ΒY

HARRIS S. SHULTZ

ABSTRACT. Let (a, b) be any open subinterval of the reals which contains the origin and let \mathfrak{V} denote the family of all distributions on (a, b) which are regular in some interval $(\epsilon, 0)$, where $\epsilon < 0$. Then \mathfrak{V} is a commutative algebra: Multiplication is defined so that, when restricted to those distributions on (a, b) whose supports are contained in [0, b), it is ordinary convolution. Also, \mathfrak{V} can be injected into an algebra of operators; this family of operators is a sequentially complete locally convex space. Since it preserves multiplication, this injection serves as a generalization (there are no growth restrictions) of the two-sided Laplace transformation.

In [6] there is introduced a new algebra \mathfrak{B} of distributions on $(-\infty, \infty)$, closed under convolution and containing the space of distributions having support in $[0, \infty)$ as well as all locally integrable functions. No growth or support restrictions are placed on the elements of \mathfrak{B} . There is also defined a one-to-one transformation of \mathfrak{B} into a commutative algebra of operators (somewhat analogous to the Fourier transformation). In the present article we generalize these results in obtaining a space \mathfrak{B} of distributions on Ω , where Ω is any open subinterval of the reals which contains the origin. A distribution F on Ω belongs to \mathfrak{B} if and only if F is regular in some interval (ϵ , 0), where $\epsilon < 0$. Convolution is defined and \mathfrak{B} is shown to be closed under this operation. It is also shown that the algebra \mathfrak{C} into which \mathfrak{B} can be injected is a sequentially complete locally convex space in which convergence is defined simply in terms of the ordinary pointwise convergence of functions.

0. Preliminaries. Throughout we assume $-\infty \le a < 0 < b \le \infty$ and set $\Omega = (a, b)$. We define L to be the space of all the complex-valued functions which are Lebesgue integrable on each compact subinterval of Ω . We denote by L_+ (respectively, L_-) the subspace consisting of those elements of L which vanish on (a, 0) (respectively, (0, b)). If f and g belong to L then the function $f \land g$ defined by the equation

(0.01)
$$f \wedge g(t) = \int_0^t f(t-u)g(u) \, du \qquad (t \in \Omega)$$

Copyright © 1972, American Mathematical Society

Presented to the Society, January 19, 1972; received by the editors June 10, 1971.

AMS 1970 subject classifications. Primary 44A40, 44A35, 42A76; Secondary 46F99. Key words and phrases. Generalized functions, operational calculus, Schwartz distri-

butions, two-sided Laplace transformation, Fourier transformation.

also belongs to L, moreover, if we identify functions which are equal almost everywhere on Ω then

$$(0.02) f \wedge g = g \wedge f$$

(see [4]). For any f in L we define

$$f_{+}(t) = \begin{cases} f(t), & 0 \le t < b, \\ 0, & t < 0, \end{cases} \text{ and } f_{-}(t) = \begin{cases} 0, & t \ge 0, \\ f(t), & a < t < 0. \end{cases}$$

If Ω_0 is an open subinterval of the reals we denote by $\mathfrak{D}(\Omega_0)$ the space of complex-valued infinitely differentiable functions defined on the reals which vanish outside of a compact subset of Ω_0 . If $\phi \in \mathfrak{D}(\Omega_0)$ we define the support of ϕ , denoted supp ϕ , to be the closure of the set $\{t: \phi(t) \neq 0\}$. Then supp $\phi \in \Omega_0$ for all ϕ in $\mathfrak{D}(\Omega_0)$.

As usual, the dual of $\mathfrak{D}(\Omega_0)$, that is, the space of distributions on Ω_0 , is denoted by $\mathfrak{D}'(\Omega_0)$. If R belongs to $\mathfrak{D}'(\Omega_0)$ and ϕ belongs to $\mathfrak{D}(\Omega_0)$ the scalar which R assigns to ϕ will be written $(R(x), \phi(x))$. If f belongs to the family of locally integrable functions on Ω_0 and m is a nonnegative integer we shall write $\partial^m f$ for the element of $\mathfrak{D}'(\Omega_0)$ defined by

$$\langle \partial^m f(x), \phi(x) \rangle = (-1)^m \int_{\mathbf{\Omega}_0} f(x) \phi^{(m)}(x) dx \qquad (\phi \in \mathfrak{D}(\mathbf{\Omega}_0)).$$

In particular, $\partial^0 f$ is the *regular* distribution corresponding to the function f. The support of a distribution R on Ω_0 (denoted supp R) is defined to be the complement with respect to Ω_0 of the largest open set on which R vanishes.

1. The algebra \mathfrak{B} . We denote by \mathfrak{D}'_b the space of elements in $\mathfrak{D}'((-\infty, b))$ having support in [0, b). We denote by \mathfrak{D}'_a the space of elements in $\mathfrak{D}'((a, \infty))$ having support in (a, 0].

1.01. Definition. Suppose $\{b_n\}$ and $\{a_n\}$ are sequences of real numbers, that $\{J_n\}$ and $\{K_n\}$ are sequences of nonnegative integers and that $\{F_n\}$ and $\{G_n\}$ are sequences in L. If the ordered pair (R, S) belongs to the cartesian product $\mathfrak{D}'_b \times \mathfrak{D}'_a$ we say that the sequence $\{(F_n, b_n, J_n, G_n, a_n, K_n)\}$ belongs to $\Sigma_{R,S}$ if $(1.01.1) \ a \leftarrow \cdots < a_2 < a_1 < a_0 = 0 = b_0 < b_1 < b_2 < \cdots \rightarrow b;$

(1.01.2) F_n vanishes on $(-\infty, b_n)$ and G_n vanishes on (a_n, ∞) ;

(1.01.3)
$$R = \sum_{n=0}^{\infty} \partial^{J_n} F_n$$
 and $S = \sum_{n=0}^{\infty} \partial^{K_n} G_n$.

1.02. Theorem. Given any (R, S) in $\mathfrak{D}'_b \times \mathfrak{D}'_a$ and any sequences $\{b_n\}$ and $\{a_n\}$ satisfying (1.01.1) there exists an element $\{(F_n, b_n, J_n, G_n, a_n, K_n)\}$ of $\Sigma_{R,S}$.

164

Proof. By [8, 2.17] there exists a sequence $\{F_n\}$ in L such that the equation

$$R = \sum_{n=0}^{\infty} \partial^{J_n} F_n$$

holds for some sequence $\{J_n\}$ of nonnegative integers. We define an element T of $\mathfrak{D}'((-\infty, -a))$ as follows:

(1)
$$\langle T(x), \phi(x) \rangle = \langle S(x), \phi(-x) \rangle \quad (\phi \in \mathcal{D}((-b, -a))).$$

Then, since supp $S \subset (a, 0]$, the distribution T has support contained in [0, -a). Since $0 = -a_0 < -a_1 < \cdots < -a$ we may infer from [8, 2.17] the existence of a sequence $\{H_n\}$ in $L^{loc}((-\infty, -a))$ such that H_n vanishes on $(-\infty, -a_n)$ and such that the equation

(2)
$$T = \sum_{n=0}^{\infty} \partial^{K_n} H_n$$

holds for some sequence $\{K_n\}$ of nonnegative integers. If we define

$$G_n(x) = (-1)^{K_n} H(-x)$$

then G_n vanishes on (a_n, ∞) and we may combine (1) and (2) to obtain

$$S = \sum_{n=0}^{\infty} \partial^{K_n} G_n$$

Therefore, $\{(F_n, b_n, J_n, G_n, a_n, K_n)\} \in \Sigma_{R, S}$.

