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A SHEAF-THEORETIC DUALITY THEORY

FOR CYLINDRIC ALGEBRAS

BY

STEPHEN D. COMER(')

ABSTRACT.   Stone's duality between Boolean algebras and Boolean spaces

is extended to a dual equivalence between the category of all  ^dimensional

cylindric algebras and a certain category of sheaves of such algebras.   The dual

spaces of important types of algebras are characterized and applications are

given to the study of direct and subdirect decompositions of cylindric algebras.

It is a thesis of this paper that certain sheaves serve adequately as the

dual spaces of cylindric algebras in the same way that Boolean spaces serve as

the dual spaces of Boolean algebras.   This duality is described in §1.   These

results are established by algebraically imitating, with suitable cylindric algebra

concepts, the sheaf duality theory for rings presented in R. S. Pierce's mono-

graph [6].   These results also hold for other versions of algebraic logic such as

polyadic algebras.   In ^2 the dual spaces of locally finite, representable, and

regular algebras are characterized; §4 gives some applications to the decompo-

sition theory for cylindric algebras.

Our study can be viewed in several ways.   In algebraic logic, with each first-

order theory  Y there is associated an algebraic structure (called an algebra of

formulas) that describes certain aspects of Y.   Since the theory  Y can be deter-

mined from the set of all complete theories extending  Y, the following problem

concerning the adequacy of algebraic logic arises.   Assuming we know the alge-

bra  $£  associated with each complete (and consistent) theory  A extending the

theory  Y, how can we describe the algebra  %r associated with Y in terms of all the

pairs  (A, ^a)?   This problem is similar to the one in algebraic geometry of de-

scribing the ring associated with an affine variety in terms of the local rings

given at each point of the variety.   In our situation, if we think of a theory  Y as

being determined by the set  Xp  of all complete extensions of  Y and think of the

algebra of formula  ^¡A as being assigned to each point  A  of Xp, then our problem

is of the same nature as the one in algebraic geometry mentioned above.   This

analogue with algebraic geometry is very close; in §3 we solve the logical prob-
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lern by just imitating the ring theoretic solution to the geometric one.   The idea is

to consider  Xr as a topological space and to glue all of the   ^'s   (A £ Xp) to-

gether with a suitable topology to form a space  v(T).   This is just the construc-

tion of a sheaf e>(D of cylindric algebras over the space  Xj,.   Then, the alge-

bra   %y is (UP to isomorphism) the algebra  r(Xp, o(r)) of all continuous sections

of the sheaf (Xf) S(D).

The analogue of the problem raised above concerning the adequacy of Boolean

algebras for studying propositional theories has a well-known solution.   Com-

plete (and consistent) sentential theories extending a given theory  Y correspond

to maximal ideals in the Boolean algebra  ftr and the topological Stone represen-

tation theorem tells us how to describe   %r in terms of these ideals.   The repre-

sentation as all sections of a sheaf is a generalization to  a-dimensional cylindric

algebras of a sheaf-theoretic formulation of Stone's theorem.   Not only does the

duality between Boolean algebras and Boolean spaces extend but also a

form of the correspondence between ideals in Boolean algebras and open subsets

in the dual space.

From the viewpoint of universal algebra the representation of an algebra as

all sections of a reduced sheaf is a certain subdirect decomposition in which (at

least in the nice cases) the factors are directly indecomposable.   This represen-

tation has the advantage that it is unique in a certain sense.   A common universal

algebra generalization of this aspect of both the duality results outlined here and

the ring representation results in [6] can be found in [l].

0.   Preliminaries.  An a-dimensional cylindric algebra will be referred to as a

CA    and a Boolean algebra as a BA.   Basic facts about CAa's may be found in

[3] and [4].   In this paper it is convenient to disallow the one element algebra;

thus, it is assumed  0 ^1 in all  CAa 's.   When a class of CAa 's is treated as a

category the morphisms are the usual homomorphisms between members of the

class.

