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AN ALGEBRA OF DISTRIBUTIONS ON AN OPEN INTERVAL

BY

HARRIS S. SHULTZ

ABSTRACT. Let (a, 6) be any open subinterval of the reals which contains the

origin and let 33 denote the family of all distributions on [a, b) which are regular

in some interval (e, 0), where e < 0. Then S is a commutative algebra: Multiplica-

tion is defined so that, when restricted to those distributions on (a, b) whose sup-

ports are contained in [0, b), it is ordinary convolution. Also, S) can be injected

into an algebra of operators; this family of operators is a sequentially complete

locally convex space. Since it preserves multiplication, this injection serves as a

generalization (there are no growth restrictions) of the two-sided Laplace transfor-

mation.

In [6] there is introduced a new algebra 8  of distributions on (- °°, «¡), closed

under convolution and  containing the space of distributions having support in

[O, «o) as well as all locally integrable functions.   No growth or support restric-

tions are placed on the elements of 8.   There is also defined a one-to-one trans-

formation of 8 into a commutative algebra of operators (somewhat analogous to the

Fourier transformation).   In the present article we generalize these results in

obtaining a space 8  of distributions on  Q,  where  0 is any open subinterval of

the reals which contains the origin.  A distribution   F on  Q  belongs to 8   if and

only if F is regular in some interval (e, 0), where  e < 0.  Convolution is defined

and 8  is shown to be closed under this operation.   It is also shown that the alge-

bra (1 into which 8   can be injected is a sequentially complete locally convex

space in which convergence is defined simply in terms of the ordinary pointwise

convergence of functions.

0.   Preliminaries.   Throughout we assume  - °° < a < 0 < b < °° and set  Q =

{a, b). We define  L  to be the space of all the complex-valued functions which are

Lebesgue integrable on each compact subinterval of ß.   We denote by  L + (respec-

tively, L_) the subspace consisting of those elements of L which vanish on

(a, 0) (respectively, (0, b)).  If / and g belong to  L then the function / A g de-

fined by the equation

(0.01) fAg(t)=pf{t-u)g(u)du       (teil)
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also belongs to  L, moreover, if we identify functions which are equal almost every-

where on  Q then

(0.02) /A.? = gA/

(see [4]).   For any / in  L  we define

0<t<b, (0, r>0,

f+(t)={ and    f_(t) = l
t < 0, (/(/),       a < t < 0.

If QQ  is an open subinterval of the reals we denote by JXiî-) the space of

complex-valued infinitely differentiate functions defined on the reals which

vanish outside of a compact subset of QQ.  If <j) 6 l>(ÇlQ) we define the support of

0, denoted supp<£, to be the closure of the set Í/ : t/>(r) £ O!.   Then supp<£ C Q.

for all 0 in 3XüQ).

As usual, the dual of 15(0.), that is, the space of distributions on  fiQ, is de-

noted by 2)'(ü0).   If  R  belongs to 3)'(O0) and <£> belongs to  2)(ÜQ) the scalar

which  R assigns to <f> W11l De written   (R(x), <f>(x)).  If / belongs to the family of

locally integrable functions on  Í2    and m is a nonnegative integer we shall write

dmf for the element of 3)'(fi0) defined by

{dmf(x), 0(x)>= (- I)"» /   f(x)^m\x)dx       {cj> eS)(Q0)).

In particular, d f is the regular distribution corresponding to the function  /.   The

support of a distribution  R  on  Q„ (denoted supp R) is defined to be the comple-

ment with respect to  Q„  of the largest open set on which  R  vanishes.

I, The algebra 8. We denote by 3)^ the space of elements in 2) '((- 00, b))

having support in [O, b). We denote by D' the space of elements in JU'((a, 00))

having support in  {a, 0].

1.01. Definition. Suppose \b \ and \a \ are sequences of real numbers, that

!/ \ and \K \ are sequences of nonnegative integers and that IF } and \G ! are

sequences in  L.   If the ordered pair {R, S) belongs to the cartesian product

£! x V'   we say that the sequence  {( F  , b  , I   , G  , a  , K )\ belongs to   £„  r  if
b a - ■ n       n    J n        n       n        n b K,i

(1.01.1) a 1-<a2<al<aQ = 0 = bQ<b1<b2<--- —> b;

(1.01.2) F    vanishes on  (- °°, b  )    and G       vanishes on {a  , °o);

(1.01.3) R = y°°  ñdJnF      and    S = V°°   JK"G .

1.02. Theorem. Given any (R, S) in D/ x J)' and any sequences \b I flwrf

\a  \ satisfying (1.01.1) there exists an element \{ F  , b  , ]   , G  , a  , K )\ of

Zr s-
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Proof.   By [8, 2.17] there exists a sequence IF | in L  such that the equation

R =

n=0

holds for some sequence  \]   j  of nonnegative integers.  We define an element  T of

-D'((- o«» - a)) as follows:

(1) (T(x), <f>(x)) = <S(x), <#- x))       {<f> € ©((- È, - a))).