1.03. Definition. For each ϕ in $\mathfrak{D}((-\infty, b))$ we define $[\phi]^+$ to be the family of infinitely differentiable functions λ on the reals such that λ is equal to 1 on a neighborhood of $[0, \infty)$ and vanishes on some interval $(-\infty, a')$, where $\operatorname{supp} \phi \subset$ $(-\infty, a' + b)$. For each ϕ in $\mathfrak{D}((a, \infty))$ we define $[\phi]^-$ to be the family of infinitely differentiable functions μ on the reals such that μ is equal to 1 on a neighborhood of $(-\infty, 0]$ and vanishes on some interval (b', ∞) , where $\operatorname{supp} \phi \subset (a + b', \infty)$.

1.04. Theorem. Suppose (r, s) and (R, S) belong to $\mathfrak{D}'_b \times \mathfrak{D}'_a$. If $\{(f_n, b_n, j_n, g_n, a_n, k_n)\}$ belongs to $\Sigma_{r,s}$ and $\{(F_n, b_n, J_n, G_n, a_n, K_n)\}$ belongs to $\Sigma_{R,S}$, then for any ϕ in $\mathfrak{D}((-\infty, b))$ the equation

(1.04.1)
$$\langle r(y), \langle R(x), \lambda(y)\phi(x+y)\rangle\rangle = \lim_{N\to\infty}\sum_{m=0}^{N}\sum_{n=0}^{N}\langle \partial^{j_m+J_n}(f_m\wedge F_n)(x), \phi(x)\rangle\rangle$$

holds for all λ in $[\phi]^+$, and for any ϕ in $\mathfrak{D}((a, \infty))$ the equation

(1.04.2)
$$-\langle (s(y), \langle S(x), \mu(y)\phi(x+y)\rangle \rangle$$
$$= \lim_{N \to \infty} \sum_{m=0}^{N} \sum_{n=0}^{N} \langle \partial^{k_{m}+K_{n}}(g_{m} \wedge G_{n})(x), \phi(x) \rangle$$

holds for all μ in $[\phi]^-$.

Proof. Suppose $\phi \in \mathfrak{D}((-\infty, b))$ and $\lambda \in [\phi]^+$. There exist numbers β and a' such that

(1)
$$\operatorname{supp} \phi \subset (-\infty, \beta] \subset (-\infty, a' + b)$$

and such that λ vanishes on $(-\infty, a')$. For any y the function $x \mapsto \lambda(y)\phi(x + y)$ is infinitely differentiable. From (1) it follows that its support is contained in $(-\infty, \beta - y]$. Thus, for $y \ge a'$, its support is contained in $(-\infty, \beta - a']$ and therefore in $(-\infty, b)$. And, for $y \le a'$, it vanishes identically (since $\lambda(y) = 0$). Consequently, the function $x \mapsto \lambda(y)\phi(x + y)$ belongs to $\mathfrak{D}((-\infty, b))$ and has support in $(-\infty, \beta - a']$ for all y. There exists N such that $b_{N+1} \ge \beta - a'$ and therefore

(2)

$$\langle R(x), \lambda(y)\phi(x+y) \rangle = \sum_{n=0}^{\infty} (-1)^{J_n} \int_0^b F_n(x)\lambda(y)\phi^{(J_n)}(x+y) \, dx$$

$$= \sum_{n=0}^N (-1)^{J_n} \int_0^b F_n(x)\lambda(y)\phi^{(J_n)}(x+y) \, dx$$

for all y (recall that F_n vanishes on $(-\infty, b_n)$). From (2) and [2, 250] it follows that the function

(3)
$$y \mapsto \langle R(x), \lambda(y)\phi(x+y) \rangle$$

is infinitely differentiable. From (1) comes the equality

(4)
$$(R(x), \lambda(y)\phi(x+y)) = 0$$
 (all $y > \beta$)

(recall supp $R \subset [0, b)$). And

$$\langle R(x), \lambda(y)\phi(x+y)\rangle = 0$$
 (all $y < a'$)

since λ vanishes on $(-\infty, a')$. Consequently, the function (3) belongs to $\mathfrak{D}((-\infty, b))$. Moreover, we may combine (4) and the inequality $b_{N+1} > \beta$ to obtain

$$\int_0^b f_m(y) \langle R(x), \lambda(y)\phi(x+y) \rangle \, dy = 0 \quad (all \ m > N).$$

Therefore,

166

1972]

....

$$\langle r(y), \langle R(x), \lambda(y)\phi(x+y) \rangle \rangle$$

$$= \sum_{m=0}^{N} (-1)^{j_m} \int_0^b f_m(y) \frac{d^{j_m}}{dy^{j_m}} \langle R(x), \lambda(y)\phi(x+y) \rangle \, dy$$

$$= \sum_{m=0}^{N} \sum_{n=0}^{N} (-1)^{j_m+J_n} \int_0^b f_m(y) \left(\int_0^b F_n(x)\phi^{(j_m+J_n)}(x+y) \, dx \right) dy;$$

the last equality is from (2), [2, 250] and the fact that $\lambda = 1$ on $[0, \infty)$. We may now use the change of variable t = x + y and [2, 283] to obtain

We need only observe now that

$$\int_0^t f_m(y) F_n(t-y) \, dy = 0 \qquad (0 \le t \le \beta)$$

for m > N and n > N to obtain (1.04.1). Suppose now that $\phi \in \mathfrak{D}((a, \infty))$ and $\mu \in \mathfrak{D}((a, \infty))$ $[\phi]^-$. There exist numbers a and b' such that

(5)
$$\operatorname{supp} \phi \subset [\alpha, \infty) \subset (a + b', \infty)$$

and such that μ vanishes on (b', ∞) . For any y the function $x \mapsto \mu(y) \phi(x + y)$ is infinitely differentiable. From (5) it follows that its support is contained in $[a-y,\infty)$. Thus, for $y \leq b'$, its support is contained in $[a-b',\infty)$ and therefore in (a, ∞) . And, for y > b', it vanishes identically (since $\mu(y) = 0$). Consequently, the function $x \mapsto \mu(y) \phi(x + y)$ belongs to $\mathfrak{D}((a, \infty))$ and has support in $[a-b',\infty)$ for all y. There exists N such that $a_{N+1} < a-b'$ and therefore