A central position in this study of a CAa 21  is played by  Z(2I) = \x £ A:

Ax = 0! which forms a Boolean subalgebra of  a.   Z(2I) plays the same role for

CAa's that the BA of central idempotents does for rings in [6].   The connection

between cylindric ideals of a CAa   21 and BA ideals of  Z(2I) also plays a major

role.   For an ideal  /  of the BA  Z(2I), / = \x £ A:   x < y for some  y £ J\ is the

smallest  CAa ideal of 21 containing  /; for an ideal  / of  21,   /ClZ(2I) is a BA

ideal of  Z(2I).   Observe that   ]C\ Z(2I) = / and   /ClZ(2I) C /.   An ideal  / of  21  is

called regular if   /ClZ(2I) = / and a  CAa   21  is regular if every ideal of 21  is reg-

ular.   It is known that every LCAa  is regular and it is obvious that every simple

CAa is regular.   Regular algebras arose naturally during this investigation; they

appear to be a very natural generalization of LCAa's and share many of their
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properties.   It is easy to show that a CAa §1  is regular if and only if every prin-

cipal ideal of  u is generated by an element of Z(2I).   This condition is equiva-

lent to:   for every  x e A,  Ac,„*x = 0  for some finite subset  Y oí a..   For a < a>

every CAa is regular; if a > ca every regular CA    is an RCAa by 2.3 and 2.4

below.

The definition of a sheaf  (X, b, rr) oí CAa's and the basic elementary prop-

erties of sheaves and sections of sheaves can be obtained from Part I of [6] by

replacing the word "ring" by "CAa".   In case  n and/or  X are understood, a

sheaf of CAa's is denoted by  (X, o)  or simply o and it is called an a-space.

r(X, ö) denotes the set of all continuous sections of (X, o, n); it is given the

structure of a CAa by considering it as a subalgebra of II  eXb    where  o    =

Z7-Ix is the stalk over  x £ X.   If  X  is a Boolean space, i.e. a totally discon-

nected, compact Hausdorff space, then  YiX, o) is a subdirect product of

\o   :   x e X\.   If X is a topological space and a CAa 21 is given the discrete

topology, then ö = X x A  with the product topology is a sheaf of CA   's over  X

with each stalk ö    = ix} x 21  isomorphic to  21.   ö  is called the trivial v--sheaf

over X.   For this sheaf YiX, o)  is isomorphic to the CAa of all continuous func-

tions from  X  into 21.

1.  Duality theory.  Contravariant functors between the category of all CAa's

and a certain category of a-spaces are described below.   The basic properties of

these functors and the duality they determine are established by replacing ring

notions by suitable CAa notions in the arguments given in Part I of [6].

An a-space  (X, ö)  is called reduced if X  is a Boolean space and, for all

a £ Z(r(X, §)) and x e X, either  <r(x) =0     or  aix) = 1   .   The following propo-

sition is useful for identifying a-spaces as reduced.   The condition  (*) is not, in

general, necessary (cf. Example 2.5).

Proposition 1.1.   // (X, b)  is an a-space where  X  is a Boolean space then

(X, b) is reduced if

(*) o     is directly indecomposable for all x £ X.

// (X, o)  is a regular CAa (z'n particular an LCAg), then (*)  is also neces-

sary.

Observe that a trivial 2I-sheaf  (X, b)  is reduced if and only if X  is a Bool-

ean space and  21  is directly indecomposable.   Unlike the situation for rings, a

subsheaf of a reduced sheaf of CAa's is always reduced.

We now describe a functor that associates to each CAa 21 a reduced a-space

(X(2I), S(2I)) = Ud called the dual space of  21.   The base space  X(2I) is the

usual Boolean dual space of the BA  Z(2I).   To be concrete take  X(2I) as the set

of all maximal ideals of  Z(2I); this becomes a Boolean space when we take the
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collection of all sets   ¿V(y) = \M £ X(2I):   y £. M\ as a basis for the topology.   For

M £ X(2I), let S,M(2I) = 2I/M  (the stalk over  M) and S(A) = U l^W:   M « *(äM-

Note that  o,vi   (21) and o^  (21) are disjoint when  M.^M       The projection

77:   u(2I)—>X(2I) is defined for s £ "M&) by  77(5) = M.   To describe the topology

on ö(2I) we need some auxiliary functions.   For a £ A we define a function  o :

X(2I) -, S(2I) by oaiM) = a/M tot all   M e X(2I).   The topology given to S(2X)  is

the smallest topology for which all  a  's  ia £ A) are open.

It turns out that  21    = (X(2I), û(2X))  is a reduced a-spaceand that the mapping

fa:   21 —» r(X(2I), o(2l)) defined by  ç\.(a) = oa  is an isomorphism.   In particular,

under <fä, an element  a £ Z(2I) corresponds with the characteristic function

oN £ r(X(2I), S(2I)) of the clopen subset  Af = Nia) of X(2l).

To make the correspondence  21 vv— U    into a functor we describe the dual

kd = (k, A0)  of a homomorphism A:   21—55.   For   M  £ X(B)   let  Xi/M) =

A" UM) n Z(2l);  A is a continuous map of X(B) into X(2I).   For M £ X(B) and

a £ A define  A  (M, a/kM) = A(a)/M.   Then A  (M, • ) is a homomorphism of

SjTM(21) into ^(B) and  kd is a sheaf morphism of  Brf  into  2Irf.

