

= (kik - n - 1) + k - e) - (1 - í) = k(k - n) - 1.       Q.E.D.

Corollary 2.5.  If L £ G(H, k, N) is transverse to M at x  ,. . . ,x    then for

given 8 > 0 there exists a neighbourhood V of L  so that, if L    £ V,   L'   contains

points <f(xj),. • . , <f(xj) with x!  e£s(x.),  i ^ I,- • ■ , s, where  l/§(x.) denotes the

open geodesic 8-ball about x..

Proof.   For each   i = 1, • • • , s we have  L = A Ax., q., • • ■ , q   ) fot some

q y, • • • ,qn . £ H, so that by (5) there is a neighbourhood  V. of L  so  that  L'   £ V.

=^ L    contains a point <f(x¿ ), x'  £ £g(x.).   The corollary follows if we take   V =

D; = 1V..    Q.E.D.

Theorem 2.6.   Let  N £ G(H, n),  n < k, be transverse to M.   Then

\L £ GÍH, k, N)\ L  not transverse to Alj
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¿s of the first category in G(H, k, N).

Proof. Note that L £ G(H, k, N) fails to be transverse to M if and only if it

is a singular value for A   : S (AA, k, N)—> G(H, k, N).  Since  A    is a Fredholm

map, this set of singular values is of the first category in  G(H, k, N) (see [8,

Theorem 1.3]).     Q.E.D.

In the case  N = p, the condition that  N and  M be transverse is that p 4 M.

We have the following stronger theorem for this case:

Theorem 2.7.   For any p £ H, the set

\L £ G(H, k, p)\ L not transverse to M\

is of the first category in G'H, k, p).

Proof.   As in the preceding theorem,

X = \L £ G(H, k, p)\ L not transverse to  M - <f _1(p)l

is of the first category.   It remains to show that the set

Y = JL £ G(H, k, p)\ L  not transverse to  M at p\

is of the first category.  Since  M is immersed, the set çf ~   (p) C zVj  is discrete;

since  M is separable, cf-  (p) must then be countable, say  çf_  (p) = jx  , x  , ■ • ■ \.

Now  ZVI and  L  fail to be  transverse at p if and only if  L C T     + p  fot some in«
xi

teger /'.  Let   Y   be the set of  L £ G(H, k, p) such that  L C Tx+ p.  This is

clearly a nowhere dense set.  Hence   Y = U_,  Y. is of the first category.     Q.E.D.

3. The connected components of cf- Hl).  If x £ ZVI, let  (7§(x) denote the

geodesic z5-ball about x,   Í7s(x) = |y £ M\d(y, x) < 8\.  The purpose of this section

is to prove the following proposition:

Proposition 3.1.  Let x  ,. .. ,x   £ M.   Then there is an integer k and an  L £

G(H, k) so that x,, • • • , x    belong to the same connected component of çf ~ l(L).

Moreover, for each 8 > 0 there is a neighbourhood   V of L  so that

V £ V>^~l(L') nUs(x.)¿  0    for  i = l, ... ,r,

and so that, if y. £ çf_I(L') fï U Ax.),  i = 1,- • • ,r, then y  , • • • ,y    belong to the

same connected component of çf     (L').

To prove it we need a lemma.  Let  v(x) denote a unit normal to  çf(M) at  x £ M.

Lemma 3.2. EacAi point zQ £ M has a neighbourhood (7 C ZVI together with a

neighbourhood B  of v(zQ) so that, for any z, z    £ U and a £ çf(z0) + A3,  z    and

z2  lie in the same connected component of çf^fçfUj), çf(z2), a], and [çf(z  ), çf(zj,

a] azza" M are transverse at z    and z
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Proof.   Let  W be a neighbourhood of iXzn) in  S -\v £ H\ \\v\\ = l!.  For p £ W

let II   :£ —» T      be the projection given by

q = ft^iq) + Ap,        A e R.

The lemma is proved if we can show that, for  W small enough and for z , z    be-

longing to a suitably small neighbourhood   U of zQ, the line segment joining

Il (f(z.)) and u A¿;íz2)) is the (II   o f)-image of a continuous curve in M.