(6)
$$\langle S(x), \, \mu(y)\phi(x+y)\rangle = \sum_{n=0}^{\infty} (-1)^{K_n} \int_a^0 G_n(x)\mu(y)\phi^{(K_n)}(x+y) \, dx$$
$$= \sum_{n=0}^{N} (-1)^{K_n} \int_a^0 G_n(x)\mu(y)\phi^{(K_n)}(x+y) \, dx$$

for all y (recall that G_n vanishes on (a_n, ∞)). From (6) and [2, 250] it follows that the function

(7)
$$y \mapsto \langle S(x), \mu(y)\phi(x+y) \rangle$$

is infinitely differentiable. From (5) comes the equality

(8)
$$\langle S(x), \mu(y)\phi(x+y) \rangle = 0$$
 (all $y < \alpha$)

(recall supp $S \subset (a, 0]$). And

$$\langle S(x), \mu(y)\phi(x+y)\rangle = 0$$
 (all $y > b'$)

since μ vanishes on (b', ∞) . Consequently, the function (7) belongs to $\mathfrak{D}((a, \infty))$. Moreover, we may combine (8) and the inequality $a_{N+1} < \alpha$ to obtain

$$\int_a^0 g_m(y) \langle S(x), \mu(y)\phi(x+y) \rangle \, dy = 0 \quad (all \ m > N).$$

Therefore,

$$\langle s(y), \langle S(x), \mu(y)\phi(x+y) \rangle \rangle$$

$$= \sum_{m=0}^{N} (-1)^{k_{m}} \int_{a}^{0} g_{m}(y) \frac{d^{k_{m}}}{dy^{i_{m}}} \langle S(x), \mu(y)\phi(x+y) \rangle dy$$

$$= \sum_{m=0}^{N} \sum_{n=0}^{N} (-1)^{k_{m}+K_{n}} \int_{a}^{0} g_{m}(y) \left(\int_{a}^{0} G_{n}(x)\phi^{(k_{m}+K_{n})}(x+y) dx \right) dy;$$

the last equality is from (5), [2, 250] and the fact that $\mu = 1$ on $(-\infty, 0]$. We may now use the change of variable t = x + y and [2, 283] to obtain

$$\langle s(y), \langle S(x), \mu(y)\phi(x+y)\rangle$$

$$= \sum_{m=0}^{N} \sum_{n=0}^{N} (-1)^{k_{m}+K_{n}} \int_{a}^{0} \left(\int_{a}^{y} g_{m}(y) G_{n}(t-y)\phi^{(k_{m}+K_{n})}(t) dt \right) dy$$

$$= \sum_{m=0}^{N} \sum_{n=0}^{N} (-1)^{k_{m}+K_{n}} \int_{a}^{0} \left(\int_{t}^{0} g_{m}(y) G_{n}(t-y) dy \right) \phi^{(k_{m}+K_{n})}(t) dt.$$

We need only observe now that

$$\int_{t}^{0} g_{m}(y) G_{n}(t-y) \, dy = 0 \qquad (\alpha \leq t \leq 0)$$

for m > N and n > N and that

$$-\int_{t}^{0}g_{m}(y)G_{n}(t-y)\,dy=g_{n}\wedge G_{n}(t)$$

to obtain (1.04.2).

168

1.05. Corollary. Suppose that (r, s) and (R, S) belong to $\mathfrak{D}'_b \times \mathfrak{D}'_a$. For any ϕ in $\mathfrak{D}((-\infty, b))$ the family

$$\{\langle r(y), \langle R(x), \lambda(y)\phi(x+y)\rangle\}: \lambda \in [\phi]^+\}$$

contains a unique element, which will be denoted by $(r * R(x), \phi(x))$. For any ϕ in $\mathfrak{D}((a, \infty))$ the family

$$\{\langle s(y), \langle S(x), \mu(y)\phi(x+y)\rangle\}: \mu \in [\phi]^{-}\}$$

contains a unique element, which will be denoted by $\langle s * S(x), \phi(x) \rangle$.

1.06. Definition. Let (r, s) and (R, S) belong to $\mathfrak{D}'_b \times \mathfrak{D}'_a$. We denote by r * R the functional that assigns to any ϕ in $\mathfrak{D}((-\infty, b))$ the number $(r * R(x), \phi(x))$; we denote by s * S the functional that assigns to any ϕ in $\mathfrak{D}((a, \infty))$ the number $(s * S(x), \phi(x))$.

1.07. Remark. It follows from 1.04 and (0.02) that r * R = R * r and s * S = S * s.

1.08. Corollary. If (r, s) and (R, S) belong to $\mathfrak{D}'_b \times \mathfrak{D}'_a$ then (r * R, s * S) belongs to $\mathfrak{D}'_b \times \mathfrak{D}'_a$.

Proof. It follows from (1.04.1) and the sequential completeness of $\mathfrak{D}'((-\infty, b))$ (see [1, Proposition 2, p. 315]) that r * R belongs to $\mathfrak{D}'((-\infty, b))$. Moreover, since r * R is the limit of a sequence of distributions on $(-\infty, b)$ all having support in [0, b), it too must have support in [0, b), i.e. $r * R \in \mathfrak{D}'_b$. Similarly, $s * S \in \mathfrak{D}'_a$.

1.09. Remark. If f belongs to L then $\partial^0 f_+ \in \mathfrak{D}'_b$ and $\partial^0 f_- \in \mathfrak{D}'_a$. We may deduce from 1.01 and 1.04 that the equations $\partial^0 f_+ * \partial^0 g_+ = \partial^0 (f_+ \wedge g_+)$ and $-\partial^0 f_- * \partial^0 g_- = \partial^0 (f_- \wedge g_-)$ hold for all f and g in L.

1.10. Definition. We denote by \mathfrak{B}_{-} the linear subspace consisting of those elements of \mathfrak{D}'_{a} which are regular in a neighborhood of the origin.

1.11. Remark. Thus $S \in \mathfrak{B}_{-}$ if and only if $S = \partial^{0}f + T$ where $f \in L_{-}$ and $T \in \mathfrak{D}_{a}'$ with supp $T \subset (a, 0)$. In particular, $\partial^{0}f_{-} \in \mathfrak{B}_{-}$ for all $f \in L$.

1.12. Lemma. Suppose (R, S) and (R_1, S_1) belong to $\mathfrak{D}'_b \times \mathfrak{B}_-$. If the elements R + S and $R_1 + S_1$ of $\mathfrak{D}'(\Omega)$ are equal then $R = R_1$ and $S = S_1$.

Proof. Since S and S_1 both vanish on (0, b) we have

(1)
$$S = S_1$$
 on $(0, b)$.

Since R and R_1 both vanish on (a, 0) it follows from $R + S = R_1 + S_1$ that

(2)
$$S = S_1$$
 on $(a, 0)$.