The functor from the category of all reduced a-spaces (and sheaf morphisms)

to the category of CAa's is easier to describe.   For an a-space  C = (X, o)  let

U    = T(X, a); if A = (A, t/>)  is a sheaf morphism from the a-space  (X, 0)  into

(Y, ft), the dual A*:   r(V, ft) — T(X, S)  of A is defined by requiring

i\*o)ix) = <pix, oikx)) tot x £ X and   o £ TiY, %).

The following theorem justifies calling 21    the dual space of  21.   (Cf. Theo-

rem 6.6 in [61.)

Theorem 1.2.   The correspondences  21   w—21°   (A   wk ) and U   w-»0*

(A vv* A  ) are contravariant functors between the category of all CAa's and the

category of all reduced a-spaces.    Further, there exist natural isomorphisms

£a: n^iudy,    Ve: e^(0*)rf

showing that the categories are dual equivalent.

The isomorphism <fa  in 1.2 is the function defined above.

The preceding theorem raises the problem of finding the dual of various

cylindric notions.   We mention a few.   For a CAa homomorphism  A:   21 —► B we

always have  A(Z(2I)) C Z(S).   For A onto 53 we say that A is a conformai epi if

A(Z(2I)) = Z(B).    A regular  CAa 21  (in particular an LCAa)  has the property that

for any  B  and  A mapping  21 onto B, A is a conformai epi.    An example of a

CAa without this property is given in 2.5.   The dual of the notion of conformai

epi is very nice—it is a sheaf morphism  (A, <p) where  A is one-to-one and  f/i

restricted to each stalk is onto.   The proof is similar to the one given for rings [61.
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Also as with rings we can extend to CAa's a form of the correspondence

between ideals of BA's and open subsets of Boolean spaces.   Let  Id   (21)  denote

the set of all regular ideals of  21.   Id   (21)  is a sublattice of the lattice   Id(2I)  of

all ideals of 21.   For a e YiX, b) we call the closed subset  ||oj| = ix £ X:

aix) =í 0  } the support of a.   For any subset  U of X define j[U] = \a e

YiX, S):   ||ct|| C U\  and for any subset   /   of  T(X,  S)   define   U[j] =

U Í||ct||:   a £ /}.   The following is proved in the same way as the corresponding

theorem for rings (see 9.3 of [6]).

Theorem 1.3. The function J w-- U[J] is an isomorphism from Id (T(X, b))

onto the lattice of all open subsets of X; its inverse is the function mapping U

to J[UI

Using 1.3 the problem of characterizing the class of ideal lattices of certain

CAa's can be reduced to the same problem for BA's.   The latter problem is

fairly easy.

Corollary 1.4. // K denotes the class of all BA's, LCAa's, tegular CAa's,

or iif a < cj) CAa's and L  is a lattice, then the following are equivalent.

(i) L is a complete, compactly generated pseudo BA in which an element is

compact if and only i¡ it is complemented;

(ii)  L  is isomorphic to Id(^)  ¡or some  &  in K;

(iii)   L  is isomorphic to Id   (¿O  ¡or some  CAa 21.

Parts of 1.4 are mentioned in L3l; (i) does not characterize the class of ideal

lattices of CAa's when a > co.

2.  Duals of LCAa and RCAa's.   In this section we are interested in de-

scribing the dual spaces of LCAa's, RCAa's and regular CAa's.   If 21  is an

LCAa and (X, b) its dual space, then 21 = YiX, ö), so 1.1 implies each stalk

ö     is directly indecomposable and hence simple since ö    is an LCAa.   This

suggests that we look for the duals of LCAa among the following type of a-spaces.

We say an a-space (X, b)  is regular if  X  is a Boolean space and  o  is a

sheaf of simple CAa's (i.e. ö    is simple for all x £ X).   By 1.1, a regular

a-space is reduced.

Before characterizing the dual space of an LCAa we need to observe an

additional property.

Lemma 2.1.. // (X, b) is the dual space o¡ an LCAa 21, then for every s £ o

there is a neighborhood T  of s such that  At C As for every  t £ T.

Proof. It is enough to show that if a £ r(X(2I), S(A)) and M £ X(2I), there

is a neighborhood ÎÏ  of M  for which  Aa (/V) C Act (/Vl)  for all  N eîl.   Since
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Ax is finite, z = Sic   x  © x:   k £ Ax ~ Aa (M)i  is in  21.   Thus,   N(- c.     .2) is
K X \&Z )

the desired neighborhood of  M.