Clearly u  (a) depends differentiably on  ip, q) £ W x H.  Define the differen-

tiable map  6:WxM—*WxT      by

b\p, z) = (p, IT   (£(z) - <f (z.))).

Since  dd is then given by

dd = id„ x dtz: H x M     -> H x T    ,
H       S zo 20

there is an open geodesic í-ball  B'e C S with  center  !z(zj and a neighbourhood

U    of zQ £ M so that  6 : B(   x U ' —> B'  x T'      is a diffeomorphism onto its image.

In particular, for each  p £ B  ,

nM°(^U0)):£'^T2o

is a diffeomorphism.  Choose  U   so that, for some  r > 0,

ftv(Zo)ÍÍÍUA^Íz0)) = DÍr),

the open r-ball about  0 e T       with  r so small that, for z £ U', 8 > 0,

linv(,o)(£U) - fu0)) - £ (*) + íu0)|| < ¿5.

Now put

£ = (IIv(z  , °<4 - &Z&))\U')-HD(r - 28 tan c))

and let  p £ B' .   Let

P; = (l-Z)(^U1)-^(z0)) + z(f(z2)-zf(2o)),        0<Z   <1,

and let  /(,  0 < Z < 1, be the line  I\\s) = sil + pt,   s £ R.   It is enough to show

that  l( intersects  ÇW) - tf(zA

Let II0 be the function on  H given by

p = nv(ro)(p) + n0(pV(z0).

Then

"nv(2o)^))- Hvfx0>M < tan,|n0(/((s)) - n0(p,)|.
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Let / be the  C°° function defined on  (II v,     ,)~l(D(r)) by

f(p) = n0(p) - n0¡ícf o(uv(Zq) o (£ I fu6))\uT' •n^M - £<Vf,

Restrict this function to  A( to give  / o I  : R —» R.   We claim that / o /    is defined

for   |s| < 2§/cos (; fot then

which combines with  II-,,„   Xô ) € D(r - 2ôtanf) to give  FI   ,     *(/,($)) £ D(r).   But

|ll0(p,)|<5,

¡n0(^(± 25/cosi))-n0(p<)|>28,

iPfltf ° [nv(Zo) ° tf - ^U0))|LZ']- * o IIv(zo)¡ (/(2fi/cos f» - cf (z0)| < S

together yield

/ o lt(28/cos f) > 0,       / ° ft(- 2cS/cos e) < 0.

By the intermediate value theorem this shows that  I    intersects  çf((7') — çf(zQ).

Q.E.D.

Proof of the proposition.   By joining the points  x  , • • . ,x   with a curve in  A4

and covering the curve by finitely many neighbourhoods of the kind discussed in

Lemma 3.2, we can arrange to have the following situation:  [x   ,••• ,x | is includ-

ed in a finite set  jz  , ■ ■ . , z  1 C ZVI  such that, for each  z'=l,-..,s-l,   z.  and

z.   j, together with a point  a;. £ AV and neighbourhoods   U. C ZVI  containing Z. and

z.   j  and  B . C AA containing  a;, satisfy the conclusion of Lemma 3.2.   That is, if

L; = [£(z/),f(z/+I),a;],       z¡,z;n€^   q>   £B¡,

then  z¿   and z. ',  lie in the same connected component of <f     (LJ.), and  L.'  and  ZVI

are transverse at  z[ and z.        Clearly, if we put  L¿ = [çf(z.), çf(z.     ), q.],  i =

1, ••• ,s - 1, and  L = [L j, • • • , Ls._ j], then  *,>'••-' »*L lie in the same connected

component of cf     (L).   By Corollary 2.5, L has a neighbourhood  V  so that  L'   £ V

implies that

L' n<f((7. nu.  , nuAz)) / 0.

Take

z¡ eU.jñVi_1r\ UAz)r)c;-l(L'),       ¿= 1, ..., s.