Now, there exists $\epsilon > 0$ and elements f and f_1 of L_- such that $S = \partial^0 f$ and $S_1 = \partial^0 f_1$ on $(-\epsilon, \epsilon)$. From (1) and (2) it follows that $\partial^0 f = \partial^0 f_1$ on $(0, \epsilon)$ and on $(-\epsilon, 0)$. Thus, by [9, p. 224] we have $f = f_1$ almost everywhere on $(-\epsilon, \epsilon)$, from which it follows that $\partial^0 f = \partial^0 f_1$ on $(-\epsilon, \epsilon)$. Therefore,

(3)
$$S = \partial^0 f = \partial^0 f_1 = S_1 \quad \text{on } (-\epsilon, \epsilon).$$

We may now combine (1), (2) and (3) to conclude that $S = S_1$ on (a, b) (see [9, Theorem 24.1]).

1.13. Definition. We denote by \mathfrak{B} the linear subspace consisting of those elements of $\mathfrak{D}'(\Omega)$ of the form R + S where $R \in \mathfrak{D}'_h$ and $S \in \mathfrak{B}_-$.

1.14. **Remark.** Thus, $F \in \mathfrak{B}$ if and only if $F \in \mathfrak{D}'(\Omega)$ and is regular in some neighborhood (ϵ , 0), where $a \leq \epsilon \leq 0$. In particular, $\partial^0 f \in \mathfrak{B}$ for all $f \in L$.

1.15. Theorem. If F belongs to \mathfrak{B} there exists a unique element of $\mathfrak{D}'_b \times \mathfrak{B}_-$, denoted (F_+, F_-) , such that $F = F_+ + F_-$.

Proof. Immediate from 1.12.

1.16. Corollary. The mapping $F \mapsto (F_+, F_-)$ is an isomorphism of \mathfrak{B} into $\mathfrak{D}'_b \times \mathfrak{D}'_a$.

Proof. One may easily verify that the mapping $F \mapsto (F_+, F_-)$ is linear. The corollary then follows from 1.15.

1.17. Lemma. If V and V₁ belong to \mathfrak{D}'_a with supp $V_1 \subset (a, \epsilon]$ for some $\epsilon < 0$ then supp $V * V_1 \subset (a, \epsilon]$.

Proof. Let $\phi \in \mathfrak{D}((a, \infty))$ and have support in $[\epsilon', \infty)$, where $\epsilon < \epsilon' < 0$. Then, for $y < \epsilon' - \epsilon$ the function $x \mapsto \phi(x + y)$ has support contained in (ϵ, ∞) . Therefore,

$$\langle V_1(x), \mu(y)\phi(x+y)\rangle = 0$$
 (all $\mu \in [\phi]$)

for all $y < \epsilon' - \epsilon$. Thus, the function $y \mapsto \langle V_1(x), \mu(y)\phi(x+y) \rangle$ has support contained in $(0, \infty)$ for all $\mu \in [\phi]^-$. Since V vanishes on this interval it follows that

$$\langle V * V_1(x), \phi(x) \rangle = \langle V(y), \langle V_1(x), \mu(y)\phi(x+y) \rangle = 0$$

for all μ in $[\phi]^-$. Therefore, $V * V_1$ vanishes on (ϵ, ∞) .

1.18. Theorem. If F and G belong to \mathfrak{B} then $F_+ * G_+ - F_- * G_-$ belongs to \mathfrak{B} with $(F_+ * G_+ - F_- * G_-)_= - F_- * G_-$.

Proof. It suffices to show that $F_* \in \mathcal{B}_-$. By 1.11 there exist f and g in L_- and T and U in \mathfrak{D}'_{σ} such that $F_- = \partial^0 f + T$ and $G_- = \partial^0 g + U$ with

supp $T \subset (a, \epsilon]$ and supp $U \subset (a, \epsilon]$ for some $\epsilon < 0$. Therefore,

$$F_{-} * G_{-} = (\partial^{0} f + T) * (\partial^{0} g + U) = (\partial^{0} f) * (\partial^{0} g) + (\partial^{0} f) * U + T * (\partial^{0} g) + T * U.$$

From 1.09 and 1.07 it follows that

$$F_* * G_{-} = \partial^0 (f \wedge g) + (\partial^0 f) * U + (\partial^0 g) * T + T * U.$$

If we set $S = (\partial^0 f) * U + (\partial^0 g) * T + T * U$ we may infer from 1.17 that supp $S \subset (a, \epsilon]$ and therefore $F_- * G_- \in \mathfrak{B}_-$.

1.19. Definition. If F and G belong to \mathcal{B} we denote the element $F_+ * G_+ - F_- * G_-$ of \mathcal{B} by $F \wedge G$.

1.20. Remark. As a consequence of 2.23, the space \mathfrak{B} , with multiplication defined by 1.19, is a commutative algebra.

1.21. Theorem. The equation $\partial^0(f \wedge g) = (\partial^0 f) \wedge (\partial^0 g)$ holds for all f and g in L.

Proof. Since $f \wedge g = f_+ \wedge g_+ + f_- \wedge g_-$ we may use 1.09 to obtain

$$\partial^{0}(f \wedge g) = \partial^{0}(f_{+} \wedge g_{+}) + \partial^{0}(f_{-} \wedge g_{-}) = \partial^{0}f_{+} * \partial^{0}g_{+} - \partial^{0}f_{-} * \partial^{0}g_{-}$$
$$= (\partial^{0}f)_{+} * (\partial^{0}g)_{+} - (\partial^{0}f)_{-} * (\partial^{0}g)_{-} = (\partial^{0}f) \wedge (\partial^{0}g).$$

2. The algebra of operators. Let W be the space of all the complex-valued infinitely differentiable functions w on Ω such that $w^{(k)}(0) = 0$ for $k \ge 0$. In [4] it is shown that $f \land w$ belongs to W with

$$(2.01) (f \wedge w)' = f \wedge w'$$

whenever f belongs to L and w belongs to W. We denote by $\langle f \rangle$ the operator which assigns to each w in W the function $f \wedge w$ in W. Thus, $\langle f \rangle w = f \wedge w$ (all w in W). Let \mathcal{C} be the set of all the operators A mapping W into itself such that

for all w_1 and w_2 in W. We make \mathfrak{A} into a vector space by defining addition and scalar multiplication in the usual way. We define the product of two operators to be the composition of the operators. Then \mathfrak{A} is a commutative algebra which contains the identity operator I and the differentiation operator D; moreover, the mapping $f \mapsto \langle f \rangle$ is a linear injection of L into \mathfrak{A} and

(2.03)
$$\langle f \wedge g \rangle = \langle f \rangle \langle g \rangle$$

for all f and g in L (see [4]).

2.04. Theorem. If $\{(F_n, b_n, J_n, G_n, a_n, K_n)\}$ belongs to $\Sigma_{R,S}$ for some (R, S) in $\mathfrak{D}'_b \times \mathfrak{D}'_a$ then the equation

$$Aw(t) = \sum_{n=0}^{\infty} \left(\left(F_n \wedge w\right)^{(J_n)}(t) + \left(G_n \wedge w\right)^{(K_n)}(t) \right) \quad (t \in \Omega, w \in W)$$

defines an element of \mathfrak{A} .

