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ABSTRACT.  For Banach algebras   A   in a class which includes all group and

function algebras, we show that the family of ideals of A   with the same hull is

typically quite large, containing ascending and descending chains of arbitrary

length through any ideal in the family, and that typically a closed ideal of A

whose hull meets the Silov boundary of  A   cannot be countably generated alge-

braically.

Guided by the results of [6], we explore here some consequences of the

Cohen factorization theorem [3] for the ideal structure of a commutative Banach

algebra A.  Ii we denote the maximal ideal space of A  by MÍ,   and define the zero

set of an ideal / of A  to be Z(/) =D ,Z(/) = / _1(0): f £l\ C%A, we develop

results which indicate that typically the class of ¡deals of A  with the same zero

set is quite large, containing ascending and descending chains of arbitrary length,

and that typically a closed ideal of A  whose zero set meets the Silov boundary of

A  cannot be (algebraically) countably generated.   For example, if  G  is a locally

compact Abelian group, there is an ideal of  L  (G)   strictly between any two ideals

/ C¿ J  which have the same zero set whenever either  / or /   is closed (compare

[17, 7.7.2]).  Further, a closed ideal  j  oí L (G)   can be countably generated only

if Zij)  is open-closed, and a maximal ideal can be countably generated only if

G  is finite (compare [11, 2.1], [5, Corollary 3])-

Algebraic applications of Cohen's theorem have been few to date (principally

[4, 4.7]), but because the result transforms a purely analytic condition on A

(existence of a bounded approximate identity) into a purely algebraic conclusion

(factorization of elements), it provides a most appropriate tool for just such appli-

cations.

1.  Chains of ideals.   Let  A   be a commutative algebra(') over a field  F.   An

ideal of A  will be a subspace over  F  closed under multiplication from  A.HI

and /  are ideals,  //  will denote 1/g: / £ I,  g £ ] !,  not the ideal generated by

this set.  We begin with a purely algebraic remark.
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Lemma 1.1.  // / C /  are ideals of A  and there are no ideals of A  strictly

between them, then either A] C I or MJ C I where M  is some maximal ideal of A

containing I.

Proof.  Let M be the ideal !/ £ A: fj C /}.   If A = M we are done; if not, take

any g £ A\M.   kg 4 I for some  k e ],  and / + kgA + Fkg is an ideal of A   be-

tween  /  and /  which properly contains  /.   Thus  / = / + kgA + Fkg,   and for each

/ £ A we may write fk = i + kga + akg,   i e I,  a e A,   a e F; that is, kif - ga~ ag)el.

Since  k 4 I, we also have / = / + kA + Fk,  so that (/- ga - ag)J = if- ga- ag)I+

kif- ga- ag) A + Fkif - ga - ag) C /.  This means / - ga - ag e M; that is,  A =

M + gA + Fg.   Thus  M  is a maximal ideal of  A.

Corollary 1.2.  Suppose  I ÇZ J are ideals of A  contained in the same family

of maximal ideals of A.   Then if either ]    = ]  or I  is semiprime, there is an

ideal of A  strictly between I and J.

Proof.   If not, 1.1 implies  /' C /,   since every maximal ideal of  A  which con-

tains  / also contains  /.   But then if /   = /,   / = /;  if  /  is semiprime,  J = / also.

Corollary 1.3. Suppose X is locally compact and I C¿ ] are ideals of CAX)

with the same zero set. If either I or J is semiprime, there is an ideal of CAX)

strictly between them.

Proof.   The maximal ideals of  C AX) correspond to the points of X,  so that

2
/ and / are contained in the same maximal ideals. If / is semiprime, / = /.

Forif/£/', l/l2 = fj e], and hence |/|, |/|H, |/| * e / as well. But then

/= |/|*(|/|* -l/l* sign/)  £/2.   Apply 1.2.

Corollary 1.4.   // /C¿/  are semiprime ideals of CQiX) with the same zero

set,   }11 has no maximal or minimal ideals.

A subset  ß  of a Banach algebra is said to have approximate identity if

there is a net  \e a\ on  B,   uniformly bounded in norm, for which  ||ea/ - /1| —» 0

for each / £ B.  A principal tool in our work is the following.

Theorem 1.5. // / and ] are closed ideals in a Banach algebra and either has

approximate identity, then I] = I n   /•

Proof.   If / has approximate identity, apply Cohen's theorem to obtain, for

each z el n J CI,   x, y € I such that z = xy where y  is chosen from the closed

ideal generated by  z.   Since  I Ci ]  is closed, this means y £ / PI   / C /;  hence

/ n   /,= //•   Because  // = //,  this also obtains when /  has approximate identity.

Theorem 1.6.   Let A  be a Banach algebra with approximate identity.  Sup-

pose  ICI] are ideals of A  with Zil) = Z(/),  and that for each p eZil),
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/   = 1/ £ A: fip) = Oi  has approximate identity.   Then if either I  or ]   is closed in

A, there is an ideal of A  strictly between them.

Proof. 1.5 implies that A    = A, and from this it follows that every maximal

ideal M of A is regular;  that is, A/M has identity.  For A2 C M, so that (A/M)2^

0;  since A/M is a simple commutative algebra, this means it is actually a field

[15, 2.1.5, p. 45]. Thus every maximal ideal of A is closed and those which con-

tain / and   /  are of the form  7 , p £ Z(/).