Then  z! ,• •• , zj   are all in the same connected component of çf-   (L').  Among

these points  z  ,. • ■ , z'   we can find the points  y  , • • • , yT   to satisfy the conclu-

sion of the proposition.     Q.E.D.
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4. The curvature of a transverse linear section. In this section we first show that,

if  L  is transverse to  M,   £~lÍL) is a submanifold of M (Proposition 4.1).  We

then show that the sign of a sectional curvature of zf~   (L) is the same as the

sign of the corresponding sectional curvature of M (Proposition 4.2).  We complete

the section by showing that in some cases the sectional curvatures of Ç~  ÍL) de-

pend smoothly on  L (Lemma 4.3).

Proposition 4.1. Let  L £ G(H, k) be transverse to M.   Then £~lÍL) is an

(embedded) C°° submanifold of M.

Proof. It suffices to find Hilbert spaces E E E = £ © £ and open sets

Uy C Ey, U2 C E2 and a chart f : £ = Ey © E2 D U y x U2 —» M centered at x e M

so that

Wly xO) = V(U1 x £2)nzf_I(L).

Let (£ 7) U, 0) be any chart for M centered at x.  Let  K be the orthogonal com-

plement of  L  and note that

L + dí£cp)0ÍE) = L + Tx=H

since  M and  L  are transverse.  Hence, if II : £—> K is the orthogonal projection,

II o dít;cp)0 : E —» K is onto.   Let  N C E be the kernel of 11 o digcp)Q and  P its

orthogonal complement.   Then the partial derivative with respect to  P at 0 e £  is

given by

d2íft¿;cp)0 = ft °(a"(£0)o|P): P-* K.

By the inverse function theorem (see [4]) there exist closed subspaces  £.  and

Ej of £ = Ey © £2 with open sets   c/j C E y,  U2 C E2 containing the origin and

a diffeomorphism  h of  U y x U2  onto a nieghbourhood of  0 contained in   U so

that  IIo(fo0oZ2:£1XL/2 —* K is a projection onto   £2.   Put W = cp oh.  Then for

(xj, x2) £ U y x U 2 we have

zf °1'(x1, x2) e L  «>   ÏÏ^Mxj, x2) = 0 •**• x2 =0.

That is,

"KIT, xO) = W, x £2)nff-I(L).       Q.E.D.

Proposition 4.2. Lez L e G'H, k) be transverse to M. For a plane section o

tangent to <f ~ '(L) C M /eZ K^ a?2£z' K^ denote the sectional curvatures of tf~ Hl)

aZ  o and M at o respectively.   Then either  K    and K    are both zero   or else
r y cr cr '

they are both nonzero and have the same sign.

Proof.   Let R and  R be the curvature tensors on M and ^-1ÍL) respectively,

and let V and V be the connections on H and  L, and let  v and  v be (local)

unit normal fields to rf(M) in  H and to  <f(ff- lÍL)) in   L.   For  a, v £ i£~ lÍL))   C

Mx we have the following form of Gauss's Theorema Egregium:
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(6) (R(u, v)v, u) =   <Vu«, v) (Vvv, v) -   {Vuv, v)2,

(7) <R(zz, »)tz, Z7>=   (Vuzz, v){V V, v) -   <Vutv, ¡7)2.

Let x £ cf-1(L) and let  oC (çf~ l(L))x be a plane section.  We may choose zz and

v to be vector fields tangent to  M  in an M-neighbourhood   ¿7 of x  so that  o is

generated by  u(x) and v(x) and so that  zz and  v ate tangent to  çf~  (L) at all

points of cf " l(L) n U, and so that  [zz, v] = 0 on  cf~ Kl) H (7.  If  AC is the orthog-

onal  complement of   L  we have  v = TVj + zv2,  i^ £ L,  i/2 £ AC, and because   Tx

and  L  are transverse, \vA\ / 0.   Then v = Vj/H^jH, so that, by (7),

(i/||z,J)2Kv>, vjXV, ^>-<V, Vl)2\

= U/|ViI)2|fV   «   M><V,   p)  -   <V^,   z,)2) = (1/||1,1||)2(R(ZZ,   IzK   B>,

since by the choice of zz and v,   V zz, V^z; and  V v ate automatically tangent to

L.    Q.E.D.

Remark.   The fact that L  is finite dimensional is not used in the proofs of

Propositions 4.1 or 4.2.   Both results are true if  L  is any closed linear submani-

fold of AA, transverse to  M.