Proof. Let $w \in W$ and $a < \alpha < \beta < b$. Then there exists a positive integer N such that $a_{N+1} < \alpha < \beta < b_{N+1}$. Since F_n vanishes on (a, b_n) we may infer that $F_n \wedge w$ vanishes on (a, β) for all n > N; since G_n vanishes on (a_n, b) we may infer that $G_n \wedge w$ vanishes on (α, b) for all n > N. Consequently,

(1)
$$Aw(t) = \sum_{n=0}^{N} ((F_n \wedge w)^{(J_n)}(t) + (G_n \wedge w)^{(K_n)}(t)) \quad (\alpha < t < \beta).$$

Since each $F_n \wedge w$ and each $G_n \wedge w$ is infinitely differentiable on (α, β) it follows from (1) that Aw is infinitely differentiable on (α, β) ; and, clearly, every derivative of Aw vanishes at the origin since the same is true of each term on the right-hand side of (1). Since (α, β) was an arbitrary open subinterval of Ω we may conclude that $Aw \in W$. There remains to show that the equation $A(w_1 \wedge w_2) =$ $(Aw_1) \wedge w_2$ holds for all w_1 and w_2 in W. But, using (2.01) and the fact that $\langle F_n \rangle$ and $\langle G_n \rangle$ belong to \mathcal{A} we may deduce that

$$\begin{split} A(w_1 \wedge w_2) &= \sum_{n=0}^{\infty} \left((F_n \wedge (w_1 \wedge w_2))^{(J_n)} + (G_n \wedge (w_1 \wedge w_2))^{(K_n)} \right) \\ &= \sum_{n=0}^{\infty} \left(((F_n \wedge w_1) \wedge w_2)^{(J_n)} + ((G_n \wedge w_1)^{(\Lambda w_2)})^{(K_n)} \right) \\ &= \sum_{n=0}^{\infty} \left((F_n \wedge w_1)^{(J_n)} \wedge w_2 + (G_n \wedge w_1)^{(K_n)} \wedge w_2 \right) \\ &= \left(\sum_{n=0}^{\infty} \left((F_n \wedge w_1)^{(J_n)} + (G_n \wedge w_1)^{(K_n)} \right) \right) \wedge w_2 = (Aw_1) \wedge w_2 \end{split}$$

For each w in W and each t in Ω the equation $\rho_{w,t}(A) = |Aw(t)|$ defines a seminorm on the space Ω . Let Ω be endowed with the locally convex topology defined by the family of seminorms $\{\rho_{w,t}: t \in \Omega, w \in W\}$.

2.05. Remark. If $\{A_n\}$ is a sequence in \mathfrak{A} then $A_0 = \lim A_n$ if and only if $A_0 w(t) = \lim A_n w(t)$ for all w in W and all t in Ω .

172

2.06. Definition. If $0 \le t < b$ we denote by [t] the set of all infinitely differentiable functions p which assume the value 1 on a neighborhood of $[0, \infty)$ and which vanish on some interval $(-\infty, \alpha_p)$, where $t - b < \alpha_p$. If a < t < 0 we let [t] denote the set of all infinitely differentiable functions q which assume the value 1 on a neighborhood of $(-\infty, 0]$ and which vanish on some interval (β_q, ∞) , where $\beta_q < t - a$.

2.07. Definition. If w belongs to W and $0 \le t < b$ we define

$$w_t(x) = \begin{cases} w(t-x), & t-b < x < t, \\ 0, & \text{otherwise}; \end{cases}$$

if w belongs to W and a < t < 0 we define

$$w_t(x) = \begin{cases} w(t-x), & t < x < t-a, \\ 0, & \text{otherwise.} \end{cases}$$

2.08. Remark. If $w \in W$ and $0 \le t < b$, the function w_t is infinitely differentiable on $(t - b, \infty)$ and vanishes on (t, ∞) ; thus, if $p \in [t]$, the function pw_t (the pointwise product of the functions p and w_t) belongs to $\mathfrak{D}((-\infty, b))$ with $\operatorname{supp} pw_t \subset (-\infty, t]$. If $w \in W$ and a < t < 0, the function w_t is infinitely differentiable on $(-\infty, t-a)$ and vanishes on $(-\infty, t)$; thus, if $q \in [t]$, the function qw_t belongs to $\mathfrak{D}((a, \infty))$ with $\operatorname{supp} qw_t \subset [t, \infty)$.

2.09. Lemma. If f belongs to L and m is a nonnegative integer, the equation

$$\langle \partial^m f_+(x), p(x)w_+(x) \rangle = (f \wedge w)^{(m)}(t) \qquad (0 \le t < b)$$

holds for any p in [t] and any w in W and the equation

$$- \left\langle \partial^m f_{-}(x), q(x)w_t(x) \right\rangle = (f \wedge w)^{(m)}(t) \qquad (a < t < 0)$$

holds for any q in [t] and any w in W.

Proof. Let $0 \le t \le b$ and $p \in [t]$. For any $w \in W$,

$$\langle \partial^m f_+(x), p(x)w_t(x) \rangle = (-1)^m \int_0^b f(x) [pw_t]^{(m)}(x) dx.$$

Since p = 1 on [0, b) and since w_t vanishes on (t, ∞) it follows that

$$\langle \partial^m f_+(x), p(x)w_t(x) \rangle = (-1)^m \int_0^t f(x) [w_t]^{(m)}(x) dx$$

By observing that $(-1)^m [w_t]^{(m)}(x) = w^{(m)}(t-x)$ for x > t-b, we may use (2.01) to obtain

$$\langle \partial^m f_+(x), p(x)w_t(x) \rangle = \int_0^t f(x)w^{(m)}(t-x) dx = (f \wedge w)^{(m)}(t).$$

Now, let $a \le t \le 0$ and $q \in [t]$. For any $w \in W$,

$$\begin{aligned} \langle \partial^m f_{-}(x), \ q(x)w_t(x) \rangle &= (-1)^m \int_a^0 f(x) [qw_t]^{(m)}(x) \, dx \\ &= (-1)^m \int_t^0 f(x) [w_t]^{(m)}(x) \, dx = \int_t^0 f(x) w^{(m)}(t-x) \, dx \\ &= -\int_0^t f(x) w^{(m)}(t-x) \, dx = -(f \wedge w)^{(m)}(t). \end{aligned}$$

2.10. Theorem. If (R, S) belongs to $\mathfrak{D}'_b \times \mathfrak{D}'_a$ there exists an element A of \mathfrak{A} such that the equation

(2.10.1) $\langle R(x), p(x)w_t(x) \rangle = Aw(t) \quad (0 \le t < b)$

holds for any p in [t] and any w in W and such that the equation

(2.10.2)
$$-\langle S(x), q(x)w_t(x) \rangle = Aw(t) \quad (a < t < 0)$$

bolds for any q in [t] and any w in W. If $\{(F_n, b_n, J_n, G_n, a_n, K_n)\}$ belongs to $\Sigma_{R,S}$ then