Let us call an a-space (X, 0)  locally finite if (i) each stalk is an LCA  ,

and (ii) every s e S has a neighborhood  T in which Ai C As for all t £ T.

Under assumption (i) it can be shown that (ii) is equivalent to the apparently

stronger condition that every  seo  has a neighborhood in which every element

has the same dimension set as  s.

Theorem 2.2.  A72 a-space  (X, S)  is the dual space of an LCA    if and only

if (X, o)  is a locally finite regular a-space.   Consequently the functors in 1.2

give a duality between LCA   's and locally finite regular a-spaces.

Proof.  In view of 1.1 and 2.1, it suffices to show that T(X, S) is an LCAa

whenever (X, o) is a regular, locally finite a-space.   Suppose we have such a

(X, b) and a £ T(X, o).   It follows that for each  x £ X there is a neighborhood

N    of x such that  Aff(y) C Aer(x) for all y £ N  .   Applying the partition property

(see [6, p. 12]), there exist a finite number of clopen sets   N. for   1: < n which

partition  X and such that, for each   i < n,   N. C Nx    fot some  x. EX.   Now  Aa C

(J \Aoix):    i < n\ which is finite.   It follows that T(X, §)  is an LCA    .

Another important class of CAa's is the class RCAa of all representable

CAa's.   It is well known that this is an equational class, so, on the strength of

general facts about sheaves over Boolean spaces, the following holds.

Theorem 2.3-  (X, o)  is the dual space of an RCA    if and only if it is a re-

duced a-space of RCA   's.   Consequently,   the functors in  1.2 give a duality

between RCAa's and reduced a-spaces of RCAa's.

For a < (o every CA    is locally finite; so every reduced a-space is regular.

This is not true for a > a>.   It is known from [3] that, for a > a>, simple CAa's

are representable; thus, the class of regular a-spaces lie between the class of

regular locally finite a-spaces and the class of reduced a-spaces of RCA   's.

By the following result regular CAa's are the duals of regular a-spaces and

consequently are representable if  a > co-

Theorem 2.4.  (X, 0)   is the dual of a regular CAa if and only if it is a regu-

lar a-space.   Consequently 1.2  gives a duality between regular CAa's and

regular a-spaces.

The proof of 2.4 is similar to that of 1.11 in [6] using in the appropriate

places the property of simple CA  's  §x that for every 0 ^ a £ e>x,  c,F.a = 1  for

some finite subset  F of a.   From the proof of 2.4 it follows that  ||o-||   is clopen

whenever a £ T(X, o) where  (X, o)  is regular.   Consequently, when (X, o) is a
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regular a-space (in particular, the dual of an LCA   ) the topology on S  is

Hausdorff.

For a >oj, there are simple CAa's which are not LCA   's   (see [3]); hence,

the class of regular CAa's properly includes the class of LCA   's.   A regular

CAa is clearly semisimple.   The example below (with  E simple) shows that a

semisimple CAa does not have to be regular and, moreover, the stalks of the

dual space of a semisimple CA    do not even need to be directly indecomposable.

(Cf. 1.1 and remark on conformai epi's following 1.2.)

Example 2.5-  Let  E be a directly indecomposable CAa,  a > co, and let / be

the set of all finite subsets of  a.   Choose an ultrafilter   F on  I such that

ÍA £ /:   A D H £ F for all  Y £ /.   We claim

(1) The epimorphism À:     E   -»    (S/F  induced by the ultrafilter  F is not con-

formal.   (Consequently,   S  is not regular.)

We must construct an element with dimension set  0  in the ultrapower    E/F

that is not the image of an element in  Z( E).   Choose a one-to-one  a ■   I —►"!

such that, for all  Y e I,  Y C\  a(Y) = 0  and  ct(D  contains at least two elements.

Define / £ 'E by f(Y) = da(r) = ll\dK Ä=   K, A £ o(Y)\ for Y e I.   Since, for each

k < a, \Y e h   Y DM\ ç\Y el:   cJiY) = fiY)\ e F, Mf/F) = 0.

Also observe that f/F * 0/F and f/F ji 1/F.   This is true since /(D = do      yt 0s

and  f{Y) ^ 1    for all  Y e I.   To show the  A  in (1) is not conformai it is enough

to show f/F /A(Z('S)).   For g e Z('E), Ag = U iAg(D:   T £ /} = 0 and Z(E) =

i0, 1}  so ir £ /:   giY) = 0} u ir £ /:    giY) = 1} = / £ F.   Thus, one of the two

sets above belongs to F implying that g/F = 0/F or g/F = 1/F.   Consequently,

//F¿(Z('E)) and (1) holds.