Lemma 4.3.   Suppose that [cf(x), p l? ■ ■ ■ ,p,\ is in general position and that

L = [çf(x), p ., • • • , p.]  is transverse to M  at x £ çf- l(L) and that at least one

sectional curvature at x in çf     (L)  is positive.   Then for some 8 > 0 this remains

true at y for [cf(y), q {, ■ ■ ■ , afe] whenever y £ (7§(x)  and q. £ B $(p ■), j = 1, • • - , k.

Proof.   If S is small  enough, icf(y), q {, • ■■ ,qk\ is automatically again in gen-

eral position.   Then

ÍAjty,  qv ■•-, qk)-£(y)\  C\Ty

is the orthogonal complement in   A Ay, q v ■ • • , q¡) - çf(y)  of the projection of the

unit normal  v(y) on  Aj(y, a,, • • • ,qk) - çf(y).   That projection is given by

k

*y. qv ■ ■ ■ 7 qk) = 2>(y), ?,. - t(y))g'%k - tiy)),
;'=J

where  ((g'k)) = ((gjk))~K and  g fe = (a   - cf(y), qk - <f(y)>.   This shows that

p(y, al5-..,a,) varies smoothly with  (y, q ,,•••, q,).  In particular, if 5 is small

enough,

Ph. qv---,qk)\\ /(/>,

so that Aj(y, a., • • • , a, ) and  M  are transverse at y.  It also follows that   p =

P/||77|l   is smooth in its arguments.   But a set of generators for [A  (y, q  ,- • • ,q.) -

çf(y)î D T    is then given by

wfy, qv ■ ■ ■, qk) = q)■ - <f (y) - (f;- - cf (y), /i)zx,     j = l, • • •, k,

which also vary smoothly.  Hence, so  do the sectional curvatures
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KÍU,   V)  =   (RÍU,   V)V,   I<)/{||b||2||W||2   -    (U,    V)2\

when, for  a1, rV £ R,

k

u = u(y, qx, ■ ■ ■ , qk) = jj£   a'wÂy- fj»    •' 1k)'
z = l

k

v = tXy, Oj, • • • , qk) = £   b'w.iy, qv ■ ■ ■ , q¡).

7 = 1

Hence, if a1  and  b1  ate chosen in such a way that

Kiuix,   Py, ■ ■ ■ , pfe), vix, Py, ■ ■■ , pk))> 0,

then also

K(zz(y, q y, ■ • ■ , a^ ), f (y, a j, • • • , qk )) > 0,

if, for a small enough  § > 0,

y£Usíx),        q.£Bsip),    j=l,---,k.       Q.E.D.

5. Hypersurfaces with positive sectional curvatures.   In this section we prove

the following generalization of the theorem of Sacksteder [7, Theorem (*)] which

we shall refer to as  (S) for convenience.

Theorem 5.1.   Let  M be a complete Riemannian Hilbert manifold with nonneg-

ative sectional curvatures and with at least one point at which at least one sec-

tional curvature is strictly positive.   Let cf :M —► H be an isometric immersion of

M  as a hypersurface of a Hilbert space H.   Then

(i) £ is an  embedding.

(ii) ¿JÍM) C H  is the boundary of a convex body in  H; in particular, ¿;  embeds

M  topologically as a closed subset of H.

(iii) M  is homeomorphic to  H x Sn for some integer n > 0.

Proof. We shall let x. and o C Mx be a point and a plane section at x. at

which the sectional curvature is strictly positive.