(2.10.3)
$$A = \sum_{n=0}^{\infty} \left(D^{J_n} \langle f_n \rangle + D^{K_n} \langle g_n \rangle \right).$$

Proof. Let $\{(F_n, b_n, J_n, G_n, a_n, K_n)\} \in \Sigma_{R,S}$. Then, by 2.09,

(1)
$$\langle R(x), p(x)w_t(x) \rangle = \sum_{n=0}^{\infty} \langle \partial^J {}^n F_n(x), p(x)w_t(x) \rangle = \sum_{n=0}^{\infty} (F_n \wedge w)^{(J_n)}(t)$$

for $0 \le t \le b$, any $p \in [t]$ and any w in W. Similarly,

(2)
$$-\langle S(x), q(x)w_t(x)\rangle = \sum_{n=0}^{\infty} -\langle \partial^{K_n}G_n(x), q(x)w_t(x)\rangle = \sum_{n=0}^{\infty} (G_n \wedge w)^{(K_n)}(t)$$

for a < t < 0, any $q \in [t]$ and any w in W. If we define

$$Aw(t) = \sum_{n=0}^{\infty} ((F_n \wedge w)^{(J_n)}(t) + (G_n \wedge w)^{(K_n)}(t)) \quad (t \in \Omega, w \in W)$$

[July

174

then $A \in \mathfrak{A}$ by 2.04. Moreover, since each $F_n \in L_+$ and each $G_n \in L_-$ we have

$$Aw(t) = \begin{cases} \sum_{n=0}^{\infty} (F_n \wedge w)^{(J_n)}(t) & \text{for } 0 \le t < b, \\ \sum_{n=0}^{\infty} (G_n \wedge w)^{(K_n)}(t) & \text{for } a < t < 0, \end{cases}$$

from which follows the theorem.

2.11. Corollary. Suppose that (R,S) belongs to $\mathbb{D}'_b \times \mathbb{D}'_a$ and $w \in W$. If $0 \leq t < b$, the family $\{\langle R(x), p(x)w_t(x) \rangle : p \in [t]\}$ contains a unique element. If a < t < 0, the family $\{\langle S(x), q(x)w_t(x) \rangle : q \in [t]\}$ contains a unique element. If we define

$$\langle (R, S) \rangle w(t) = \begin{cases} \langle R(x), p(x)w_t(x) \rangle & (p \in [t], 0 \le t < b) \\ - \langle S(x), q(x)w_t(x) \rangle & (q \in [t], a < t < 0) \end{cases}$$

and denote by $\langle (R, S) \rangle$ the mapping $w \mapsto \langle (R, S) \rangle w$, then $\langle (R, S) \rangle \in \mathbb{C}$.

2.12. Corollary. If $(R, S) \in \mathfrak{D}'_b \times \mathfrak{D}'_a$ and $\{(F_n, b_n, J_n, G_n, a_n, K_n)\} \in \Sigma_{R,S}$, then

(2.12.1)
$$\langle (R, S) \rangle = \sum_{n=0}^{\infty} (D^{J_n} \langle F_n \rangle + D^{K_n} \langle G_n \rangle).$$

Proof. Immediate from (2.10.3).

2.13. Corollary. The equation $\langle (\partial^m f_+, \partial^n f_-) \rangle = D^m \langle f_+ \rangle + D^n \langle f_- \rangle$ holds for all f in L and all nonnegative integers m and n.

Proof. Immediate from 2.09.

2.14. Lemma. There exists a sequence $\{w_n\}$ in W such that

$$(2.14.1) A = \lim_{n \to \infty} \langle Aw_n \rangle$$

for all A in C.

Proof. Choose w_n in W satisfying

(1)
$$w_n \ge 0 \quad \text{on } (0, b),$$

$$w_n \leq 0 \quad \text{on } (a, 0),$$

(3)
$$w_n(t) = 0 \text{ for } |t| \ge 1/n,$$

(4)
$$\int_{0}^{b} w_{n}(x) dx = 1 = -\int_{a}^{0} w_{n}(x) dx$$

(cf. [1, p. 166]). Let $A \in \mathbb{C}$ and $w \in W$. Then, for $0 \le t \le b$ and n sufficiently large so that t - 1/n > 0,

$$(Aw) \wedge w_n(t) = \int_{t-1/n}^t Aw(x)w_n(t-x)\,dx.$$

And, by (3)-(4), we may write

$$Aw(t) = \int_{t-1/n}^{t} Aw(t)w_n(t-x)\,dx.$$

Consequently,

$$|(Aw) \wedge w_{n}(t) - Aw(t)| = \left| \int_{t-1/n}^{t} [Aw(x) - Aw(t)]w_{n}(t-x) dx \right|$$

$$\leq \sup_{|x-t| \leq 1/n} |Aw(x) - Aw(t)| \int_{t-1/n}^{t} w_{n}(t-x) dx$$

$$= \sup_{|x-t| \leq 1/n} |Aw(x) - Aw(t)|.$$

Using (5) and the continuity of Aw at t we obtain

(6)
$$Aw(t) = \lim_{n \to \infty} (Aw) \wedge w_n(t) \quad (0 < t < b).$$

For a < t < 0 and n sufficiently large so that t + 1/n > 0,

$$(Aw) \wedge w_n(t) = -\int_t^{t+1/n} Aw(x)w_n(t-x)\,dx.$$

And, by (3)-(4), we may write

$$Aw(t) = -\int_t^{t+1/n} Aw(t)w_n(t-x)\,dx.$$

Consequently,

$$|(Aw) \wedge w_n(t) - Aw(t)| = \left| -\int_t^{t+1/n} [Aw(x) - Aw(t)]w_n(t-x) dx \right|$$

(7)
$$\leq \sup_{|x-t|\leq 1/n} |Aw(x) - Aw(t)| \left(-\int_{t}^{t+1/n} w_n(t-x) dx\right)$$

$$= \sup_{|x-t| \leq 1/n} |Aw(x) - Aw(t)|.$$

Using (7) and the continuity of Aw at t we obtain

(8)
$$Aw(t) = \lim_{n \to \infty} (Aw) \wedge w_n(t) \quad (a < t < 0).$$

Observing that $(Aw) \wedge w_n = (Aw_n) \wedge w$ and the fact that $(Aw_n) \wedge w(0) = 0 = Aw(0)$ we infer from (6) and (8) that $Aw(t) = \lim_{n \to \infty} (Aw_n) \wedge w(t)$ (all $t \in \Omega$) and therefore that $A = \lim \langle Aw_n \rangle$.

2.15. Remark. It follows from 2.14 that each A in \mathfrak{A} is linear.

2.16. Lemma. If $\{(R_n, S_n)\}$ is a sequence in $\mathfrak{D}'_b \times \mathfrak{D}'_a$ and if $R_0 = \lim R_n$ and $S_0 = \lim S_n$ then $\langle (R_0, S_0) \rangle = \lim \langle (R_n, S_n) \rangle$.