Then, since supp S C (a, O], the distribution  T has support contained in [O,   - a).

Since  0 = — «0 < — «.<•••< — a we may infer from [8, 2.17] the existence of a

sequence {H \ in L      ((— °°, - a)) such that H    vanishes on (-<», — « ) and
» n n n

such that the equation

°°      K

(2) T=   £   ^   "Hn
n=0

holds for some sequence  |K  | of nonnegative integers.   If we define

Gn{x)=(-l)K"H{-x)

then  G    vanishes on (a  , °°) and we may combine (1) and (2) to obtain

5=  V   d  nGn.

Therefore, \(Fn, bn, /„, G,, «„, K„)j £ 2R> ,.

1.03.  Definition.   For each 0 in i)((- °°, ¿)) we define  [0]    to be the family

of infinitely differentiable functions  À on the reals such that À is equal to 1  on

a neighborhood of  [O, °°) and vanishes on some interval  (- °o, a'), where supp</5 C

(- c«, a  + b).  For each 4> in -D((ß! °°)) we define  [r/j]~ to be the family of infinite-

ly differentiable functions  ¡i on the reals such that fi is equal to 1  on a neighbor-

hood of  (- °°, o] and vanishes on some interval  {b', °°), where supp 0 C (a + b', °o).

1.0 4.  Theorem.    Suppose   (r, s)   and  (R,S)   belong   to ®¿x3)¿.   //

ttfn' hn' V g«' V ^  belongs to lr¡s  and \(Fn, bn, J n, Gn, an, Kj] belongs

to   £„ s, then for any (p"   in £{{— °°, b)) the equation

N       N .       ,

(1.04.1)    (r(y), (R(x), A(y)0(x + y)» = lim   V    V   <<9 m    "(/   A F ) (*), ¿>(x)>
N^co *-*    LtR 'm        n

m = 0 n = 0

holds for all k in \jp]  , and for any 0  in 3X(«, <*>)) ¿¿e equation
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<U(y), (S(x), ß(y)<f>{x - y)f>

k    +K
(1.04.2) N     n

= lim   V    V  (d m     \AGJW,«
"-•«.o „.0

holds for ail f¿  in  [cf)]~.

Proof.   Suppose  cf> e £{{— oo, &))  and À e [0]  .   There exist numbers  /3 and  a'

such that

(1) supp^C (- »o, ß] C (- oo, a' + b)

and such that À vanishes on  (- oo, a).   For any y the function  x (—» \{y)cf)(x + y)

is infinitely differentiable.   From (1) it follows that its support is contained in

(- oo, ß - y].  Thus, for  y > a', its support is contained in  (- oo, ß - a'] and there-

fore in  (- oo, b).   And, for y < a', it vanishes identically  (since \(y) = 0).  Conse-

quently, the function x i—» \(y) <ß (x + y) belongs to  X((- oo, b)) and has support in

(- oo, ß — a ] for all  y.   There exists  N such that  bN       > ß — a'   and therefore

oo II)

(R(x), \(y)cf>(x + y)> =   £ (- l/»J* FB(x)A(yty '» (x + y)dx
n = 0

(2)

=   fJ(-l)Jnfb0Fn(x)\(y)cf>Un\x + y)dx
n = 0

for all y (recall that  F    vanishes on (- oo, b )).  From (2) and [2, 250] it follows

that the function

(3) y ■-» (R(x), \{y)<f>(x + y)>

is infinitely differentiable.   From (1) comes the equality

(4) (ROO, A(y)0(x + y)) = 0    (all y > ß)

(recall supp R C [0, b)).  And

<R(x), A(y)0(x + y)) = 0     (all y < a')

since  À vanishes on  (- oo, a').   Consequently, the function (3) belongs to

1>{(— °°j b)).  Moreover, we may combine (4) and the inequality  bN    . > ß to obtain

P0fm(y) (RU), X(y)cf>(x + y)) dy = 0     (all m > ¿V).

Therefore,
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<r(y), (R(x), A(y)0(x + y)»

N

I
m = 0 ¿y

N      N

Z (- 1);'"/o/m(y) —</?(x)' X{y^{x + y]) dy

!=0   72 = 0 V /

the last equality is from (2),   [2,   250]   and the fact that A = 1 on [O, «>). We may

now use the change of variable  t = x + y and [2, 283] to obtain

(r{y),   <R(x), A(y)0(x + y)»

m=0   « = 0 \ 7

m=0   n=0 * '

We need only observe now that

for m > N and « > N to obtain (1.04.1). Suppose now that </5 e 2)((a, oo)) and /ix e