(a) Suppose first that  <f is not one-to-one.  Say £(y.) = (f(yA = q £ H.  By

Proposition 3.1 there is an  L £ G(H, I, q) transverse to  M at  x    together with a

neighbourhood   V of  L   in   G(H, I, a) so that, if L    £ V,   L'  contains  zf(x) for some

x e £ (xQ), and  y., y2, x lie in the same connected component of ¿;~  ÍL1).  We

may assume that  a^zj) + f(xQ) C L, and then by Lemma 4.3 we may assume that

at  x e ç     ÍL ) there is a plane section of strictly positive curvature.   By Theorem

2.7 we may assume   L    and  M to be transverse.   But then we can apply  (S) to the

connected component of <f~  ÍL') containing  x, to get a contradiction to ¿;iy A =

(b) We now show that no line intersecting ¿;ÍM) transversally twice intersects

it again. For suppose there is a line that intersects M transversally at ¿jix A and

ç(x2) and intersects  M  again at  f(x?).   Then for y y  sufficiently near  Xy  on  M,
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the line lf(yj), £(xj] will also be transverse to M at y j and at a point y2 near

x      By applying Proposition 3.1, Corollary 2.5, Theorem 2.7, and Lemma 4.3 in

that order, we may suppose that  [<f(y,), ¿¡ixA] is contained in a linear submanifold

L e G(£, /, ff(x  )) transverse to  M, so that, for some  x near xQ,  y., y2, y,, x are

contained in the same connected component  X of ç     (L), and so that at least one

sectional curvature of ¿;~  (L) at  x is strictly positive.   But then  ¿j : X—>L  sat-

isfies  (S), contradicting the assumption that  [¿¡iy y), ff(y2)] meets £(£-1(L)) a

third time.

(c) To show now that ¿; is an embedding it is enough to show that each yQ e

M has an arbitrarily small neighbourhood U so that, for some neighbourhood V C

H of #y0), rHv)=£.

If £(zM) is contained in  T      + £(yQ), this is trivial. Otherwise, let / be defined

on  M - yQ by

/(y) = llf(y)-£(y0>ll-

Let y e M be such that ¿jíy) 4 T      + <f(yQ).   By following the integral trajectory  a

of - grad / and using (a) and the completeness of M we see that  a must contain

a point y y  such that <f(y y) 4 T      + ¿ríyn) and such that  M and  [£(yQ), ff(yj)] are

transverse at y,.  Choose neighbourhoods   £ of yQ and  W of y.   such that when-

ever y'0 £U, y y   £ W; then [¿¡iy^), <f(y J )] and M are transverse at yj and yQ. Put

I; = í/í(yí) + (l-/)í(y¿)|ie(-l, l), y¿  e £, y|   £ W\.

If  V contained points  ¿jíy), y 4 U', (b) would be contradicted.   This completes the

proof of (i).

(d) We will now show that the normal bundle over  M  is trivial.   If this is not

the case, there is a curve  yit) in  M  so that y(0) = y(l) = y.  and such that, if

viyit)) is a continuous lift of y to the unit normal bundle, ?Xy(0)) = - viyil)).  Use

(c) to cover M by an open covering S Uj so that  £a = £~ l(Va) for a connected open set  Va

C H.  Let   V = UaVa.  Since  y([0, l]) is compact there is an  e > 0  so that ßit) =

£íyít)) +ev(yít)) £ V - ¿;ÍM),  0 < t < 1.   Approximate  ß by a piecewise linear curve

in   V - ¿;ÍM) with the same end points, and combine it with the segment  !zf(y(0)) +

etviyiO)) |— 1 < Z < l|.   This gives a closed piecewise linear curve in   V that inter-

sects  f(M) transversely precisely once at f(yn).  But then by Proposition 3.1,

Theorem 2.7, and Lemma 4.3 there is an  Le GÍH, I, <f(x  )) transverse to  M with

the following properties:  (1) for some y near y Q, y and  xQ belong to the same

connected component of rf_   (L); (2) at least one sectional curvature of if_ Kl) at

xQ  is strictly positive; and (3)  V D L  contains a piecewise linear curve that

crosses  <f(£~  (L)) precisely once at f(y).   But this contradicts  (S).

(e) Let C be the convex hull of ÇÎM).  We want to show that ¿;ÍM) C dC.