Suppose there are no ideals between  /and /.  Then by 1.1, A] C I  or M] C /

for some maximal ideal  M containing / (and hence /). If / is closed, then since  M

and A  have approximate identity, 1.5 implies that / = / O A = A] and / = / Cl M =

MJ, so that in either case above, / = /, a contradiction.  If / is closed, then again

because A and M  have approximate identities, we see that ] C AJ C I or / C

M/C /, hence / = /.

Corollary 1.7. With I and ] as above, the algebra J/I does not have the

ascending chain condition on ideals when ] is closed, and does not have the

descending chain condition when  I  is closed.

Corollary 1.8    (compare [17, 7.7.2, p.  183]).  Let G be a locally compact

Abelian group.   If I ^ J are ideals of L  (G) with the same zero set, and if one

of them is  closed, then there is an ideal of L  (G) strictly between them.

Proof.  L  (G) has approximate identity, as does each of its maximal ideals

[14, p. 151]. Apply 1.6.

The maximal ideal space of L  (G) is of course the dual group V, which we

may also view as a subset of the maximal ideal space of the measure algebra MÍG).

For y eF, let  K , K  be compact neighborhoods of y in V with K  C int K, and

choose a bounded net {/   j  on  L  (G), indexed by the neighborhoods \U   \ of y  con-

tained in K , for which supp/aC K, ja\Ua= 1  and ||/   * g||, —► 0 when giy) = 0

(cf. [14, p. 151]).  Then notice pa= S. - 7    £ MÍG)  is a bounded approximate

identity for the maximal ideal I    ={p £ MiG): piy) = 0j  (here S. denotes point

mass of 0). For if h £ L  (G)  is chosen so that h\K = 1, then, for each p £ I    ,

\\pa* p - p\\ = \\ja* p\\ j = ||;a* ^ * H11 —* 0-  From 1.6 we therefore conclude

Corollary 1.9-  If 1^ J  are ideals in MiG) with Z (/) = Z (/) C V, there is an

ideal of MiG) strictly between them whenever either is closed.

The assumption in 1.8 that /  or / is closed cannot be deleted.  For suppose

there is an / £ L   (G) whose zero set Z (/)  is exactly a nonisolated point p £ F.

Such an / will exist whenever V is nondiscrete and second countable.  Set / =

/* lp and/ = / * Ll(G). Certainly Z (/) = p = Zi]) and /£/.  For if g e LliG)\l ,
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/ *g e ]\l, since otherwise / * g = / * h  for some h e I  , and taking transforms

and dividing out /, we obtain g = h  on r\i¿>};  hence  g = h e I  , a contradiction.

However there is no ideal K of L (G) strictly between  / and /. For if K is any

ideal of L  (G) contained in /  and properly containing /, and if k £ K\I with

k = f *h, h e Ll(G)\lp, we have  L AG) = I   + h *L Hg) + Ch, because I     is a

maximal ideal.  Thus  ] - / * L \g) = / *Ip + k*L HO + CkC K.

If A is a function algebra on a compact space X, let a A denote its Choquet

boundary (cf. [2]).  Similar to 1.9 we have

Corollary 1.10. Suppose  l C¿ J  are ideals of a function algebra with Z (/) =

Zij) C dA.  If either I or j   is closed, there is an ideal strictly between them.

Proof. For p £ X, the maximal ideal lb-\f £ A; fip) = 0} has approximate

identity iff p £ dA [2, 1.6.3, 2.3.4]. We may therefore apply 1.6.

If A has unique representing measures on X, then dA = X, and 1.10 applies

whenever Z(/) = Z (/) C X. 1.10 also provides new ideals even in function alge-

bras where all the closed ideals are known.  For example, in the disc algebra A,

every nonzero closed ideal is of the form F/„ = fFg: g £ A, g\K = 0} where  F is

an inner function and  K is a closed set of zero measure on the circle  T [13, p.

85].  If p £ T = dA, I = iz - p)A   is an ideal of A, proper and dense in /  , and

Z (/) = p = Zil ).  Thus although there are no closed ideals between  / and /   ,

1.10 yields an infinite ascending chain of ideals of A   between them.  More gen-

erally if we set

uaiz) = Xz - p)expiaiz + p)/iz - p)),

then every closed ideal of A with zero set p is of the form /   = U„A, a^. 0, [13,

p. 88]. But Ia - uaA   is then proper and dense in /   , Z(/a) = Z(/a), and we may

obtain a chain of (nonclosed) ideals between them.  This example also reveals the

necessary role of the approximate identity in 1.6:   if p  is in the open unit disc,

the family of ideals of A which have p  as zero set is the discretely descending

chain iz - p)nA, n = 1, 2,- • • , [9, p. 235].

Actually there is an abstract reason why the disc algebra has a dense chain

of ideals at every maximal ideal on its boundary.

Proposition 1.11. If E is a nonopen peak set for a function algebra A, there

are infinite ascending and descending chains of ideals of A whose zero sets are

E and which are all densely contained in I    =\f e A: f\E - 0}.