Implicit in the above proof of (1) is a description of the dual space of a

product of directly indecomposable CA   's.   We state the general result.

Proposition 2.6.  Suppose  21 = n ef53., 53. directly indecomposable CAa's.

Then

(a) Z(2I) = 'i0, 1}  and X(2I)   is the Stone space of l2.

(b) Since there is a biunique correspondence between the maximal ideals of

Z(2I) and the ultrafilters on I, the stalk §M(2I) of ïïd over M e X(2I) is just the

ultraproduct n.e/53./F  where  F  is the ultrafilter on  I corresponding to M.

3.  Sheaves and theories.   In this section we give an interpretation of the

dual space of the algebra of formulas associated with a standard first order

theory.   It is this interpretation that yields a solution to the question posed in

the introduction.   The interpretation can obviously be extended to theories in

other languages; however, we restrict ourselves to a standard first order language

L with equality in which we have variables  v. fot  i < cj and each predicate

symbol has finite rank.   The set  Fmla.    oí formulas is defined by recursion in
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the usual way.   Sentences are formulas without free variables; the set of

L-sentences is denoted by SentL.   A set  Y of L-sentences is a theory if for

every  cf> £ SentL, Y \- <f> implies  <f> £ F.   A theory  Y is complete if  Y is con-

sistent and either cf> £ Y or—|cS £ Y for every L-sentence  cf>.   For information on

the relationship between languages and CAa's see [4].

An LCA^ gr, called the algebra of formulas of  Y, can be associated with

an L-theory  Y.   For an L-theory  Y define

Hr  = \icp, if/):   <p, ip £ FmlaL,  Y \-  cp «-» ifj\.

The elements of  gp  are S r -equivalence classes of L-formulas; the cylindric

operations on §r   are the natural quotient operations induced on 5p -equivalence

classes by the analogous logical operations on Fmla,.   For brevity, we denote

the tip-class of a formula  cS by  [c¿]r.

It is easily seen that  gp   is an LCA^ and that  Z(gp) = 5e72'L/Sp •   For an

L-theory Y let Xr be the set of all complete theories of L  extending Y.   For

A £ Xr let  M[A] = !H <p]T:   <p £ A! and for  M £ X(gp) let  AM = \cf> £ SentL:

[~l <7i]r £ M\.   For a theory  Y, define  S(T) = \JbexT\&\ x g¿   (the disjoint union of

íg¿:   A eXp!).

Theorem 3-1-   There exist suitable topologies on Xp and o(T) such that

(Xp, d(r))  is (up to sheaf isomorphism) the dual space of gp .

Proof.  It is well known (see [4]) that the correspondences  A w—► M[A] and

M *v-*A[M]  are inverse one-to-one functions between  Xp and  X(gp).   Using

these functions   X„ can be made into a Boolean space.   The relation / =

l([<7j]r, [</J]A):   <P e FmlaL\ is a homomorphism of gr   onto  g¿.   The ideal  / of

gp   associated with  / is   / = [[çS]r:   A   f- -i</5!;  thus, / D Z(g p ) = M[A].   Since

LCAJs are regular, / = M[A]  and   g¿   =  gp /M[A].    The disjoint union of the

above isomorphisms gives a one-to-one function  h from S(gp )  onto viY); trans-

ferring the topology to make  h a homeomorphism, (Xp, S(T))  becomes an a-space

and the maps  A ^^*- M[A]  and   h give rise to a sheaf isomorphism of (Xp, oiY))

onto (X(g^), S(gp))-

For completeness we describe the topologies on  Xp and ö(r) arising in the

above proof.   Note that these topologies are quite natural and do not depend on

the duality theory.   A basis for the topology on  Xr is the collection of all sets

N(<tj) = ÍA £ Xr:   (p £ A! for 0 £ SentL-   A basis for the desired topology on  S(T)

is the collection of all sets  B^   , = ¡(A, [<rS]A):   \fi £ A, A £ XY\ where  <p £ FmlaL

and i/f £ Sent,.

The duality result 1.2 and 3-1 allows us to determine   gr    in terms of

jgp :   A £ Xp! solving the question posed in the introduction.
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Corollary 3.2.   For an L-theory Y,  %y  = YiXT, S(D).