Suppose to the contrary that £(y0) £ int C.  Then  C, and therefore also  M, lies on

both sides of  T     + zf(y0).   Using precisely the same argument as that given in (c)
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there must be open sets   W  , W2 C M and a neighbourhood   U of yQ with the follow-

ing property:  If y'x   £ Wj and y2  £ W2, and y^  £ (7, then çf(yj) and <f(y2) lie on

opposite sides of  Ty '   + çf(y "¿), and  [<f(yó), cf(y J )] and  [cf(y¿), <f(y2)l are trans-

verse to  ZVI  at  yL   and y '   and at  yQ   and y2   respectively.   By Proposition 3.1,

Theorem 2.7 and Lemma 4.3 we may assume that  [<f(yg), çf(y [ )] and  [<f(yg), cf(y2)]

are included in an  L £ G(AA, /, if(x A) which is transverse to  A4  and such that xQ,

y A y', y '   are contained in the same connected component of cf-  (L) and so that

¿f     (L) has at least one section of strictly positive curvature at x„.   We get a con-

tradiction now if we apply  (S) to this connected component.

(f) çf(zvl) is an open subset of dC. It is clear that, since one sectional curva-

ture is strictly positive at x„, C has a nonempty interior. Let p be any interior

point. Join p to a point <f(y0) £ çf(Al). The line [p, cf(yQ)] must be transverse to

M at y„, for otherwise ¿f(y0) could not be a boundary point of C. Hence for some

neighbourhood U C M of yQ this remains true for [p, <f(y)], y £ U. Thus the joins

of p to the points cf(y), y £ U, form an open pencil of rays at p which must inter-

sect  d C in an open  set, which clearly can be none other than  ç(U).

(g) To prove that cf(/M) = c?C we borrow the following argument from [l]:

Suppose  p £ dC - if(M).   By [3, p. 3l], c9C is connected, and thus there exists a

rectifiable curve   8(t) in  d C,  t £ [0, l] with  0(O) = cf(yQ)  and  0(l) = p.  Since

<f(ZVl) is open in  <9C there must be some  tQ £ (0, l]  so that  8(t) £ cf(ZVl)  if t < Z„,

while  8(t A 4 tf(M).  Let  \t \ be a sequence approaching  tQ from below.   Let  a. be

the arclength of 8 between  8(6)  and  8(t.).   Then  [a.i  converges and

d(8(t), 8(t)) <\a. -a.\

shows that lcf~   t9(z.)}  is a Cauchy sequence in  M that does not converge, contra-

dicting the completeness of M.   The proof of (ii) is now also  complete.

(h) Part (iii) is now a direct consequence of [3, p. 31, Proposition 1.7].    Q.E.D.

6.   Hypersurfaces with zero sectional curvatures.   In this section we prove the

following generalization of the theorem of Hartman and Nirenberg [2, Theorem III]

which we shall refer to as  (H) throughout this section.

Theorem 6.1.   Let  M  be a complete Riemannian Hilbert manifold with zero

sectional curvatures.   Let çf : M —* H  be an isometric immersion of M  as a hyper-

surface of a Hilbert space  H.   Then çf(zVl)  is a cylinder of the form ß x A  where

ß is a plane curve and A   is the closed subspace of H of codimension two orthog-

onal to  the plane containing ß.

Proof.   Choose  xQ £ M  and let  L  be a plane through  çf(*0)  transverse to  ZVI.

If for each such  L  the component of çf~  (L) containing  x    maps into a line, the

theorem is finished.   For then  çf- l(L) must be a geodesic, and thus for a dense

subset of the unit tangent space  M     (1), the corresponding geodesies would be
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mapped into lines by <f.   By the continuity of ¿j this would then be true for all  v £

Mx  (1), making  cf(M) a hyperplane in  £.

Thus, we assume for the rest of the proof that we have a plane   LQ through

xQ transverse to  M so that the component of zf~  ÍLn) containing  xQ  maps into a

unit speed curve  a which is not a line.

