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A NON-NOETHERIAN FACTORIAL RINGC1)

BY

JOHN DAVID

ABSTRACT.   This paper supplies a counterexample to the conjecture that

factorial implies Noetherian in finite Krull dimension.   The example is the in-

tegral closure of a three-dimensional Noetherian ring, and is the union of Noe-

therian  domains, which   are proven to be factorial by means of derivation

techniques.

0.  Introduction.  This paper touches on the previously unexplored problem of

when the factorial property implies the Noetherian property, in the category of

commutative domains with unit.

Due to the abundant existence of non-Noetherian factorial rings in infinite

Krull dimension, one restricts one's attention to rings of finite Krull dimension.

However, this paper shows that one must make distinctions even finer than that of

Krull dimension, finite or infinite, to properly treat factorial implies Noetherian.

That is, there is a non-Noetherian factorial ring in dimension three.

1.   Notation.  We will retain the following notation for the remainder of the

paper.

(i) "Dimension" means Krull dimension.

(ii) K is a field of characteristic 2 such that  [K: K   ]  is countably infinite.

\b   , c   , • • • , b, , c, , • • • |  is a 2-base for  K over  K  .

(iii) R*= K[[x, y, z]],  R = K2[[x, y, z]][K]  where x, y, z are algebraically

independent variables over  K.

(iv)¿=E7 = 1e.y*¿+  E*° = 1c.2*¿.

For N= 1, 2, ...,

OO OO OO OO

dN =  Z   **•+*>*' +  Z   Ci+NZxÍ>     eN =   Z  bl+Nx'-     fN =  Z  C,+N*!-
¿=0 i=0 ¿=0 !=0

For N4 1, aN =E?=A-y*' + If.lV*'- ai = °-
(v)  T = the integral closure of R[d]  in its quotient field.
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K2[¿>j, Cj, •••, bN_1, CN_1][[x, y, z]][eN, fN\,

the quotient field of HN ,

K2[ep Cj, •«, èN_r cN_1][[x, y, z]][dN],

the quotient field of /.,,

K20,, Cj, •••, bN_l, cN_1][[x, y, z]].

2. Some theorems by M. Nagata and P. Samuel.

Theorem 1 (Nagata).  (R, (x, y, z))  is a regular local Zariski ring,   R* the

completion of R  and    ¿_i . . ,a..,xlyJz    € R  iff \a... \ belongs to a finite field

extension of K .

Proof. See [1, p.206].

Theorem 2 (Nagata).   T  is  a three Krull-dimensional, non-Noetherian  local

ring with maximal ideal (x, y, z).

Proof. See[l, p.208].

Theorem 3 (Samuel).   Let A   he a UFD of characteristic p  ^ 0,   L   its quoti-

ent field, A a derivation of L such that A(A) C A, L' = Ker(A), and A'  the

Krull ring  L' O  A.   Define the logarithmic derivatives,   D, of A  relative to A  as

the additive subgroup of A  consisting of elements of the form  At/t,  t £ L.   The

logarithmic derivatives of unity, D , are defined to be the subgroup of D  consist-

ing of those elements that can be written as  Au/u where  u is a unit of A.   Then

if D = D', A'  is a UFD.

Proof. See [2, p. 86].

Lemma A    (Samuel).   Let  L  be a field of characteristic p  f 0, A a deriva-

tion of L, L'  the subfield Ker(A).  // [L: L'] = p, then there exists a € L'  such

that  Ap = aA.   {Ap is  A composed with itself p times.)

Proof. See [2, p.87].

Lemma B    (Samuel).  With the same notation and hypotheses in the above

theorem and lemma, so that an element t of A   is a logarithmic derivative of A

with respect to A, it is necessary and sufficient that  Ap~   (t) - at — t*.

Proof. See [2, p.88].

3. T is a Krull ring which is a union of an ascending chain of Noetherian

three dimensional nonregular UFD's.

Proposition 1.   T is a Krull ring.

Proof.  This follows from 33-10 of [l], as R [d]  is a Noetherian integral domain.

(vi) HN =

KN =

/N  =

*N =
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Lemma 2.1.   W = R [e   , f. , • • • , e, , /,, • • •]   is normal.