If S is an a-space over  X and   Y C X, then S | Y = n~  (V)  is a sheaf over   Y

called the restriction of (X, b) to   V.    If (X, b) is a reduced a-space, Y a closed

subset of  X, and every  s e b has a neighborhood  T such that Ar C As for all

t £ T, then a function extension argument shows that  (Y, b\Y) is a reduced

a-space.   If (X, b) is a regular a-space and   Y is a closed subset of X then

(V, ö | V)  is regular.   In particular, either of the two statements above can be used

to show that the restrictions of a locally finite regular a-space to a closed subset

gives a locally finite regular a-space.   The following result shows that a restric-

tion of i$f)    is the dual space of another L-theory.   Denote by  fi  the L-theory

consisting of all logically valid L-sentences.

Proposition 3.3-   Fora language  L, the dual spaces of algebras of formulas

associated with L-theories correspond to restrictions of (X„, ö(fl))  to closed sub-

sets  of  X„.

Proof.   It is well known that for any L-theory  Y there is a conformai epiA:

¿Çq  —» Sr   given by  A([r/)]n) = [</>]r. for every formula   çS.   The dual morphism

kd = (Ä, A0):   (Xr, S(H) -* (Xfl, S(fl))  is easy to describe:   for  A £ Xr and

(A, [aS]A) £ S(fl)A, MA) = A and A°(A, (A, [<f>]A)) = (A, [cf>]à) e S(DA.   Thus, \d is an

isomorphism of (X„, ö(T))  onto the restriction of (X„, ö(fl))  to the closed subset

Xp of Xjj.   Moreover, every restriction of (Xfl, 5(A)) to a closed subset   Y of Xn

is (up to isomorphism) the dual space of an algebra of formulas; for if  T = f| Y,

then   Y = Xp since   Y is closed and the dual space of  ^¡r    is isomorphic to

(y, S(fl)|y).

4.  Applications to the decomposition theory of CAa's.   In this section we

give some easy applications of sheaf theory to the study of decompositions of

CA  's.   Trivial sheaves will be used to construct direct and subdirect decompo-

sitions with specific properties.   An extensive study of the properties of direct

and subdirect decompositions of CA   's can be found in [3].   Several of the results

to follow are new; for those which are known, the proofs and/or viewpoint is

different from [3].

In [3] it is proved that every CAa has the refinement property.   Consequently,

a direct decomposition of a CAa into directly indecomposable factors is unique

(up to isomorphism).   In [2] Hanf proved that various pathological direct decompo-

sitions can exist for BA's.   Theorem 4.2 shows that these decompositions can

exist for nondiscrete CAa's  (LCAa's) as well.   The following lemma is

essentially due to Jdnsson [5]; its proof (in a nonsheaf theoretic form) and 4.2

can be found in [3]-   We include it here because it is a nice application of the

trivial sheaf construction.   In the following  53|fl denotes the relativized BA and
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21 I/a denotes the relativized CA   .

Lemma 4.1.   // B  is a BA  and E   is a directly indecomposable CA   , there is

a CA a 21  and an isomorphism f:   53»-» Z(2X)  such that the following hold:

(i)     for all a, b £ B,   B|a » B|è  iff U\fa = 2I|/è;

(ii)     if  S   is an LCA   , so ¿s  21;

(iii)    /or 277zy variety   V of CAa's, 21 e V  iff £ e V.

Proof.   Given  B and   E as above let  X be the Stone space of  B and

(X, X x £)  the trivial E-sheaf over  X.   Then  21 = Y(X, X x £) is the desired

algebra.   The function  / is defined by  /(è) = oN,,\  (the characteristic function

of Nib)) fot  b £ B.   It follows from Ç1 that / is an isomorphism.   Parts (ii) and

(iii) are obvious from the properties of sheaves so it is enough to verify (i).   If

U\fa^ U\fb, then  Z(2I|/a) &1 Z(îl\fb); thus   B|a * B|6 follows.   Now suppose

B|ö = B|¿).   Then there is a homeomorphism mapping  N(a)  one-to-one onto  Nib);

this homeomorphism induces an isomorphism of the trivial E-sheaf  (A/(a),

Nia) x E) over  Nia) onto the trivial E-sheaf  iNib), Nib) x E)  over  Nib).   Since

N(ß)  is a clopen subset of  X, the restriction mapping gives an isomorphism

2I|/a â* HM«), Nia) x E).   Similarly, ?I|/& & T(N(è), N(è) x E).   It follows that

2I|/a a- U\fb as desired.

As a consequence of 4.1 and Hanfs result [2] the following result is

immediate.