Proof.   Choose   an   h £ A   which   peaks   to   1   on   E,   and   set   f=\ — h

and /   =/"/„, n= 0, 1_; Z(/ ) = Z(/") = Z (/) = E and /   .,  C /   C /„.  For
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if  /m + 1./m  for some  722,   f^  £ Im = 1^ ;  hence fm + ' = f^g,  g£¡E,   so

that XF' = g £A  and E   is open-closed in X, a contradiction.   Induction shows

that each  /    is dense in  lQ = IR.  For assuming  ¡n  is dense,  ¡n + l ~\l — h)¡n

will be dense if (l - h)lR   is.   But for fixed g £ IF,  (l - hk)g = (l - h)

.(l+h.,...+ hk-l)g eil -h)lE  and  ||(1 -hk)g- glL = ||Ä*glL-» 0.  Since

/„  has approximate identity, 1.5 implies   IF = IF.   1.2 then yields an infinite

ascending chain of ideals of A, \jn\, between  /j  and  /Q = IF.

For example, we obtain such ideals in the disc algebra whenever   E  is a

nonempty closed set of measure zero on the circle [13, P- 81].   Likewise, if A is

a logmodular or hypo-Dirichlet [l, 3-l] function algebra on a metrizable space  X,

then we obtain dense descending and ascending chains of primary ideals at every

nonisolated point of  X.

Chains of ideals may be constructed in other ways.  If A   is a Banach alge-

bra and  E  is a closed subset of its maximal ideal space, set   FR = \f £ A: f van-

ishes on a neighborhood of  E\,   KR = \j £ FR: f £ C_ Olï^)!  and   IP = \feA:

f\E = 0|.   Certainly  KF C F F C lR  ate ideals of A ;  if A   is regular,   ZÍKR) =

E - Z (/„)  and every ideal of A  whose zero set is  E  lies between  KF  and  IR

[14, 25D, p. 84].

Theorem 1.12 (compare [6, 4.5]).   // /  is an ideal of lKg)   strictly be-

tween  KR  and ¡E,   there are ideals  ]  and ]  of L (G)  for which

KEC¿C]CJCIE

with all inclusions proper.

Proof.  Since  lR   is a closed ideal of  L  (G)  and  Zij) = ZilF),   the exis-

tence of ]  follows from 1.8. Since   KF   is semiprime, 1.2 yields  /.

By repeated use of 1.12 we see that through any such  /  we may thread in-

finite ascending and descending chains of ideals of  L (G)  whose zero sets are E.

Notice this happens whether or not  E  is a set of spectral synthesis (in which

case, of course, every ideal in the chain will be dense in  IR).   In particular, in-

finite ascending and descending chains between  f\„  and  IE  will exist whenever

KE^ lE   (compare [6, 1.11, 1.12]).   If  G  is second countable, every closed set in

r  is of the form /~   (0) for some / £ L (G).  So that if T  is also connected, we

have   KR ?¿ IE  (and hence chains of ideals) for every nonempty proper closed set

E C T.   Of course, in any group this is also true whenever  E   is a set of non-

synthesis.  For  E - 0,  we obtain infinite ascending and descending chains of

dense ideals in  L (G)  whenever  G  is second countable and nondiscrete.  In view

of 1.9, similar results hold for MÍG).

2. Finitely generated ideals.  Motivated by [6, 2.6] and [5, Corollary 3l, we
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combine 1.5 and a theorem due to Gleason [10, 2.1] to show here that closed

ideals in Banach algebras can rarely be generated algebraically by a finite num-

ber of their elements (2.3).

Lemma 2.1. // A   is a regular Banach algebra with identity and ]   is a closed

ideal of A, then the algebra ] + C  is also regular.

Proof. Standard arguments [8, p. 12] show that  ] + C  is a Banach algebra,

and that restriction r: JH. —» JH.+r. is an identification which collapses Z (/) to a

point.  Thus if F is a closed set in )R,+r not containing a point p eM.+r, either

r~   iF)\jZij) and  r~   ip)  or r~   (F) and Z (/) = t~ ï ip) are disjoint compact

subsets of M . . In the first case, normality of M .  and regularity of A yield a g £ A

whose transform vanishes on a neighborhood of r~~   (F) U Z (/) and is identically

1 on r~1ip) [14, 25C, p. 84]. g £ Kz,.) C J + C [14, 25D] then separates p and

F in J!î.+r.  In the second case, we select a g £ A with transform vanishing on a

neighborhood of Z (/)  which is 1   on r~   (F);  again g e J + C  serves to separate

F and p.

Theorem 2.2. // A is a regular Banach algebra with identity and J is a

closed, finitely generated ideal of A  with approximate identity, then Zi]) is

open-closed in Jli. .

Proof. /   is the maximal ideal in ] + C which corresponds to the point riZij))

in Jlî.+r. Because / has approximate identity, it is finitely generated as an

ideal of ] + C. For if / = /jA +•■•+/ A, f. € J,   1.5 yields g., h. £ / for which

h = 8ihi'  so that  ^ =&\hiA +'" + 8nhnA =sSJ + C)+--'+g„(j + C). Because / + C is

regular (2.1), its Silov boundary is  ™I+(-, and Gleason's theorem [ll, 2.1] com-

bined with the maximum modulus principle for analytic varieties implies that

riZij)) is isolated in  W.+(_.   Thus  Z (/) = r~  (r(Z(/))) is open-closed in %A.

Corollary 2.3.   // >^A   is connected,   0 and A  are the only closed ideals of

A with approximate identity which can be finitely generated.

Actually, 2.2  holds  whether or not A   has identity.