Proof.   Let g elf', the derived normal ring of  W.  Then 3 f, q, r, s, t 6 R

such that g = (p + qe    + rf   + se   f )/t  for some  n as  R [e  , f v ■ ■ ■ , e.,/.] =

R te/> /p  and the squares of elements of  R* lie in  R.  As the coefficients of the

terms of p, q, r, s  and t together generate a finite extension of  K    and because

e    =b   +b     ,* + ... +a        r™-""1 +xm-"e   ,        m > n,
n n 72 + 1 m—1 m —

/=c+c       r+--- + c      ,xm-n-i + xm"7   , m> n,
' n n n + 1 m— 1 ' m —     '

we get g contained in the derived normal ring of HN for some  N, as  g    €

K2[[x, y, *]].

g e W follows from the next lemma and   HN C W.

Lemma 2.2.  H     is a regular local ring.

Proof.  Since  HN is a finite module extension if  K   [[x, y, z]], it is three

dimensional local.

We thus need only show its maximal ideal, m, is  (x, y, z).  Since  HN Ç R*,

an element of  H     is a nonunit if it has subdegree > 1.   The converse is also

true since it is true of  K   [[x, y, z]], and the squares of elements of HN lie in

K   [[x, y, z]]  and units of HN aie such iff  their squares are.  Now let  a e m.

Thus a   e (x, y, z)K   [[x, y, z}].  Thus, as a power series in  R*, a must be of

subdegree one or greater.  Thus

a = kn + k.s, + Ls, + • • • + k s
0 11 2    2 q   q

where s . are various products of b.'s, c.'s   (2 < N), eN and jN that are   square-

free, and  k.eK2[[x, y, z]].

Since the zero degree forms of the  s . are linearly independent over  K2,

the subdegree of a is > 1 iff the subdegree of each of the jfe.'s  are > 1, iff k. €

{x, y, z)K2[[x, y, z]].

We conclude  m = {x, y, z)HN.

Lemma 2.3-   1, e       f      e   f'     are linearly independent over the quotient

field of R.

Proof.  It suffices to check independence over R.  Let r.eR  such that

(*) rl  + r2eN + V,V + TAeNÍN = °-

3/M > 0  such that r. £ 5„  V¿.   Let 0 = max \N, M\.  Then

e    = h     .  ¿,       x+...,u        xQ~n~x+xq~NpN        N+    N+l    + + °Q-\X +x eQ'

/    =c    +c        X+-.. + C xQ~N-1+xQ~Nf
'N      CN + CN + lX + +CQ-\X +X h'
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Substituting these two equations into (*),  we have a relation of the form

r, + r,e. + r 3  +r4Vß =0        W   eSQ]-
2    Û 3   T    4"Q'e

By the linear independency of the leading forms of  1, e_, /_, e_/0  over SQ ,

r.  = 0 for all  ».  Then by the nature of these  r. , we see that  r . = 0, hence r, =

r, = 0.  We conclude r. = 0 V».   End of lemma.

Lemma 2.4.  «[¿j, • • •, t¡k, • ••] = {(wj 4 v2¿)/*'| vf e R,   I > OlnR*.

Proof.  If (v. + v2d)/xl = r* e R* where  u.£R  and  / > 1  then xlr* - p 2dfcl' =

f. + OtjC,'  Ie follows since R  is normal and R* is integral over R that

v. + v-CL, = x ■  v    where  v e R.

Thus we get r* = v + v 2d{ e R[d v d v ..., d,, • ."• }.

If h £ R [dv dv • • •, dk, •. . ] then h £ R* and    3k such that h e R [c/J  as

R[d     d     ■ ■ ■, d   ] = R[d   ]. Thus  h = v   + v d,, v. £ R.   Thus

h = [(x\ + v2afc) + v2d]/xk.

Thus  A £ {(vj + v2d)/xl\ v. £ R,   I > 0 i D R*.   End of lemma.

Proposition 2.  R [rfj, d     • • •, d,, • • • ] = T.

Proof.

Ç: T normal, and R* integrally closed and integral over R imply R* O

quotient field R[d] = T. Since dN = (d + cln)/xn, N = 1, 2, • • •, ¿N € R*D

quotient field   R[fi?].   Thus  fl^ £ T.

D:     Let h e T.  By Lemma 2.1,    3&  such that ¿ £ R [e .,/.,•••, e,, /fe].

Thus  3/V  such that xNA £ R [e     /   ].   So xNh = a    + a ^e    + a   f   + a ^e Jl  where

a . £ R.   Also x   h = a + ad where a, a   £ the quotient field of R.  Thus by

Lemma 2.3,

(*) a = flQ,     a   yx = a.,     a   zx = a       and     0 = a,.

By Theorem 1, R  is a UFD so we can write a   = w   /w     (u/ .,«/.)= 1; w . £ R.