Proof. Let $w \in W$. If $R_0 = \lim R_n$ and $S_0 = \lim S_n$ then

$$\langle R_0(x), \phi(x) \rangle = \lim_{n \to \infty} \langle R_n(x), \phi(x) \rangle \quad (\text{all } \phi \in \mathfrak{D}((-\infty, b))),$$

$$\langle S_0(x), \phi(x) \rangle = \lim_{n \to \infty} \langle S_n(x), \phi(x) \rangle \quad (\text{all } \phi \in \mathfrak{D}((a, \infty))).$$

Therefore, for 0 < t < b,

$$\langle (R_0, S_0) \rangle w(t) = \langle R_0(x), p(x)w_t(x) \rangle$$

= $\lim_{n \to \infty} \langle R_n(x), p(x)w_t(x) \rangle = \lim_{n \to \infty} \langle (R_n, S_n) \rangle w(t)$ (all $p \in [t]$),

and, for a < t < 0,

$$\langle (R_0, S_0) \rangle w(t) = -\langle S_0(x), q(x)w_t(x) \rangle$$

$$= \lim_{n \to \infty} -\langle S_n(x), q(x)w_t(x) \rangle = \lim_{n \to \infty} \langle (R_n, S_n) \rangle w(t) \quad (all \ q \in [t]).$$

2.17. Definition. For any ϕ in $\mathfrak{D}((-\infty, \infty))$ and any real t we define $\phi_t(x) = \phi(t-x)$ for all x.

2.18. Theorem. The mapping $(R, S) \mapsto \langle\!\!\langle R, S \rangle\!\!\rangle$ is a linear bijection of $\mathfrak{D}'_b \times \mathfrak{D}'_a$ onto \mathfrak{A} .

Proof. It is easily seen that the mapping is linear. We show first that it is "onto." Let $A \in \mathcal{C}$ and define

(see 2.14). Then $\partial^0 f_n \in \mathfrak{D}'_b$ and $\partial^0 g_n \in \mathfrak{D}'_a$. For any ϕ in $\mathfrak{D}((-\infty, b))$ there exists $t \in (0, b)$ such that $\operatorname{supp} \phi \subset (-\infty, t]$ and therefore $\phi_t \in W$. Thus,

177

(1)
$$\langle \partial^0 f_n(x), \phi(x) \rangle = \langle \partial^0 f_n(x), (\phi_t)_t(x) \rangle = \langle f_n \rangle \phi_t(t)$$

Combining (1) and 2.14 we have $\lim_{n\to\infty} \langle \partial^0 f_n(x), \phi(x) \rangle = A(\phi_t)(t)$. Thus the sequence $\{ \langle \partial^0 f_n(x), \phi(x) \rangle \}$ converges for all ϕ in $\mathfrak{D}((-\infty, b))$. By [1, Proposition 2, p. 315] there exists R in $\mathfrak{D}'((-\infty, b))$ such that $R = \lim \partial^0 f_n$; it is easily seen that $R \in \mathfrak{D}'_b$. For any ϕ in $\mathfrak{D}((a, \infty))$ there exists $t \in (a, 0)$ such that supp $\phi \subset [t, \infty)$ and therefore $\phi_t \in W$. Thus,

(2)
$$- \langle \partial^0 g_n(x), \phi(x) \rangle = - \langle \partial^0 g_n(x), (\phi_t)_t(x) \rangle = \langle g_n \rangle \phi_t(t).$$

Combining (2) and 2.14 we have $\lim_{n\to\infty} -\langle \partial^0 g_n(x), \phi(x) \rangle = A(\phi_t)(t)$. Thus the sequence $\{\langle \partial^0 g_n(x), \phi(x) \rangle\}$ converges for all ϕ in $\mathfrak{D}((a, \infty))$. We may similarly infer the existence of S in \mathfrak{D}'_a such that $S = \lim \partial^0 g_n$. We may now use 2.16, 2.13 and 2.14 to obtain

$$\langle (R, S) \rangle = \left\langle \left(\lim_{n \to \infty} \partial^0 f_n, \lim_{n \to \infty} \partial^0 g_n \right) \right\rangle$$
$$= \lim_{n \to \infty} \left\langle (\partial^0 f_n, \partial^0 g_n) \right\rangle = \lim_{n \to \infty} \langle A w_n \rangle = A;$$

whence the mapping $(R, S) \mapsto \langle (R, S) \rangle$ is "onto." If A = 0 then each f_n and each g_n equal 0, from which it follows that $R = \lim_{n \to \infty} \partial^0 f_n = 0$ and $S = \lim_{n \to \infty} \partial^0 g_n = 0$. The mapping $(R, S) \mapsto \langle (R, S) \rangle$ is therefore one-to-one.

2.19. Theorem. The space \mathfrak{A} is sequentially complete.

Proof. Suppose $\{A_n\}$ is a Cauchy sequence in \mathfrak{A} . By 2.17 there exists a unique (R_n, S_n) in $\mathfrak{D}'_b \times \mathfrak{D}'_a$ such that $\langle (R_n, S_n) \rangle = A_n$ and, by assumption, the sequence $\{\langle (R_n, S_n) \rangle w(t) \}$ converges for all w in W and all $t \in \Omega$. For any ϕ in $\mathfrak{D}((-\infty, b))$ there exists $t \in (0, b)$ such that $\operatorname{supp} \phi \subset (-\infty, t]$ and therefore $\phi_t \in W$. Since $\langle R_n(x), \phi(x) \rangle = \langle R_n(x), p(x)(\phi_t)_t(x) \rangle = \langle (R_n, S_n) \rangle \phi_t(t)$ for all $p \in [t]$, the sequence $\{\langle R_n(x), \phi(x) \rangle\}$ converges for all ϕ in $\mathfrak{D}((-\infty, b))$. For any ϕ in $\mathfrak{D}((a, \infty))$ there exists $t \in (a, 0)$ such that $\operatorname{supp} \phi \subset [t, \infty)$ and therefore $\phi_t \in W$. Since $-\langle S_n(x), \phi(x) \rangle = -\langle S_n(x), q(x)(\phi_t)_t(x) \rangle = \langle (R_n, S_n) \rangle \phi_t(t)$ the sequence $\{\langle S_n(x), \phi(x) \rangle\}$ converges for all ϕ in $\mathfrak{D}((a, \infty))$. We may again use [1, Proposition 2, p. 315] to infer the existence of (R, S) in $\mathfrak{D}'_b \times \mathfrak{D}'_a$ such that $R = \lim R_n$ and $S = \lim S_n$. By 2.16 we then have

$$\langle (R, S) \rangle = \lim_{n \to \infty} \langle (R_n, S_n) \rangle = \lim_{n \to \infty} A_n.$$

2.20. Lemma. If (r, s) and (R, S) belong to $\mathfrak{D}'_b \times \mathfrak{D}'_a$ then $\langle (r * R, -s * S) \rangle = \langle (r, s) \rangle \langle (R, S) \rangle$.