[<tj]~.   There exist numbers  a and  b'   such that

(5) suppçS C [a, m) C  (a + b', oo)

and such that p. vanishes on  (b , oo).   For any y the function x (—»/¿(y)0(x + y) is

infinitely differentiable.   From (5) it follows that its support is contained in

[a- y, oo).  Thus, for y < b', its support is contained in [a- b', oo) and therefore

in  (a, oo).  And, for y > b', it vanishes identically  (since  /¿(y) = 0).   Consequently,

the function    x i—>   p(y) <f>( x + y)   belongs   to   S ((a, oo)) and has support in

[a- b', oo) for all  y.   There exists  N such that  aN       < a- b'   and therefore

oo

<5(x), M(y)0(x + y)> =  £  (_ 1)   *[° Gn(xV(y)r/Mx + y) dx
n=0

(6)
N

=  £   (- 1)*"/° Gn(x),WMx + y)rfx
« = 0

for all y (recall that  G^ vanishes on Un, «>)).  From (6) and [2, 250] it follows

that the function
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(7) y\-{S(x),n(y)<f>{x + y))

is infinitely differentiable.   From (5) comes the equality

(8) ($(*), ß(y)cf>{x + y)> = 0    (all y < a)

(recall supp 5 C (a, 0]).  And

(S{x), n(y)<f>{x + y)) =0    (all y > &')

since  /x vanishes on  (r)', oo).   Consequently, the function (7) belongs to JD({a, oo)).

Moreover, we may combine (8) and the inequality aN      < a to obtain

C g„(y)(Six), /x(y)0(* + y)> dy = 0    (all  m > N).

Therefore,

(s(y), (S{x), ,i(y)0(x + y)»

N . ,fem

= y (- 1) m f°«m(y) — <5U), /x(y)0(* + y)> dy
¿—' J a   m i

m=0 dy m

m=0 72=0 \

the last equality is from (5),   [2,  250]  and the fact that ß = 1  on (- oo, o].  We

may now use the change of variable  t = x + y and [2, 283] to obtain

(s(y),  (S(x), fiíytyíx + y)»

m=0 n=0 \ /

m=0 n = 0 \ ' /

We need only observe now that

í°tSmiy)G„(t - y)dy = 0       (a < t < 0)

for m > N and n > N and that

-/X(y)G"(t-y)¿y=«» AG«(í)

to obtain (1.04.2).
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1.05. Corollary.   Suppose that (r, s) and (R, S) belong to 2)' x 2) '.  For any

<7j  in D((- oo, b)) the family

\(r(y), <R(x),A(yW* + y)»:  A e [0]+i

contains a unique element, which will be denoted by (r * R{x), <f>(x)).  For any t/i  in

j)((a, oo)) the family

\(s{y), (S{x), nb)<j>{x + y))>: p e [0]~|

contains a unique element, which will be denoted by \s * S(x), <f> (x)) .

1.06. Definition.   Let  (r, s) and  (R, S) belong to  h'b x 3V .  We denote by

T   *   R the   functional   that   assigns   to   any    <f>    in    J)((-<*>,  b))    the   number

(r * R(x), 0(x));  we denote by  s * S the functional that assigns to any 4> in

5)((a, oo)) the number   (s * 5(x), 0(x)).

1.07. Remark.   It follows from 1.04 and (0.02) that r * R = R * r and s * S =

S * s.

1.08. Corollary.   // (r, s) and (R, S) belong to 3)¿ x 2V   then  {r * R, s * S)

belongs to $'b x 3V .

Proof.   It follows from (1.04.1) and the sequential completeness of -D'((- °°,b))

(see [l, Proposition 2, p. 315]) that r * R belongs to i/((- oo, b)).  Moreover,

since  r * R  is the limit of a sequence of distributions on  (- oo, b) all having sup-

port in  tO, b), it too must have support in  [0, b), i.e. r * R e JJ'.  Similarly, s * S e

K-
1.09. Rpmark.   If / belongs to  L  then  d°f + e £¿  and  d /_   e 3V .   We may

deduce from 1.01 and 1.04 that the equations   ¿> °/+ * d g+= <?°(/+ A g+) and

- <5°/_ * d°c?_ = d°(/_ A g_) hold for all / and g  in  L.

1.10.   Definition.   We denote by  8_  the linear subspace consisting of those

elements of JJ '   which are regular in a neighborhood of the origin.

1.11. Remark.   Thus  S £ 8_ if and only  if S = d°f + T where  / e L_  and

T e 3V  with supp T C (a, O).   In particular, d°f_ e 8_  for all f £ L.

1.12. Lemma.   Suppose  {R, S) and (Rj, 5j)  belong to j)^ x 8 _.   //Z¿e

elements R + S and R    + S.   of 2)'(ft)  are equal then  R = R.   and 5 = 5,.

Proof.   Since  5 and  5    both vanish on  (O, b) we have

(1) 5 = 5j     on  (0, b).