Theorem 2.4.   // A   is a regular Banach algebra and J   is a closed, finitely

generated ideal of A  with approximate identity, then  Z(/)  z's open-closed in

Proof.   Set  A - A >: C and make  A  into a Banach algebra with identity (0, 1)

via  (/,  a)ig, ß) = ifg + ag + ßf, aß) and   ¡|(/, a)|| = ||/|| + |a|. The embedding

h—>h   [h ix, a) = hix) + a] is a homeomorphism  mA —> JIK-,   and JH-^Xulï^  is a

single point  oo corresponding to the maximal ideal   A = A x 0.   Thus  )K~ is the
... Ihr ~ "

one-point compactification of M .,  so that  A  is a regular algebra also.  For if  F
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is a closed set in !M~ not containing oo, F is a compact subset of MA, and there is an / £ A

with hif, 0) = hif) =lfor all h £F [14, 25CJ. Since <*>({, 0) = 0, (/, 0) separates «. and F. If F

is a closed set of ^ not containing p £ 1\iA, we choose f £ A with / ip) = 1 and supp/ C %A

disjoint from E O %.. Then (/, 0) separates p and E in )H~.   Certainly  / = / x 0 is

a closed, finitely generated ideal of  A  with approximate identity.   So  l°o| (jZ(/) =

Z(/) is open-closed in  m^ (2.2); hence  Z (/) = Z (/ ) r. )H .   is open(-closed) in

%A.

For example in the regular algebra  L  (G), the closed ideal  IE will have

approximate identity whenever  E is a closed subgroup in the dual group  T.  We

conclude from 2.4 that, for instance,  Iz  is not finitely generated in  L  ÍR).

Actually the only finitely generated, closed ideal in   L  iR) is the zero ideal (cf.

§3).  This does not follow from 2.4 however.  For the approximate identity assump-

tion here is quite restrictive.   If we let  Jv (r) denote the ring of subsets of  T

generated by the cosets of all subgroups of T, we have

Lemma 2.5.   An ideal ]   in  LriG) has approximate identity  iff Zij) eiR(r).

Proof.  Suppose   / has an approximate identity  \e   j bounded by  M.   For each

y £T\Zij), there is an  / £ } whose Fourier transform is   1   at  y.  Since

eJ~Y^fW ~~* /W» we see that  ea—* Xz,,y pointwise on T.  If we view each  ea

as a measure on G,   the Bohr compactification of  G,   then as a net in the weakly

compact ball of measures  !/i e M (G): \\u\\ < M\, je   ! must have a subnet  ie     !
— a aß

converging weakly to some   p £ MiG).  Since each y £ V extends to a continuous

function on  G,   eaiy) —» piy) pointwise on  T. Thus   p = Xz...,and  p is an

idempotent measure on   G.   By Cohen's theorem [17, 3.1.3, p. 60], Z(/) e 3UD.

Conversely, the arguments of [18, 1.7, 2.6] imply that if Z ij) e ÍR (D, there

is a constant K so that given f > 0 and f v ■ ■ ■ , f £ I£, there is an e e FR for

which

(#) Í41<K»aále*fi-fill<(,      i=\,2,---,n.

But if  ( > 0 and  fv---,fn £ ]  are given, set  S = min 11, t/ (2 max ||/¿¡| j)!,  choose

e as above for  e/2,  pick   a éL Hg) with   ||«|| . = 1  and   ||e - u * e\\    < 8/2 [l 7,

1.1.8], and then find  v £ L  (G) such that  v has compact support and   \u - v\\    <

S/(2||e||1 + 1) [17, 2.6.6]. Then

I« *v - e|j< Ô, \\e * HI ! < IIHI t<h - HI ! + IIHI,) < 2 IIHI i < 2K,
and for each  i,

\e *v*ft- /fll ! < H/,-11 jlk *^ - HI i + II* */¿ - HI i < f.

But   e *v £ KE C ],  and we conclude that (#) holds with  2f\ in place of   K and

e choosen from  /.   Thus   /  has approximate identity.
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In particular,   Z(/)  must be a set of synthesis if /  is to have approximate

identity [18, 2.6],  Further, if /   is a proper nonzero ideal and Y is connected,

Zij)  must be contained in a finite union of cosets of proper closed subgroups of

G;  in fact for  G = R,  Z(/)  must differ from some finite union of arithmetic pro-

gressions by at most a finite set [18, 1.5,  1.6].

Furthermore it is not clear that 2.4 holds if the approximate identity assump-

tion on  /   is deleted —the principal difficulty being that ideals  /  finitely gener-

ated over A  need not be finitely generated over J + C.  Consider, for example, a

semisimple Banach algebra A  with 1  and a nonisolated point  p  in its Silov

boundary Y ..  Suppose there is an f e A  with  Z(/) = \p\. Such / will exist if A

is regular and self adjoint, and M. - \p\ is er-compact.  Let  / = /A   and suppose

J = g li] + C) + • • • + g ij + C) for some g . = fh. £ /.   For each g £ A,

n

fg = y^ f2h k. + a.fb .,       k. e A, a   e C.
i -\

Taking transforms, dividing out / and using the assumptions on p and  A,  we

conclude that each g £ A  can be written g = g' + S"_.a .h ., g' £ J,   a . e C;  that

is,   \b . + ]\   spans   the   vector   space   A/J.    In particular, the subspace /   //   is

finite dimensional with some basis  \s .+],•••, s,+ }\.  We conclude that

\f, s.,..., s A generates  /     as an ideal of A.  But this contradicts Gleason's

theorem since  p is nonisolated in   YA .

On the positive   side, this  method yields

Theorem   2.6.  // /   is a finitely generated, closed ideal of finite codimension

in a Banach algebra A,   then Z (/) n  Y.   is open-closed in Y ,.