178

Proof. Let $\{(F_n, b_n, J_n, G_n, a_n, K_n)\} \in \Sigma_{R,S}$ and $\{(f_n, b_n, j_n, g_n, a_n, k_n)\} \in \Sigma_{r,S}$. By 1.05 and 1.04,

$$r * R = \lim_{N \to \infty} \sum_{m=0}^{N} \sum_{n=0}^{N} \partial^{j_m + J_n} (f_m \wedge F_n),$$

$$-s * S = \lim_{N \to \infty} \sum_{m=0}^{N} \sum_{n=0}^{N} \partial^{k_m + K_n} (g_m \wedge G_n).$$

Therefore, by 2.16,

$$\langle (r * R, -s * S) \rangle = \lim_{N \to \infty} \sum_{m=0}^{N} \sum_{n=0}^{N} \langle (\partial^{j_m + J_n} (f_m \wedge F_n), \partial^{k_m + K_n} (G_m \wedge G_n)) \rangle$$

$$= \lim_{N \to \infty} \sum_{m=0}^{N} \sum_{n=0}^{N} \langle D^{j_m + J_n} \langle f_m \wedge F_n \rangle + D^{k_m + K_n} \langle g_m \wedge G_n \rangle)$$

$$= \lim_{N \to \infty} \sum_{m=0}^{N} \sum_{n=0}^{N} \langle D^{j_m} \langle f_m \rangle D^{J_n} \langle F_n \rangle + D^{k_m} \langle g_m \rangle D^{K_n} \langle G_n \rangle);$$

the second equality is from 2.13 and the third equality is from (2.03). Let $w \in W$ and $t \in \Omega$. Choose N sufficiently large so that $a_{N+1} < t < b_{N+1}$. Suppose first that $0 \le t < b$. Then

$$\langle (r * R, -s * S) \rangle w(t) = \sum_{m=0}^{N} \sum_{n=0}^{N} D^{j_m} \langle f_m \rangle D^{J_n} \langle F_n \rangle w(t)$$

$$= \sum_{m=0}^{N} D^{j_m} \langle f_m \rangle \left(\sum_{n=0}^{N} D^{J_n} \langle F_n \rangle w \right) (t)$$

$$= \sum_{m=0}^{\infty} D^{j_m} \langle f_m \rangle \left(\sum_{n=0}^{N} D^{J_n} \langle F_n \rangle w \right) (t)$$

$$= \langle (r, s) \rangle \left(\sum_{n=0}^{N} D^{J_n} \langle F_n \rangle w \right) (t);$$

the last equality is from 2.12. Therefore, by 2.15 and the fact that ${\mathfrak C}$ is a commutative algebra, we have

$$\langle (r * R, -s * S) \rangle w(t) = \sum_{n=0}^{N} D^{J_n} \langle F_n \rangle (\langle (r, s) \rangle w)(t)$$
$$= \sum_{n=0}^{\infty} D^{J_n} \langle F_n \rangle (\langle (r, s) \rangle w)(t) = \langle (R, S) \rangle (\langle (r, s) \rangle w)(t)$$

 $= \langle (R, S) \rangle \langle (r, s) \rangle w(t) = \langle (r, s) \rangle \langle (R, S) \rangle w(t).$

And, if
$$a < t < 0$$
, then

$$\langle \langle r * R, -s * S \rangle \rangle w(t) = \sum_{m=0}^{N} \sum_{n=0}^{N} D^{k_m} \langle g_m \rangle D^{K_n} \langle G_n \rangle w(t)$$

$$= \sum_{m=0}^{N} D^{k_m} \langle g_m \rangle \left(\sum_{n=0}^{N} D^{K_n} \langle G_n \rangle w \right)(t) = \sum_{m=0}^{\infty} D^{k_m} \langle g_m \rangle \left(\sum_{n=0}^{N} D^{K_n} \langle G_n \rangle w \right)(t)$$

$$= \langle \langle (r, s) \rangle \left(\sum_{n=0}^{N} D^{K_n} \langle G_n \rangle w \right)(t) = \sum_{n=0}^{N} D^{K_n} \langle G_n \rangle \langle \langle (r, s) \rangle w \rangle(t)$$

$$= \sum_{n=0}^{\infty} D^{K_n} \langle G_n \rangle \langle \langle (r, s) \rangle w \rangle(t) = \langle (R, S) \rangle \langle \langle (r, s) \rangle w \rangle(t) = \langle (r, s) \rangle \langle (R, S) \rangle w(t).$$

2.21. Definition. For any F in \mathfrak{B} we denote the element $\langle F_+, F_- \rangle$ of \mathfrak{A} by $\langle F \rangle$.

2.22. Theorem. The equation $\langle \partial^0 f \rangle = \langle f \rangle$ holds for all f in L.

Proof. Observing that $(\partial^0 f)_+ = \partial^0 f_+$ and $(\partial^0 f)_- = \partial^0 f_-$ we may combine 2.21 with 2.13 to obtain the theorem.

2.23. Theorem. The mapping $F \mapsto \langle F \rangle$ is an isomorphism of \mathfrak{B} into \mathfrak{A} and the equation $\langle F \wedge G \rangle = \langle F \rangle \langle G \rangle$ holds for all F and G in \mathfrak{B} .

Proof. The first assertion comes from combining 1.16 and 2.18. As for the second, since $\langle F \wedge G \rangle = \langle F_+ * G_+ - F_- * G_- \rangle = \langle (F_+ * G_+, -F_- * G_-) \rangle$ (see 1.18 and 1.19), we may use 2.20 to obtain $\langle F \wedge G \rangle = \langle (F_+, F_-) \rangle \langle (G_+, G_-) \rangle = \langle F \rangle \langle G \rangle$.

BIBLIOGRAPHY

1. J. Horvath, Topological vector spaces and distributions. Vol. 1, Addison-Wesley, Reading, Mass., 1966. MR 34 #4863.

180

2. H. Kestelman, Modern theories of integration, 2nd ed., Dover, New York, 1960. MR 23 #A282.

3. G. Krabbe, Operational calculus, Springer-Verlag, New York, 1970.

4. ——, An algebra of generalized functions on an open interval; two-sided operational calculus, Bull. Amer. Math. Soc. 77 (1971), 78-84; Correction, ibid., 633. MR 42 #2262; MR 43 #833.

5. _____, Initial-value problems involving generalized functions; two-sided operational calculus, Arch. Math. (Basel) (to appear).

6. — , A new algebra of distributions; initial-value problems involving Schwartz distributions (to appear).

7. -----, Linear operators and operational calculus. I, Studia Math. 40 (1971), 199-223.

8. H. Shultz, Linear operators and operational calculus. II, Studia Math. 41 (to appear).

9. F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967. MR 37 #726.

10. G. Krabbe, An algebra of generalized functions on an open interval; two-sided operational calculus, Bull. Amer. Math. Soc. 77 (1971), 78-84. MR 42 #2262.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE COLLEGE, FULLERTON, CALIFORNIA 92631