Theorem 4.2.   For any a   there are nondiscrete LCAa's 21, B, E  such that

(i) 21 * 21 x B x B  and 21 £ 21 x B;

(ii)  2I|E|2I and 22I ̂ 2S  but 21 ££.

Moreover, a nondiscrete CA     21  77zay ¿>e chosen to belong to any given variety

and not to another.

The various other pathological kinds of decompositions established by Hanf

can also be extended   to nondiscrete  CA  's.   For other uses of 4.1 see [3].

Next we turn to the study of subdirect decompositions.   We restrict ourselves

to the following unique decomposition properties.

Definition 4.3- (i) A CAa 21 has the strict unique irredundant subdirect de-

composition property if whenever (K.: i £ I) and (L : j e ]) are two systems

of ideals of 21  such that

(D n£e/K. = io}=nye/LI,
(2) 2I/K. and  2I/L. are subdirectly indecomposable for  z £ 1, j £ J;

(3) K. <t K., and   Lk$L., for   i, i' £ I, j, /' £ ] with   ijti' and  / -¿/';

then   |/| = l/l   and there is a one-to-one function / of  /  onto  /  such that   K. =

L,,..  for all  i £ I.
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(ii) A CAa 21 has the unique irredundant subdirect decomposition property

if whenever  21 =r I C    , II.,,53.  and  21 a- | C   ,I1.,,E. with   53.  and  E.  subdirectly
1 — sd     i £Z    z ! —sd    jej    j i i J

indecomposable such that for no  / C / and no  /   C /  is  21 S- | C   ,11.,,' 53. and

21 =r | C  jll.,, ' E., then   |/| = |/|  and there is a one-to-one function f of I onto  /

such that  53 . ^ E ., ..   for all   i £ /.
i / (z)

It is easily seen, on general algebraic grounds, that 4.3 (i) implies 4.3(a)

and that 4.3 (i) is implied by the  strict refinement property.   In [3] only 4.3 (ii) is

considered.   It is shown in 2.4.42 that the unique subdirect decomposition prop-

erty 4.3 (ii) holds for a CAa when only finitely many factors are involved (i.e.

4.3(ii) with the additional assumption that  |/|, |/| < <y).   The proof of 2.4.42

actually establishes a stronger result.   Namely, it is shown that any two finite

systems of ideals in a CA    have a strict refinement.   The general algebraic

implications mentioned above then establish 4.3 (ii) in case   |/|, |/| < a>.   In 4.4

we show that 4.3 (ii) holds with restrictions for a reasonably large class of

CAa's including all LCAa's.   We then give a few examples to show that43(i) fails

very often even for LCA   's.

Proposition 4.4.   // 21  is a regular CAa, then 21 has the unique subdirect

decomposition property 4.3 (ii).

Proof.   Suppose   {53  :    z £ /)  and   (S :   / £ /)  are two systems of subdirectly

indecomposable CAa's each giving a subdirect decomposition of  21 as in the

hypothesis of 4.3 (ii).   Thus, there exist two systems of ideals   (K.:    z £ /) and

(L.:   / £ /)  of 21  satisfying conditions (l)-(3) in 4.3 (i) such that 21/rÇ S- 53 ¿

and  2I/L. =- E..   For  z £ / and  ; £ /   let  M. = K.   n   Z(2I) and   N. = L. O Z(2I).

Conditions (1)—(3) or 4.3 (i) imply that   AL = K., [Mr.   i e l\ is a dense subset of

X(21) and that  M. jt Al.'  whenever   i ^ i   .   Similar facts are true about the  zV.'s.
i i ;

The notion of irredundancy used in 4.3 (ii) is so strong we can prove the follow-

ing.

(1) Every  M. (and similarly   N.) is an isolated point of  X(2I).

By the irredundancy condition on the   53.'s and the regularity of the ideals,

¡M.:    z € I, i ft z'0! is not dense in  X(21).   Thus, there is a clopen subset   N such

that  Mj    e N and  N is disjoint from  izVL:    z e I, i ^ zQ }.   Since   X(2I)  is Haus-

dorff and  \M.:    i £ /}  is dense, \M.\ = N; thus, M¿     is isolated.

Since isolated points of  X(2I)  correspond to maximal principal ideals of

Z(2I), it follows from (1) that, for every   i e I, M. is the ideal generated by the

dual atom a. of Z(2I).   Since   fl -€ ,M .= ¡0}, it follows that  ia .:    z £ /} is the set

of all dual atoms of  Z(2I).   Similarly, for each j £ /,   N. is the principal ideal

generated by a dual atom  h. of  Z(2I) and  \b:.   ;' £ /}  is the set of all dual

atoms of Z(2I).  Since a^.a.   for  z ^ i    and b.jtb.i   for j j¿ / ' , it follows that
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|/| = j/)   and there is a one-to-one function f of  I onto  /  such that  N, ,., = M.

fot all   i £ I.   Since  21  is regular  K. = L .,..  and so  B. S- E,,.,  for all   i £ I as
° i        f (i) i j U)

desired.