Proof.  Suppose first that the result is valid for every  A   with identity.   For

A - A x C  and /  = / x 0,   there  is a vector space isomorphism A/A © A/J %

A/] . Hence dim A/J  = dimA/A + dimA/J = 1 + ditnA/J < oo. Since /  is a finitely

generated, closed ideal in A, Z(/ ^iV-is open in Yy.   But the canonical embedding

*M-A—»'^   carries  YA   onto a subset of Y^ so that  Z(/) n YA = Z (/) n YA   is

open in  YA.

Now suppose A   has identity.  For each  p £ ZÍJ) C\YA,   I  /J   is a finite

dimensional vector space with some basis  \s .+],•■■, s    + / }. But if /,, • • • , j

generate  /   as an ideal over A,  this means  I   = f ,A + • • • + f   A + s ,A + ■ ■ ■ + s  A,
° J p      ' 1 ' m 1 n

a finitely generated ideal of A. By Gleason's theorem, \p\  is open in  T.;  hence

Zij) O r^   is open-closed in  YA.

Thus in a regular algebra with connected maximal ideal space, no proper

closed ideal of finite codimension can be finitely generated.   For example, in the

algebra Cr[0, l]  of CT functions on  [0, l]   with the Cr norm, no closed ideal  /
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whose zero set is finite can be finitely generated.   For if  Zil) is finite and we set

E. = fi ¡Z (/^'): / £ /!, then it follows easily from Whitney's theorem [20, Theorem 1,

p. 636] that  I = \f £ C[0, l]: fU)\E. = 0}. Because   E^E^.-O^,   if we set

7 = max \i: p £ E.\ and  /' = 1/ £ C[0, l]:  f^ip) = 0 for   0 < i < r\ for each  p £ E Q,

we have   / = (1 S/': p £ EA.  But this yields a vector space isomorphism

c/[o, i]//% 0 c[o, i]//;,
peE0

and since  E    is finite and each Summand is finite dimensional (cf. [9, p. 206]),

/ has finite codimension.  Actually, recent results of Roth [16], established with

more direct methods, imply that 0 and  C[0, l]  are the only closed ideals in this

algebra that can be finitely generated.   In view of this, one might conjecture that

2.6 holds for a closed, finitely generated ideal of any codimension.   In the next

section we show that at least for group and function algebras, this is indeed the

case.

3.   Countably generated ideals in group and function algebras.   Besides im-

proving 2.6 for these algebras (3.1, 3.9), we provide, for compactly generated

LCA groups   G,  a complete description of the countably generated, closed ideals

of  lKO (3.7).

Theorem 3.1.   Let  G be a locally compact Abe lian group with dual V.   If J

is a closed, countably generated ideal of L  (G),  then Z (/)  z's open-closed in T.

Proof.   Suppose instead that  dZÍ])y¿0.   If  nQ £ dZij),  the map f —»VqI

[rj-fix) = r¡Ax)fix)] is a Banach algebra automorphism of  L  (G) which carries

/ onto a closed, countably generated ideal whose zero set is  Z (/) — r]     We may

therefore assume  0 £ dZij).

} is the smallest ideal of   L  (G) containing some sequence   \w  \. Since

0 e Z (/) and  /„ has approximate identity,   / = IQ * / (1.5).   If we choose h. £ I.

so that   \\h.\\ j < 1/2' and  w. £ h{ */,  then   /  is the sum of its subspaces \h.*j\.

Let ©T / denote the direct sum of countably many copies of  /,  and  /    the sub-

space of sequences whose entries following the 72th one are all zero.   /    is a

Banach space with the norm   ||1/!|| = max 1<I-<   í II/-II ii>  and with the final topology

induced by the inclusions  /   c_, (T4°° /, (J)00/  is the strict inductive limit of the

/  's.   The mapping   T: ®^° / —» / given by   T (!/.!) = 2.Ä.*/. is linear, contin-

uous and surjective.  A theorem of Dieudonne and Schwartz [7, Theorem 1, p. 72]

implies   T is open.   In particular, if   ii denotes the set of all sequences in©i°/

whose entries have norm no larger than  1,  there is a  ¿5 > 0 so that B (0, 5) C

TiU). It follows that there is a constant  M > 0 such that given  g £ ],  there are

#1'" "' ' Sp e / with
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(*) g-^X V«»     «*      llSfll l < M ll«ll ! »        *'=L2>
¿=1

Since   ||/3-||, < l/2z,  there is an n so large that  ^°°_n+ j M ||¿-|| j < Vi. Set

f= l/2 Mn, S = f/(2max,<:.<;   il + ||/b.||,})  and find a compact set  K CG  so large

that the integral of each  \h \   over the complement of  K is less than 8.   W =

{y e Y: |l - (%, y)| < 5,  x £ f(}  is an open neighborhood of 0  in Y. Since  0 £

dZij), we may choose a y0 £ IV O ZijY,  and then a compact neighborhood  V

of 0  so that I'Clf  and yQ + V - V C W O  Z(/)c.  Choose  s, Í £ L2(G)  whose

Plancherel transforms are Xy and  Xy   _v  respectively, and define   kix) =

s (x) z(x)/m(V)  where  to denotes Haar measure on  Y,  Then [17, 2.6.1] k  is  0

off the compact set yQ + V - V,   so that  k £ Kz(., C /,  and   1 = kiy.) < ||£||    <

iz?z(y0 - V)/miV)\Vl = 1,  so that  ||/é|| , = 1 = kiyQ).  Further, since  yQ - V and  V

are contained in W,  and the transform of each  h. vanishes at 0,  the computations

of [17, p. 50] yield  ||¿. * k\ x < ( for i = 1, 2, • • •, n.