Since  R  and  R.   both vanish on   (a, 0)   it follows from  R + S=R+S.   that

(2) 5 = 5j     on (a, O).
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Now, there exists   e> 0 and elements  / and /.   of  L_  such that  S = d f and S   =

d°fl  on  (- i, e).   From (1) and (2) it follows that  d°f = d°f x  on  (0, t) and on

(- €, 0). Thus,  by [9, p. 224] we have /¿/.   almost everywhere on  (- (, (), from

which it follows that d f = (9 /,  on (- e, e).  Therefore,

(3) S = d°f=d°f.i =S,     on  (-f, e).

We may  now combine (1), (2) and (3) to conclude that  5 = 5    on  (a, b) (see [9,

Theorem 24.1]).

1.13. Definition.   We denote by  8 the linear subspace consisting of those

elements of 3)'(Q) of the form  R + S where   R € 3)¿  and  5 e 8 _.

1.14. Remark.   Thus,  F e 8 if and only if F e i/(Q) and is regular in some

neighborhood ((, O), where a < e < 0.  In particular,  d f e 8 for all f e L.

1.15. Theorem.   // F belongs to  S  /¿ere exists a unique element of -L' x 8_,

denoted ( F+, F_), such that F = F + + F_.

Proof.   Immediate from 1.12.

1.16. Corollary.   T¿e mapping  FM (F+, F_)  ¿s an isomorphism of S z'«£o

3)¿x3>'

Proof.   One may easily verify that the mapping  F f—» (F+, F_) is linear.  The

corollary then follows from 1.15.

1.17. Lemma.   // V and V^  belong to h'a   with supp V. C (12, e] for some  e <

0 then supp V * V. C (a, el

Proof.   Let  ^> e JX(a, °°)) and have support in  [(', 00), where  e < í  < 0.   Then,

for y < e — t the function xl—» <£ (x + y) has support contained in (e, 00).  There-

fore,

(Vj(x), piytyix + y)) = 0     (all /x 6 M~)

for all y < e  - e.   Thus, the function  y I—»(^(x), ¡i(y)(f)(x + y))  has support

contained in  (O, 00) for all  ¡1 £ [<f>]~.  Since   V vanishes on this interval it follows

that

(V * Vj(x), </,(x)> =  (V(y), <V,(x), p(y)<j>(x + y)>) = 0

for all  p. in  [cf>]~.   Therefore, V * V    vanishes on  (f, 00).

1.18. Theorem.   // F and G belong to 8 then  F + * G +- F     * G     belongs

to 8 uy¿r¿ (F+* G+- F_ * G_)_ = - F_ * G_.

Proof.   It suffices to show that  F_ * G_ e 8_.  By 1.11 there exist / and g

in   L_   and  T and   U in  -L'   such that  F_ = <9 /+ T and G_ = 5°g + U with
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supp T C (a, e] and supp U C (a, e] for some  ( < 0.   Therefore,

F„* G_=(«?°/ + T) * (d°g+U) = {d°f) * (d°g) + {d°f) * U+T * {d°g) + T*U.

From 1.09 and 1.07 it follows that

F_* G_ = <?°(/A g) + (d°f) * U + (<9°g) * T + T * U.

If we set 5 = (d f) * U + (d g) * T + T * U we may infer from 1.17 that supp 5 C

(a, e] and therefore  F_ * G_ e 8_.

1.19. Definition.   If F and G belong to 8 we denote the element  F+ * G+-

F_ * G_ of 8 by FA G.

1.20. Remark.   As a consequence of 2.23, the space  8, with multiplication

defined by  1.19, is a commutative algebra.

1.21. Theorem.   The equation d°( f A g) = (d°f) A {d°g) holds for all f and g

in  L.

Proof.   Since  fAg = f+Ag++f_Ag_ we may use 1.09 to obtain

d°(f a g) = d°(f+ a g+) + d°{f_ a gj = a°/+ * d°g+ - d°/_ * a°g.

= (<?°/)+ * 0?°g)+ - (o"7)_ * W°g)_ = W0/) A (d°g).

2.  The algebra of operators.   Let  W be the space of all the complex-valued in-

finitely differentiable functions  w on  ft such that  w^k\Ö) = 0 for k > 0.   In  [4]

it is shown that / A w belongs to  W with

(2.01) (f/\w)'=f/\w'

whenever / belongs to L and w belongs to W. We denote by (/) the operator which

assigns to each w in W the function / A» in W. Thus, (//za' = f Aw (all t¡^ in W).

Let (f be the set of all the operators   A  mapping   W into itself such that

(2.02) A(w1Aw2)=(Awl)Aw2

for all w     and  w2  in   W.  We make  (l into a vector space by defining addition and

scalar multiplication in the usual way.  We define the product of two operators to

be the composition of the operators.   Then  Cf is  a commutative algebra which con-

tains  the identity  operator  / and the differentiation operator  D; moreover,  the map-

ping / I—>(/) is a linear injection of  L  into  Cl  and

(2.03) </A g> = </)<g)

for all  / and g  in   L (see [4]).