Corollary 4.5.  Every  LCAa iand in particular, every CA     if a < a>) has the

unique subdirect decomposition property 4.3 (ii).

Along with the uniqueness problem for subdirect decompositions there is

also the question of the existence of subdirect decompositions of  21 into sub-

directly indecomposable CAa's which is irredundant in the strong sense of

4.3 (ii).   The proof of 4.4 shows that if  21  is regular the existence of such a sub-

direct decomposition implies   Z(2I)  is atomic.   It is easily seen that this condi-

tion is not sufficient.   In fact, for CAn's, i.e. BA's, such an irredundant decom-

position exists for 21 if and only if 21 is finite.

As mentioned above 4.3 (i) holds for every CA    under the additional assump-

tion that    |/|, |]\ < a).   The following examples show this is not true for arbi-

trary   / and  /.

Proposition 4.6.   There exist a CA     21 and two systems of ideals     (K.:

i £ I)  and  ( L .:   i e l) satisfying (1)—(3) ztz 4.3 (i) such that, for some  j £ I,

L. £ \K.:    i £ 1\.    Thus, the unique subdirect decomposition property 4.3 (i) fails.

Proof.  Let  B be a subdirectly indecomposable CA    that is not simple and

let  X =    2 be the Stone space of the free BA on <y generators.   The algebra  21

we want is  21 = T(X, o) where  ö is the trivial B-sheaf over  X.   Results involved

in the proof of the duality theorem (Theorem 1.2) allow us to write down sub-

direct representations of 21.   Namely, for  x £ X, let  M    = \a £ Z(2I):   aix) = 0   !;

the system of ideals  \M  :   x £ X)   satisfies (1)—(3) above.   For the system of

ideals   (K.:    i £ I)   let  I = X and   K    = M    tot x £ X.   Fix  j £ I and define the

ideal  L. for i' ji. j by  L. = M.; let  L . = {a £ A; aij) £ N\ where   N is some maxi-

mal ideal of the stalk S. 5r- B.   Clearly   L. is an ideal such that L . DM..   For

all   i £ I,  2I/L .  is subdirectly indecomposable and, since  X  is Hausdorff,

L    Q L     tot x, y £ X,  x ^ y.    Before proving that C\e¡L. = ¡0¡, observe the

following consequence of the partition property.

(4)  For any  a £ A there exists a partition  \N.:   i < n\ of X  into a finite

number of clopen subsets such that    pr.  ° o is constant on each  N. (pr    is the

natural projection of  X x B  onto   -Ö).

Now suppose  0 ^ o £ A.   By (4) there exist a clopen subset  N of  X  such

that aix) ^  0     for all  x £ N.   Since   l/'j  is not open there is an  x £ N, x ^ j.

Since aix) ^ 0  , o / M   =L.   Thus C\   - yL   = ¡0¡.   The two systems of ideals
X XX X ^ i\      X

(Kx:   x £ X)   and   <L%:   x £ X)  in  21  satisfy 4.6.

Instead of using, for  X, the Cantor space     2  we could have used any non-
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discrete Boolean space; we must only find some   / £ X such that  \j\ is not open.

A disadvantage of 4.6 is that the construction will not give an LCA     21 since

directly indecomposable LCAa's are simple.   The next result can yield LCA   's

and indicates how   |/|   and   |/|   may differ.

Proposition 4.7. There exist a CAa 21 iwbich can be chosen an LCA if

desired) and two systems (K.: i e I? and (L .: j e J) of ideals of 21 satis-

fying conditions (1)—(3) z'n 4.3 (i) but for which  \I\ ^ |/|.

Proof.  Let  53 be a subdirectly indecomposable CAa and  X = œ2.   Choose

21 = r(X, S) where  S is the trivial  53-sheaf over  X.   Note  21  is an LCA     if  53  is.

The system of ideals ( M   :   x £ X)  satisfies (1)—(3).   X has a countable dense

subset  /.   The system of ideals  \ M  :   x £ /)  of 21 also satisfies (1)—(3); (1) is

a consequence of /  being dense and property (4) from the proof of 4.6.   The

result follows since   |X| > |/|.
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