Then y  and z being distinct primes of  R   allow us to conclude from (*)  that w2

divides x  in  R.   Thus

xN + lh = xaQ + {xw~l)wxd £ RW\.

Thus by  Lemma   2.4, h   S R[d     • • • , d,, • • • J.   End of Proposition 2.

Let N > 1; we are to prove that 1N is a UFD.  But first some lemmas.

Lemma 3.1. W„ ¿sa (7 FD.
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Proof.  Follows from Lemma 2.2.

Lemma 3.2.  [KN : LN] = 2.

Proof.  fN £ LN[eN]  and  HN m ¡N\JN, eN~\  implies  LN[eN] = KN.  Thus eN

being square integral over LN implies [KN: L J = 2, as  KN ¿  L...

Thus  {eN \ is a 2-base for  KN over  L...  Define the following  L    -derivation

of  KN:  A(eN) = zfN.

Lemma 3-3-   Ker(A) = LN and à(H N) Ç HN'

Proof.   KN 2 Ker(A) D LN  and Lemma 3.2 imply  Ker(A) = LN.   A(HN) ç W

is easily verified by checking the action of A on fN and eNf...

Lemma 3.4.   /„  is integrally closed.

Proof.  Let h £ integral closure of   /...   By Lemma 3.1, h £ HN, so

h = /, + t^e    + /,/.. + t.e.,1.,,        t   e Ç1 2   N 3'Ai 4   N1 N' .  c JA,f

Since  h e L „,

h = a + a' d   ,       a, a ' e the quotient field of SN>

By Lemma 2.3,  í, = fl, r, = y«', <, = za', í 4 = 0.  Letting a' = w/v, where w, v £

SN, wé have  t v = wy  and t aj = wz.  Since SN  is a TJFD in which  y  and z are

relatively prime, we get v  divides  u>  in S „.  Thus  ¿ = t. + a d   ,   t., a   6 S„ .

Thus  h e IN and IN is integrally closed.

Lemma 3.5.  Ker(A) O HN = /    .

Proof.   Follows from Lemmas 3.3, 3.4 and  HN being integral over  /.,.

Lemma 3.6. A = y A.

Proof.   Follows from an easy calculation; see Lemma A.

From here on D denotes the logarithmic derivatives of HN with respect to

A.   D    denotes the logarithmic derivatives of unity of HN with respect to  A.   (See

Theorem 3.)

Lemma 3-7.  Let t e D.   Then if t  is a unit of HN, t e D' .

Proof.   By Lemmas B, 3.1, 3.2 and 3.6, At = t2 + yt.  As  ye KerA,

A(¿ + y)/U +y) = t.  As  t + y is a unit of  HN, t £ D'.

Lemma 3.8. (D PI (z, y)HN ) U  (D D Units (HN )) = D.

Proof.  Let h £ D.   We shall show if h ft Units (W^), then h £ {z, y)HN-

Assume then that h £ D\Unhs{HN ).  Then

* = v. + v 2eN + v JN + vAeNfN,       v.eSN.
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As in Lemma 3-7, A(h) = yh + h2. This  is equivalent to, by Lemma 2.3,

w %zf2N+ yy\ = vl + vVn + vle^2N-   v2 = °-

By an easy reasoning, none of the  v. are regular in x.  Also, as A is a nonunit

in  H      it is a nonunit in  R*.   This follows from q £ R*=^ q    £ H N .  Thus we

conclude   v. £ (z, y)R*.

We finally conclude  h € (Z,  Y)HN by the following

Lemma 3.8.1. U, y)R* H SN Ç (z, y)SN.

Proof.   Let a £ (z, y)R* Cï  S       Then as  SN is a power series ring, a £

Lemma 3.9.  D' D D n (z, y)tfN.

Proof.  Let 0 = i(v, w)\ v, w £ tf,,  and wz + wy £ D n (z, y)HN \.   Define  y,

a, R: 0 —* H     as follows:

Let (/, s') £g   and let  t = r z + s'y.  Then

/ = rAeN + sAfN     where   r = r'/fN,   s = s'//N>

By Lemma B and the proof of Lemma 3.7, it follows that

(Ar + r2AeN)AeN = (As + s2AfN)AfN-

Since  AeN , A/N are relatively prime in  HN, a UFD by Lemma 3.1,   3  unique b £

HN such that

(1) As = s2A/v + bAeN.

By derivations of (1), using Lemma 3.6, one gets  AbAfN = 0,   so  Ab = 0.