2.04.  Theorem.   // {(Fn, bn, ]n, Gn, an, Kn)\ belongs to    1R s for some

(R, 5)  in Ju'h x -Dj   then the equation
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Aw(t) = £ ((Fn A w)U*\t) + (Gn A ^)(Kn)(0)      UeQ,w eW)

72=0

defines an element of Cf.

Proof.   Let  ti* £ W and  a < a< ß < b.  Then  there exists a positive integer N

such that aN+1<0-<ß<bN..  Since  F^ vanishes on  (a, bn) we may infer that

F    A ui vanishes on  (a, ß) for all  n > N; since  G    vanishes on  (a , b) we may

infer that  Gn t\ w vanishes on  (a, b) for all  n > N.   Consequently,

H

(1) Au,(t)=  £  ((FnAw)U"\t) + (GnAw)(K"\t))       (a<t<ß).

72 = 0

Since each  F   A w and each  G    A w is infinitely differentiable on  (a, /3)  it

follows from (1) that  Aw is infinitely differentiable on  (a, ß); and, clearly, every

derivative of Aw vanishes at the origin  since the same is true of each term on

the right-hand side of (1).   Since  (a, ß) was an arbitrary open subinterval of 0

we may conclude that  Aw e W.   There remains to show that the equation A(w    A i¿0 =

{Aw j) Aw2 holds for all a/j  and w2  in  W.  But, using (2.01) and the fact that

\F )   and   \G  /   belong to Cl we may deduce that

A(wl A w2) =   Yj ((F„ A (h/1 A w2))Un) + (Gn A (w\ A t^)/*"')

=    Ë   (((F72 A W\) A W2)Un)   + ({Gn A Vl^T^.Ù
72 = 0

(/-). ,_     . ,(K„>
£  ((FnAwJ   " A w2 +(GnA Wj)    "A^2)

/ (ft (K    ) \
= (Z((F72A^i)   "   +(G„A^j)    ")   A»2 = (^,)Aw2.

For each w in  if and each  Z  in  ft the equation p^ t(A) = \Aw{t)\  defines a

seminorm on the space  U.   Let  U be endowed with the locally convex topology

defined by the family of seminorms  \pw   : t £ Çl, w 6 W].

2.05.  Remark.  If \A   \ is a sequence in Ö then AQ = limA^ if and only if

A  w{t) = lim A  w(t)   for all w in   W and all  t in  Ü.
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2.06. Definition.  If 0 < t < b we denote by [/] the set of all infinitely dif-

ferentiable functions p which assume the value 1 on a neighborhood of [0, oo)

and which vanish on some interval   (- oo, a ), where  t - b < a      If a < t < 0 we

let  [t] denote the set of all infinitely differentiable functions  q which assume

the value 1 on a neighborhood of  (- oo, 0] and which vanish on some interval

(j8?, oo), where  ßq< t - a.

2.07. Definition.   If w belongs to W and 0 < t < b we define

Íw{t - x),       t - b < x < t,

0, otherwise;

if w belongs to  W and a < / < 0 we define

!w(t — x),       t < x < t — a,

0, otherwise.

2.08. Remark.   If   w e W and 0 < t < b, the function w   is infinitely differ-

entiable on  (t - b, oo) and vanishes on  (t, oo); thus, if p € [t], the function pw

(the pointwise product of the functions  p and w; ) belongs to  2X(-oo, b)) with

supp/w^ C (- oo, ¿\.  If w e W and a < t < 0, the function w{ is infinitely differ-

entiable on (- oo, t - a) and vanishes on  (- oo, t); thus, if q e [t], the function

qwt belongs to  Mia, oo)) with supp qw( C [/, oo).

2.09. Lemma.   // / belongs to  L  and m  is a nonnegative integer, the equation

idmf+{x), p(x)w(x)) = (/ A w)M{t)       (0<t<b)

holds for any p  in  [t] and any w  in  W and the equation

- (dmfAx), q(x)wt{x)) = (/ A «,)<» \t)       (a < t < 0)

holds for any q in  [t\ and any w  in  W.

Proof.   Let  0 <t < b and p € [t].  For any w £ W,

(dmf,(x), p(x)wt(x)) = (- l)mjhof(x)[pWt\^\x)dx.

Since  p = 1  on  [0, b) and since  w( vanishes on  (t, oo) it follows that

<dmf+(x), p(x)wt(x)) = (- irpj(x)[w^m\x)dx.
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By observing that  (- l)m[u^](m)(x) = w(m\t- x)  for x > ; - b, we may use (2.01)

to obtain

(dmf+{x), p(x)wt{x)) = j'of(x)w{m\t - x)dx = ifAw){m\t).