Let  a. = \h .iyQ)\/h (yQ) when  i.(yQ)^0,   1  otherwise, and let  t. = a h..

Since   a. has modulus 1, the series  S°°^. t. * k is absolutely convergent and de-

fines an element g  in the closed ideal /.   (*) yields  /.,•••, /    £ /  with g =

S¿=le,*/¿.  and setting g¿ = /./a. we obtain g = 2f=1 «,-*«,• and  ||g.|| , < M ||g|| ,.

In particular,

00 00

1 = 1 1 =1

= ¿ lWls7y0><¿lWll«7^l-
í= 1 2 = 1

But then if |g (y0)| < 1 for each z = 1, 2, ■ • • , p, this inequality forces h {y ) = 0

for all z. Since / is the vector space sum of the h. * J's, this implies y. £ Zij),

a contradiction.  We conclude that  |g (y0)| > 1   for some  /'.   Thus

1 < ll¿y!!_ < lisyll ! < ai Hsu x
n 00

<2>KMK'*^i+    £   M|a.|||è.||1||^||1<Mnf + ̂ =l.
í=l ¿=«+1

From this contradiction we conclude  Z(/)  is open-closed.

Corollary 3.2.   // Y  is connected, no proper nonzero closed ideal of L  (G)

can be countably generated.

Corollary 3.3.  If E CY  is a set of nonsynthesis, then no closed ideal of

L (G) whose zero set is E can be countably generated.
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Proof.   If /  were such an ideal,   Z(/) = E  would be open-closed; hence

FE = IR,  and by definition,   E  would be a set of synthesis.

Malliavin's theorem [17, 7.6.1] yields closed sets  E oí nonsysthesis in

every nondiscrete LCA group, and Helson's result [17, 7.7.2] then yields ascend-

ing and descending chains of closed ideals in  L (G)  whose zero sets are E.

Whereas 3.3 implies that none of these can be generated algebraically by even an

infinite set, they may be the closure oí even principal ideals (cf. [17, 7.6.3, p. 174]).

The method of 3.1 can be used to yield more explicit information about the

countably generated ideals in group algebras.  We begin with

Theorem 3.4.   L (G)  is a countably generated ideal of itself iff G  is discrete.

Proof.   Certainly if  G  is discrete,   L  (G) = MiG)  is generated by its identity.

Suppose on the other hand that  G  is nondiscrete, but  L (G)  is the smallest ideal

of itself containing some sequence  \w \.  Since  L (G)  has approximate identity,

we may choose  h{ £ lH[G)   so that   ||e¿|| , < 1/2' and  w. £ h{ * LlÍG) (1.5).

Thus   L  (G)  is the vector space sum of the  h.*L  (G)'s, and, as before, the

Dieudonné-Schwartz theorem yields a constant M > 0  such that given g £ L (G)

there are g,, • • • , g    £ L \G)  satisfying (*).  Choose  72  so that 2°°=72+l M II*¿II 1 < ^'

set ( - I/2M72 and choose a compact set  C C T  so large that, off  C,   \h .\ < e/2 for

each  i = 1, 2, • • • , 72.  Since  T  is not compact, there is some  y„  in the complement

of  C.  Because the  h.'s generate L  (G),   hiy/l^O   for at least one i.

Letting  a.. = \h (y0)\/h -iyA when  h {yQ)^ 0,   1 otherwise, and setting sl^x) =

a.yAx)h{x), we observe that for each g £ L (G) there are g,,•••, g    £ L (G)

such that g= lpuis.*gi and   ||g¿|| , < M ||g|| r  For if g j, . . . , g 'p  £ LlÍG)  ate

chosen to satisfy (*) for   y0g,  then

P P

Ï- Z yo(a¿¿2 *«;/<*,■> = J] S. *y0g//a¿,
¿= 1 i= 1

and, setting g. = y0g;/o.p  we have  ||g¿|| , = ||y0g/ || /la.) < M ||g|| ,.

Let  8 = e/(4 max .<. <    {1 + || s .|| . !)  and find a compact set   K C G  so that

the integral of each  |s.| (l  < i < n) over   Kc  is less than  8.  Let  W = Sy £ T:

|l - (x, y)| < ¿5,  x e K\ and choose a compact neighborhood   V  of 0  in T such that

V - V C W.   Let  s,   t £ L  (G)  be functions whose Plancherel transforms are  X

and  X_v respectively, and set  kix) = six) tix)/imiV)). ¿(O) = 1 = ||fc|| j [ 17, 2.6. l],

and we have   ||s . * k\\    < t  for  i = !,•••, 72.   For

kix) = j   s.iy)\kix - y) - kix)\dy + ¿Ux)s.(O),

so that

.iL |í,W|l|ty-*l,Jy+|.,(0)| ||*||,.
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Since  - V, V C W and   \\k\\x = 1,   the computations of [17, p. 50] show that the

right-hand side is less that f/2 + |s.(0)| = e/2 + \h.(yQ)\<e.