Now let  ß((r , s')) = 1 + re    + sf    + (rs + b)e   f      and rewrite

ß{(r', s')) = kQ + ¿jeN + k2fN + kieNfN,        k. £ SN-

Also let

r' = fj + ,2eN + r3/N + r4eN/N,

s '  = Sj + s2eN + s3/N + sAeNfN,        T., s. £ SN,

and let  r., s.   be the constant terms of the power series  r ., s., respectively.  De-

fine a((r', s')) to be the constant term of k     Thus  a((r', s')) = 1 + r°b2 + s° +

riS4èN +r2s3èN + T°S2bN + r4S lèN ^we have used Lemma 3-5 a«d that Ab = 0) and define

y((r\ s')) = 1 + b2Nr°A.  Now let  rQ £ D  n  (z, y)/^,   t0 = r'z + s'y.  One has

bß((r',s,)) = ß{(r', s'))tQ.
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One would like to have  ß{{r , s ))  a unit, for then  t    £ D , but this is not neces-

sarily so.  However, we have a((r , s ))  ^  0 implies ß((r , s'))  is a unit by the

reasoning contained in Lemma 2.2.  So suppose a((/, s')) = 0.

Case I.  Assume  y{{r', s')) ¿   0.  Then  a((r', s'  + 1))  ¿   0.  So if t' = r'z +

(s' + l)y  then  t' £ D  D (Z,  Y)HN using Lemmas B and 3.6.  So ß((r , s'   + 1))  is

a unit.   As  Aß((r', s' + 1)) = ß({r', s'  + 1))/',  then

A(j8((r'. s' + 1))- fN) = ß((r'. s' + l))./;V ■ t0

and  ß{(r', s'  + 1)) • fN  is a unit.   Thus  t Q £ D' .

Case IL  Assume  y((r', s')) = 0.   Let t' = (r   + e   f  /e2)z + s'y.  Then  t' £

D O (Z,   Y)H N, using Lemmas B and 3.6.  Note that as the constant term of   l/e r^

is   l/b2N,

y({r' + eN/N/^, s')) ¿ 0.

Thus since either <x((r' + eNfN/e^ s'))   ^   0 °r, by Case I, 3   a unit  u £ H  such

that  Au = ut', then A(e   z/) = e   ut    and  e   w  is a unit.   Thus  t    £ D'.   End of

lemma.

Lemma 3.10. D' = D.

Proof.   Follows from Lemmas 3-7, 3.8, 3.9-

Proposition 3. ¡N  is a UFD.

Proof.   Follows from Theorem 3 and Lemmas 3-1, 3-3, 3-5 and 3-10.

Remark.  In proving Lemma 3-9, some techniques of   P. Samuel were used that

are found in Lemma 3 of [3].

Proposition 4.  T is a UFD.

Proof.   In view of Proposition 1, we need only show the minimal primes of  T

ace prinicipal.

Let  P denote a minimal prime of  T.  By Proposition 1, 3 a e T such that

PTP = a • TP.   As  d. £ I.,  i < j, and  T = R[dy dv  ■ • • , dk, ■ ■ ■ ] (Proposition 2),

we see that    3M  such that a £ I    Ç T.  Since  T is an integral extension of /„,

and by Lemma 3-4,   P   = P O /„  is a minimal prime of  /    .   Thus, by Proposition

3, P    is principal.   Let ß generate   P .  Since the   squares of elements   of T lie

in  /„, no two primes can contract to the same prime in  /„.   Thus  ß is not con-

tained in any other minimal prime of  T.

As  a £ P',    3 q £ T such that a = q ■ ß.  Thus  ß • TQ = PTQ, for every mini-

mal prime Q, of  T.

By the following lemma, ß generates  P.
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Lemma 4.1.   Let  R be a Krull domain such that  ß, 8 £ R.   Let  ß divide  8 in

R   V minimal prime  P.   Then ß divides  8 in R.

Proof.  As {ßR: dR) is divisorial, (ßR: 8R) n R  is such.  As (ßR: 8R) Hfiis

integral, it must contain 1 or be contained in some height 1 prime.   As the latter

is not possible, 1 e{ßR; dR). Thus ß divides  5 in R.   (See [3, pp. 1, 7].)

We are now able to state

Theorem.   Let  K be a field of characteristic two such that  [K: K ] is count-

ably   infinite.    Let   \b., c.|°°_     be a   two-base   for   K   over   K2.    Let R =

K2[[x, y, z]][K],

DC

d= Yj hiy%l + cizxK

¿=i

Then  T = the integral closure of R [d]  is a three dimensional non-Noetherian

quasi-local factorial ring.
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