Now, let a < / < 0 and  a e [l].   For any  w e W,

(SmfAx), q{x)wt(x)) = (- ir f0J(x)[qW[]{m\x)dx

= (- l)mf°tf{x)[wt]^\x)dx = f°if(x)wM(t - x)dx

= - j'of(x)W(m\t -x)dx = - (fAw)(m\t).

2.10.  Theorem.   // (R, 5)  belongs to 1>! x 2) '   ¿¿ere exists an element  A  of

(i such that the equation

(2.10.1) <R(x), p(xV((x)> = Aw(t)       (0 <t < b)

holds for any p  in  [t] and any w  in  W and such that the equation

(2.10.2) _ <5(x), 0(xV;(x)> = Aw(t)      (a < / < 0)

holds for any q  in  [t] and any w  in  W.   If \{ F  , b  , J   , G  , a  , K )\ belongs to

SR s  then

oo . K

(2.10.3) #m  ^(D-ifJ + D   "(gn)).
«=o

Proof.   Let  \{ F  , b   , ]   , G   , a  , K )i £ £p  r.   Then, by 2.09,

(1) (R(x), MxV((x)> =  £   <<9 "FB(x), p(x)u/f(x)> =   J   (FB A u,) '■ (f)

n=0 n=0

for  0 < ' < &> any  p e [z] and any  w in  W.  Similarly,

°° K °° (K   )

(2) - (5(x), a(x)^(x)> =   £  - <<9   "Gn(x)' *(*)«",(*)> =   Z  (G*A u,)     " (/)

n = 0 n = 0

for  a < í < 0, any  a e [;] and any  w in   W.   If we define

Aw(t) = £ ((Fn A w)Un\t) + (Cn A w)(K"\t))      (teQ,weW)

«=o
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then  A 6 (l  by 2.04.  Moreover, since each  F    e L.   and each  G    £ L     we havey 72 T 72 _

Au/(i) = <

SJJ
£ (FnA U-)    " (r)    for 0 < t < b,

72=0

JK)
Yj (Gn Aw)    " (t)    for a < t < 0,

72=0

from which follows the theorem.

2.11.  Corollary.   Suppose that (R,S)   belongs to 2)fe' x 35«   ««¿ w e W.  // 0<

t < b, the family \(R(x), p(x)w (x)) :p e[i]i  contains a unique element.  If a< t <

0, ¿£e family \(S(x), q(x)w (x)) : 27 e[r]S  contains a unique element.  If we define

((R, S))w{t)

f(R(x), p(x)wt(x))        (p e [t], 0 < t < b)

{ - (S(x), q(x)wt(x))    ' (q e [/], a < t < O)

and denote by  ({R, S))   the mapping w  \—> ((R, 5)) w, r&e« ((R, 5)) e (Î.

2.12.  Corollary.   // (R, 5) e 2) ' x $ '   a«¿ {( F , b , ] , G , a , K )! e 2„ „
'       '        ' b a 72'     72'  ' rr     72'     72'      72 R .S'

then

(2.12.1) ((R, 5))= £ (DJ"(Fn) + D   »<GB».
72=0

Proof.   Immediate from (2.10.3).

2.13. Corollary.   Tie equation   ((dmf+, dnfj)  = Dm  </+) + D"(/_) ¿oWs /or

a// / ¿72  L and all nonnegative integers m  and n.

Proof.   Immediate from 2.09.

2.14. Lemma.   There exists a sequence \w  \  in  W such that

A = lim (Aw  )
72 -»oo^        n'

(2.14.1)

for all A  in G-.

Proof.   Choose  w    in  IC  satisfying

(1) wn > 0     on  (0, b),

(2) wn < 0    on (a, 0),

(3) wn{t)   = 0    for   \t\ >  l/n,

(4) [bw  (x)dx= 1 =- Ç°w (x)dx
Jo    « Ja"
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(cf. [l, p. 166]). Let A e S and w e W. Then, for 0 < t < b and n sufficiently large so

that í - 1/b > 0,

(Aw) Aw (t) = Ç* Aw(x)w (t - x)dx.
n J t—l/n n

And, by (3)—(4), we may write

Aw(t) =   f Aw(t)w (t - x)ízx.
J  2-1/71 "

Consequently,

\(Aw) Awn(t) - Aw(t)\ /. ,   [Aw(x) - Aw(t)]w (t - x)dx
t-l/n n

< sup       \Aw(x) - Aw(t)\ f w(t-x)dx

sup \Aw(x) ~ Aw(t)\.
\X-1\<    1/72

Using (5) and the continuity of Aw at  t we obtain

(6) Aw(t) = lim (Aw) A wn(t)       (0 < t < b).
n -*oo

For a < £ < 0 and  « sufficiently large so that  / + l/w > 0,

(Aw) A w  (t) = -  j " Aw(x)w (t - x)dx.
n J t n

And, by (3)—(4), we  may write

Aw(t) = -  Ct+    nAw(t)w (t-x)dx.
J t "

Consequently,

\(Aw) A wn(t) - Aw{t)\ =
/r+l/7!r

( lAw(x) - Aw(t)\wn(t - x)dx

(1) <  ,    sup       \Aw(x) - Aw
\x-t\kl/n

sup       |Aii>(x) - Aw(t)\.