Let  g = Sf=1s. *k and choose  g y ■ ■ ■ , gp £ LliG) so that   ||g.|| j < M ||g|| j

and  g = 2?  , s . * g ..  Since

oo oo

1=1 1=1

-X^Wi^sE^MiÄi=i ¿=i
and not all the  A.(y_)'s are zero,   |g(0)| > 1 for at least one /,   Hence

l<l!g7!l1<¿M|k¿*^¡!1+    Z    M|a.|||y0¿.||1||¿||1<Alne+M=L
i = 1 í =B+1

This contradiction completes the proof.

Corollary 3.5.   // Y  is a noncompact connected group,   0  is the only closed,

countably generated ideal of L  (G).

However, nontrivial countably generated ideals in  L  (G)   can exist.

Proposition 3.6.   Let  G and H  be LCA groups with duals Y and ß  respec-

tively.   Suppose  G  is compact and ß  is connected.   Then (i) if tí is nondiscrete,

0  is the only closed, countably generated ideal of L  (G x tí), whereas (ii) if tí

is discrete, a closed ideal J   in L  (G x tí) is finitely generated iff Z (/) = E x ß

where  E  is a cofinite subset of Y.

Proof.   Let  /  be a closed, countably generated ideal of  L  (G x tí). Then

Z (/) is an open-closed 5-set in  Y x ß (3.1), so  Z (/) = E x ß and  / = ¡Exil,

E CY. As before there is a sequence   \h   \ on   LlÍG x tí) with   ||¿   ||    < l/2", so

that  /  is the sum of its subspaces  \h    * J\;  in fact, there is a constant  M > 0

so that given  g £ /,  there are  g ,,•••, g.  e J satisfying (*).  Find  n > 0 so that

2 •_   +i M 11^ -ll i < '4, let e = l/2 Mn  and choose   CCTx ß compact so that

\biy, r¡)\ < e/2 off C for each  t- 1, 2, ••• , n.

(i) If  F = I"1,  we are done.   If  yQ £ Ec,  then since  ß is not compact,

(y0> ̂  ^c for some ''oe °- Let a¿ = !¿/>v V/^o' Vç) if My0' V^0' :

otherwise.  Define  s. £ L   (G x tí) by  s.(x, y) = a.rjAy)h.ixf y) and observe that,

as before, given  g e J  there are  gv- ■ ■ ,gp e J = IExQ  such that g=lP=1s.*g.

and   ¡|g.¡| x < M ||g|| r   If we define  A. e L Ah) by

A .iw) =   I     s .(x, w)y Ax) dx,
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then since   |A .(0)| = \s.iy0, 0)\ = \h{yQ, î?0)| < (/2 for  2" = 1, 2, • • ■ , 72,  we may

construct  k £ L liH) so that k (O) = 1 = ||/V||, and   ||A; * k\\ x < e fot  1 < i < H

(cf. 3.4).

Since the transform of y0&: (*, y) —» y0(x)&(y) vanishes on E x Q, g =

£°° , S. *yQk £ J, and hence for some g. £ J with ||g .|| j < M ||g||,, we have

g = 2?  . s . * g ..  But then0 2 = 1     2       ö2

Z l*f(y0' VI = Z ;¿(yc %0*íy0.0) ^ Z l¿:(>o' V l«.(yu> °>l-
¿=1 jsl ¿=1

and because at least one  h.iy., 77.) is nonzero, this means   |g(y0, 0)| > 1   for

some  7.   Since  s.*yQkix,y) = y0ix)A.*kiy),   ||s; * y0^|| j = ||A. * k\\ j, and we

reach the following absurdity:

1  <  llSyli ! < Al Hsu x

72

< ^M||A.*HI1+    Z    M|ai.|||Äill1l|y0*||1<AI«€+^=l.
i -1 ¿ = n +1

(ii) Since  T is discrete, the compact set   C is contained in a product   F x ÎÎ,

F C T finite.  But then if the complement of  E in  T is infinite, there is some

y0 i F U E.  Taking any 770 e Í2,  we have (yQ, 770) é C  U Z(/), and with the

argument used above we obtain the required contradiction.

Of course, if the complement of  E is a finite set  ly,,» • • , y  !,   then since

LliH) has identity  S0, g (x, y) = 2"    y¿(x)§0(y) is an L'(G x rV) function whose

transform is the characteristic function of the complement of  E x 0. Since

BE x 0 = 0 ,   / = /£xu   is the only closed ideal of  L  (G x H) with zero set  E x Q,

and clearly g generates this ideal.

Theorem 3.7.   Let   G be a compactly generated LCA group.   A nonzero closed,

ideal ]  of L  (G)  is countably generated iff G  is Z" x K,   K a compact group,

and J = L„    .  where  E  is a cofinite subset of the dual of K.

Proof.   G is a group of the form  Rm x Z" x K,   K compact [12, II 9.8, p. 90].

If  L  (G) has a nonzero closed, countably generated ideal  /,  then 3.6(i) applied

to  H = Rm x Z" shows that  m = 0.  So   G is   Z" x K,  and  3.6(ii) applied to

H = Zn yields  Z(/) = T" x E,  a set of synthesis; whence / = ITnxE-  The con-

verse also follows from 3.6 (ii).

In fact, the proof of 3.6 reveals that for a compactly generated group   G,  a

closed ideal in   L  (G) will either be principal or else require uncountably many

generators.  Thus, in   L  (T),  say, no maximal ideal  ly    can be generated by the

characters different from  yQ.  More generally, we have
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Corollary 3.8.   For any LCA group  G,   L  (G)  has a countably generated max-

imal ideal if and only if G  is finite.