Let d¿¡ívQ) be the velocity of a at xQ, vQ £ M    (1).  It L £ G(£, 3, L o) is

transverse to  Al,  (H) tells us that $,£~  (L)) is a two dimensional  cylinder gener-

ated by  a and  d£iv) tot some  v £ M     (1).   Let   K      CM       be the linear span of
x0 *0X0

all vectors  v  obtained this way.  Clearly,  dçÎKx  ) is independent of the position

of x. on a.  We want to show that if v £ K    , then
U X Q

where  y (z) denotes the geodesic in  M with  y„ (0) = v.  Note that

77

v = T"1 azf.,       v. e M    (l),
4* *o
z=l

where  f.  is obtained as above as the generator of a cylinder zfCf _  ÍL .)),  L ■ £

GÍH, 3, Lq) transverse to  M.  We may assume  Vy,---,v    linearly independent,

and let  L    = [L.,.-.,L   J.   Let \L. }._.  be an approximating sequence for  L ,

L.   e G(£, 22 + 2, LQ) transverse to  M.  Such a sequence exists by Theorem 2.6.

For each  /', the connected component of zf~  ÍL') containing  xQ maps into an

(?2 + l)-dimensional cylinder generated by  d^ivA and an 22-space  d£ÍK.),   K- C

M     .  Select an orthonormal basis for  K.:x 0 7

72.,,   • •• , V.     £ K.   r\M      (1).
7I in 1 xQ

Let  w    ,.-.,w.n be the orthogonal projections of the  vectors  dÇiv ./),-•• ,d¿A_v.n)

on  L    - ç(xQ).   For large  / these vectors will be linearly  independent and will be

close to unit lenght.  Hence, by choosing a subsequence if necessary, we may

arrange that, as  7 —► °°,

#(1;..)-. w. £L'-Í(X(¡).

But then  [v..]"0     is a Cauchy sequence in  M    (1), whence there are vectors   u. £
7*7 = 1 J 1 xo I

M     (1),   ¿ = 1, • • • ,72, so that  v .{—> u. as /—> 00.   Clearly then d^iu .) = w..  But

then

rf o y      .    (z) = lim ff ° y     ¿     (/)

= lim {£(*„) + utgKvJi = £(*„) + íaS«,
y-KX5

Thus the vectors  »jf ■••»«'„  generate an 22-dimensional linear subspace  /  of  L'

~ Qxc) with the property  / + cf(xQ) C CÍM).   For any value of  i = 1, • • • , 22,

dim(L. - tf(x0)) + dim/ = n + 3 = dim(L' - <f(*0)) + 1,
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whence  / D ÍL . - cf(xQ)i must be at least one dimensional.   In fact, since  / C cf(Al)

- ¿f(xn) and since the connected component of tf_1(L¿) containing  xQ satisfies

(H), it follows that  / O ÍL¿ - cf(xQ)|  is precisely the line generated by  dÇ(v).

Thus  ¿çfd^), • • • ,d¿;(vn) will also generate  /, whence, for v £ K        cf o yv  is a

straight line.

If v £ Kx  , cf o yv   is a straight line.   For let v¿ £ AC      be such that  v. —* v

as  z —► oo.  Then

cf O y  it) =   Hm   cf  O yv (t)
z—»oo z

= lim [cf ix) + td£(v.)\ = cf (x ) + td£(v).
2—»OO l

It also follows that  v    ¿K     , fot otherwise  çf o y      would be a straight line,

which would mean cf o y      CL„.   But then  cf o y    (t) = a(t) which contradicts our' VQ 0 "        fVQ*

assumption that  a is not a straight line.

We want to prove now that vQ and  K%    together span  M     .  Suppose there is

a vector v £ Mx (1) orthogonal to both  vq and   K    .   Let  e > 0.   By Theorem 2.6

there is a linear manifold  L £ G(AA, 3, LQ)  transverse to  M and so that there is a

vector

1w eWcf)-HL-cf(xn))nM    (1),       (w,v)z>l~(¿>0.

By  (H), w may be expressed as

w = aizn + tjiz;',       w' £ K     n M    (l),       a, ¿> £ R.
^O *0

But then    (zv, zz.) = 0 =  (f, izz')   implies also   (v, w)  = 0 which contradicts   |(v, tzz) |

> 0.

Theorem 6.1 now follows if we put A = cicf(AC    ),  ß = the orthogonal comple-
* 0

ment of A, and ß the orthogonal projection of  a. on  B.     Q.E.D.
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