\x-l\<l/n

wi (-/;♦"■If    (f  — x) (3?X

Using (7) and the continuity of  Au< at  r.  we obtain
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(8) Aw(t) = lim (Aw) A w U)       (a < t < 0).
«-» oo

Observing that (Aw) A w   = (Aw ) A w and the fact that (Aw ) A w(0) = 0 = AuÁO)
° n n n

we infer from (6) and (8) that Aw(t) = Umn_too(Aw ) A w(t) (all  t £ ft) and there-

fore that A = lim (Aw  ).
n

2.15. Remark.   It follows from 2.14 that each A  in Cl is linear.

2.16. Lemma.   // \(Rn, Sn)\  is a sequence in 3)¿ x 2V  and if RQ = lim Rn

and 50 = lim5n then   <(RQ, 5Q)> = lim ((Rn, Sj .

Proof.   Let w e W.  If R. = lim R    and 5n = lim 5    then
U n U n

<R0(x), 0(x)> = lim (Rn(x), cß(x))     (all <f> e 3)((- oo, b))),
n-*oo

<50(x), 0(x)> = lim (5n(x), <¿(x)>     (all 0 e 2)((a, oo))).
n-»oo

Therefore, for  0 < t < b,

<(R0, 50)> w(t) = (R0(x), f(x)u/t(x)>

=  lim (Rn(x), p(x)wt(x)) =  lim «Rn>  Sj)w(t)    (all p e [i]),

and, for a < Z < 0,

((R0, 50)) w(t) = -<50(x), o(xV((x)>

=  lim -<5n(x), q(x)wt(x)) =  lim ((R^, Sn))w(t)    (all a € [z]).
n-> oo n-> oo

2.17. Definition.   For any <£> in  3X(- oo, oo)) and any real  t we define

4>t(x) = 0(z - x) for all  x.

2.18. Theorem.   T/je mapping (R, S)   |—» ̂ R, 5)) is a linear bijection of

1j! x ju'   onto d.
o a

Proof.   It is easily seen that the mapping is linear.   We show first that it is

"onto."  Let A eu and define

IAwn(x)    for 0 < x < b,

gnM
0 for x < 0;

| Aw (x)    for a < x < 0,

for x > 0

(see 2.14).  Then d°fn £%   and d°gn e 3V .   For any 0 in £X(- oo, b)) the

exists  t £ (0, b) such that suppt/S C (- oo, t\ and therefore  <ß   £ W.  Thus,
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(1) (d°fn(x), 0(x)> = (d°fn(x), (0,),(x)> = (f„)<t>t(t).

Combining (1) and 2.14 we have limB^oo<r30/n(x), 0(x)) = A(<f>t)(t).  Thus  the

sequence  {(d f (x), 0(x))S converges for all  0  in  3)((- oo, b)).  By [l, Proposi-

tion 2, p. 315 ] there exists  R in 3)'((- °°, b)) such that R = lim d f ; it is

easily seen that  R 6 3) ' .   For any  0 in i>((a, oo)) there exists  Z e (a, 0)  such

that supp0 C [z, oo) and therefore  0   € W.  Thus,

(2) - (d°gn(x), 0(x)> = - (d°gn(x), (<f,t)t(x)) = (gn ) 0/0.

Combining (2) and 2.14 we have limn_^00 - (d°gn(x), 0(x)> = A(0¿)(z).  Thus the

sequence  \ (d g  (x), 0(x))l  converges for all  0 in  l>((a, oo)).  We may similarly

infer the existence of 5 in JJ'   such that 5 = lim d g  .  We may now use 2.16,

2.13 and 2.14 to obtain

<(R, S)) = ((limd°fn, limrAj)
\\72-»O0 72-»OO //

= lim((d°fn,d°gn)) = lim (AwJ  =A;
72->O0 72->00

whence the mapping (R, 5) h—» ((R, 5)) is "onto." If A = 0 then each / and each

gn equal 0, from wTiich it follows that R = üm^^d / = 0 and 5 = lim^^^d g =

0.  The mapping (R, 5) I—► ((R, 5))   is therefore one-to-one.

2.19. Theorem.   The space Cf  is sequentially complete.

Proof.  Suppose \A  J is a Cauchy sequence in (l.  By 2.17 there exists a

unique  (R   , 5 )  in -0/ x Jb '   such that   ({R   , S  )) = A     and, by assumption, the
* 7272 b CL 72 72 72 '        J r '

sequence  I \(Rn, Sn))w(t)\ converges for all  w in  W and all  Z 6 Ü.   For any 0  in

3)((- oo, b)) there exists  Z e (0, b) such that supp0 C (- oo, t] and therefore 0  e W.