Proof.   If  M is such an ideal,   M is regular (cf. 1.6) so that  ZÍM) is an iso-

lated point in  r (3.1).   By duality   G is compact, so that 3.7 implies that the

complement of the singleton   Z iM) is finite.   Thus   Y,  and hence   G,   is finite.

Of course if  G is finite, every ideal of   L  (G) is principal.

Simplification of these methods yields an improvement of 2.6 for the class of

function algebras.

Theorem 3.9.   // /   is a closed, countably generated ideal in a function alge-

bra A,   then  Zij) fl YA   is open-closed in Y..

Proof.   / is the sum of spaces   \h.A\   where  h{ e J has norm less than \/2l.

As before, the Dieudonne-Schwartz theorem applied to the map ®°°/l —» /  given

by  Í g - i —► £.¿.g. yields a constant  M > 0 so that, given  g £ /,  there are  g x,

•■■ , gp e A  with  g = lPi = lg.h. and   Ug.^ < M WgW^. Choose   n so that

OO

E m¡i/7l<i/>
=rz+l

A-

a

Iff = 1/2Mn,   U =C\" =lh{ l (BiQ, e)) is an open neighborhood of  Z(/) in  JIÏ

If  Zij) n YA   is not open in  YA,   V = YA D  U - Zij) = U C\YA- Zij) is

nonempty open set in  T.. Since   dA  is dense in  YA,  we may choose some   x Q £

dA O   V.   x. is a strong boundary point for  A [2, 2.3.4]: there is a   k £ A  with

kix ) = 1 = \\k \\x and   \k | < 1   off   U.  If  k assumes its maximum modulus on the

compact set  MA — (7 at fl, choose  m so large that   |&(a)|m < e/i\ + max ^ .<-  ll^il,^).

Notice   ll^b.W^ < e fot  i = l,y ■ , n.   For it  b e U,   \kib)mh.ib)\ < |jî||* \h .ib)\ < e,

and if  b 4 tí'  \kib)mh.ib)\ < \\h.\\Jkia)\m < e.

Let  s.= a.h. where  a.~ \h .{x )\/h .ixA* if  h {x ) yé 0,   1   otherwise.  Since

a . has modulus 1, we may choose   e ,,-•■, p    £ /  so that  S"     g .s . = 2°° , £ms. =
! ' ' öl í> 1 = 1°1     ¡ î = l í

ge/ and  IgJL^MlIgll^. Then

P

Z
r=l ¿=1 i=l tel

X i*f(x0)i = E *^o>"^o> = E«i(xo^W<E i«,Mi*Wi-

Since   x0 /. Zij), we conclude that   |g.(xQ)| > 1   for at least one   /',   and finally

that

l<l|g;L<M|lgloo

n oo

<EMiafin*m*iiL+ E «ialiWJi*ii«<M«+M=i.
1 = 1 z'=n+l
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This contradiction completes the proof.

3.9 has an obvious corollary when VA   is connected.  In particular we have

Corollary 3-10.  In the disc algebra, a nonzero closed ideal is countably gen-

erated iff its zero set lies in the open unit disc.

Proof.   Plainly 3-9 makes the zero set condition necessary.   On the other

hand, if the zero set of a nonzero ideal /  is contained in the open disc  D, then

Zi])  is finite.  For otherwise  Zi])  would have a cluster point  p £ ZÍJ) C D,

and the identity principle for analytic functions would force   / =  0.   If

Zi])  is empty,  /  is generated by 1.  If  Z{j) = 1 p , • • •, p  \,   a compactness

argument (similar to [9, p. 235]) shows that  /   is the principal ideal generated

by W¡=1iz- p)ki where

k.= inf \m:  some / £ ]  has a zero of order m  at  p¿\.

3.9 has application to other familar examples.  Consider for instance a Swiss

cheese space  K formed by deleting from the closed unit disc A  countably many

open discs JA!,  with centers \b.\  and radii lr!  whose closures are pairwise

disjoint, in such a way that  K has no interior in the plane.  As the intersection

of a descending chain of compact, connected sets in the plane,   K is connected

[10, 16.14, p. 246].   The closure   RiK)  in  CiK)  of the rational functions with

poles off K  is a function algebra on its maximal ideal space   K whose Silov

boundary is 3K = K [S, p. 27].   Thus 3.9 implies

Corollary 3.H-  If K  is a Swiss cheese,   0 and RÍK) are the only countably

generated, closed ideals of RÍK).

If the radii \r.\ are choosen so that £r. < oo,   RÍK) r¿CÍK)  and the result

is nontrivial (cf. [5, Corollary 3, p. 177]).   Further, Sidney observes [19, p. 148]

that if  0 £ K  and 2r ./(| b.\ - r)m < oo   for m = 1, 2, • • • , then the closed powers

/ g  form a strictly decreasing chain of closed, primary ideals in  RiK).   In view

of 3-11, none of them can be countably generated.

We can also use 3.9 to obtain purely algebraic information.

Corollary 3-12.  // A   is a regular function algebra, then a closed ideal of A

which is countably generated is actually principal.

Proof. If / is such an ideal, Z (/) is open-closed in MA = YA = X. By

Silov's idempotent theorem [8, p. 88], there is some e £ A vanishing on Zi])

which is identically 1 elsewhere.   By regularity,  e £ ]  and hence  eA =  I.
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