Since   (Rn(x), 0(x)) = <Rn(x), ^(x)(0¿)í(x)> =  <(Rn, 5n)>0¿(z)   for all p e [t], the

sequence \(Rn(x), 0(x))|  converges for all  0 in  2X(- °°, &)).   For any  0 in

3)((a, oo)) there exists  t € (a, 0)  such that supp 0C [t, oo) and therefore  0   e W.

Since - <5n(x), 0(x)> = - (5r(x), q(x)(<f> () t{x)) =  ((Rn, 5n))0((z)    the sequence

\(Sn(x), 0(x))¡  converges for all  0 in l>((a, oo)).  We may again use [l, Proposi-

tion 2, p. 315 ] to infer the existence of (R, 5)  in 1>! x 3)'  such that  R = lim R
r b a 72

and  5 = lim 5  .   By 2.16 we then have

<(R, 5)) = lim ((R  , 5 )) = lim A  .,l " ,x     72 72 72

72~»O0 72-^Oû

2.20. Lemma.  // (r, s) and (R, 5) èe/o22g Zo 3)¿ x 3V   zien <(r *■ R, - i • 5)) =

(Kr, s))((R, S)).
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Proof.   Let \(Fn, bn, /„, Gn, an, K„)î £ ZR¡S and {(/„, bn, /„, gn, «„, *„)} 6

2r s.   By 1.05 and 1.04,

r«K-  lim    Z    Z   ^.AF.),

N-»oo m_o   n=0

_S.S==   lim    £    £    ^     "(«».AC;»)-

Therefore, by 2.16,

N        N v1    +] k    +K
<(r . R, - S .  5))  =   um     Z     Z    {(d m        {fm   A F^' d  m       "^m A G*})>

%lim   Z    Z   ̂ ^(/„AF^^^^AC;)
m=0   73 = 0

-li.   I    Z   (D;m</m)D;"(Fn> + D^<gm)DK"<Gn»;
m=0   n=0

the second equality is from 2.13 and the third equality is from (2.03).   Let  w £ W

and  t eft.  Choose  N  sufficiently large so that  a.,       < t < bN    ..  Suppose first

that  0 < / < b.   Then

N        N

((r*R,-s* S))w(t) =    £      Z   D'm<fJDJ"<FJ w{t)
m=0    n = 0

=    Z   D'm(fj(î  D]"(Fnh)(t)
m=0 \n.= 0 I

oo In \

= Z D'm<o Z °"<F>w

/    N I \
= ((r,s))Í   £   DJ"<FB)J(Z);

the last equality is from 2.12.   Therefore,  by 2.15 and the fact that  Q is  a com-

mutative algebra, we have
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<(r * R, - s . S))w(t) =  £   D7" (Fn)«(r, s))u,)(z)

72 = 0

=   £    D  "<Fn)«(r, S)>w)(t)= ((R. S))(((r, s))w)(t)

72 = 0

= <(R, 5)>((r, s))^(z) = ((r, s))((R, S))w(t).

And, if  a < t < 0, then

((r » R, - s . S))w(t) =   £     Y  D%î<0D~" <G„M')
N      w      k

722=0    72=0

Nfe /   N       K \ °°       k I   N       K \
Z D "<0    Z D   n(Gn)w)(t)=   Y D "(gjl  Y  D   "(GJwVt)

772=0 \t2=0 / 772 = 0 \t2 = 0 /

N        K \ "       K
=  ((r, s))[   Y   D   "(GjW\(t)=  Y  D   n<Gn)«(r,s))w)(t)

\t2=0 / 72=0

=   Z   D   n(Gn)(((r, s))w)(t)= ((R, S))(((r, s))w)(t)= ((r, s)) ((R, S))w(t).

72=0

2.21. Definition.   For any  F in S we denote the element   ((F + , F_))   of U

by   <F>.

2.22. Theorem.   The equation   (d f) = (/) holds for all f in  L.

Proof.  Observing that (d f)+= d f+ and (d f)_ = d°f_ we may combine 2.21

with 2.13 to obtain the theorem.

2.23. Theorem.   The mapping  F I—» (F)   is an isomorphism of 8  into Cf and

the equation   (F A G) = (f)(g)   holds for all F and G  in 8.

Proof.   The first assertion comes from combining 1.16 and 2.18.   As for the

second,  since   \F A G/ = \F+ * G + - F_ » G_) = ((F + * G + , - F_ * G_))   (see

1.18 and 1.19), we may use 2.20 to obtain   <F A G> =  ((F + , F_))((G + , G_)) =

(F)(G).
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