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DIFFUSION AND BROWNIAN MOTION

ON INFINITE-DIMENSIONAL MANIFOLDS(J)

BY

HUI-HSIUNG KUO

ABSTRACT.  The purpose of this paper is to construct certain diffusion pro-

cesses, in particular a Brownian motion, on a suitable kind of infinite-dimensional

manifold.   This manifold is a Banach manifold modelled on an abstract Wiener

space.   Roughly speaking, each tangent space   Tx   is equipped with a norm and a

densely defined inner product  g(x).   Local diffusions are constructed first by solv-

ing  stochastic  differential  equations.   Then these local diffusions are pieced to-

gether in a certain way to get a global diffusion.   The Brownian motion is complete-

ly determined by  g  and its transition probabilities are proved to be invariant under

d -isometries.   Here  d    is the almost-metric (in the sense that two points may have
g g . .

infinite distance) associated with  g.   The generalized Beltrami-Laplace operator is

defined by means of the Brownian motion and will shed light on the study of poten-

tial theory over such a marîifold.

I.  Introduction.   This paper is concerned with developing a natural integra-

tion theory over a certain type of Banach manifold.  It is natural in the sense that

this theory is associated with a Brownian motion.   In [8] we took a step toward

this goal by constructing local measures in a Banach manifold called Riemann-

Wiener manifold.   In this paper we use a different approach by considering stochastic

differential equations on such a manifold.   This idea stems from  [6], [7] and [°1.

We will construct a general class of diffusions which includes the Brownian motion

as a special case.

Let  (¿, AA, B) be an abstract Wiener space [4] with AA-norm denoted by   | • | =

( • , •  ) 2 and B-norm  by   || ■ ||.  It is important to keep in mind that  B* is imbedded

in  B  so that  B*C H C B.  ( , ) will denote the natural pairing between  B* and  B.

Note that  (x, y) = (x, y)   whenever  x is in  B* and  y  in   AA.  p    denotes Wiener

measure on  B  with variance parameter  Z > 0.  We define for x in  ß  and fora Borel

subset  E of B,  pt(x, E) = pt(E - x).   Fernique [3] has proved recently that

fß exp jf5||x||2S p (dx) < 00  for some  8 > 0.

We will assume the following on  (¿, AA, B): (1) ||-||   is of class  C2 off the ori-

gin and (2) there exists an increasing sequence   0    of finite-dimensional projec-
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tions such that  Q (ß) C B* and  Qn converges strongly to the identity both in  ß

and in  H.   Thus we can make use of the results in [8] and [9J.

In this paper we will adopt the same notation used in [8].  We refer the reader

to [8] for the following definitions.  Let (it, r, g) be a C -Riemann-Wiener mani-

fold ik > 3) modelled on  (¿, H, B).  We will assume that It  is connected and separ-

able.  We assume also that, for any cf>a, cp g in the admissible atlas, \ÍUa, 0a); a £

A!,  (Pß°d)7l   , in addition to being admissible, is assumed to be of at least class

C2 and to satisfy the following condition:  (çS ̂  ° 0 ~  )"(*)> the second Fréchet deriv-

ative of 4>ß°4>Z1 at  x' belongs to  fB(B, B; B*), the Banach space of all bounded

bilinear maps from  B x B  into  B* with norm

MIß, ß;ß*= sup ¡||<D(a, «)||B,/MIN;  "¿0, v/0, u,v£B\,

and x—. icpßOcpT.^'Ax) is continuous from (p^UalT\ Uß) into  %ÍB, B; B*).   The

Christoffel function V is defined by

Vix)iu, v) = y2gíx)-1\g'íx)íu, v,.) + g'ix)iv, -, u)-g'ix)i-,u, v)\.

Thus r(x) e Íd(B, B; B*) for each  x.  Finally the local measures \q (x, • );   t > 0,

x e ffi!  are defined by  qi.x, E) = p(x)iO, exp~ l(E)),  E e Borel field of   UÍx), where

pj      is the Wiener measure in the tangent space   T (il)) and exp  , the exponential

map at  x, is C -diffeomorphic in   UÍx).

In §11 we will make an estimation for admissible transformation.   Also we will

prove Ito's formula of the second type, regarding Ito's formula in [9] as the first

type.   §111 is devoted to the construction of certain diffusions in the Riemann-

Wiener manifold by using the Ito-McKean technique ([6], [l0]).   In §IV we study

Brownian motion and its relation with the work of [8].

This paper is closely related to [l], although there are some technical differ-

ences between them.   Furthermore, it is the author's conjecture that a Banach-Lie

group is a Riemann-Wiener manifold.   On the other hand, Eells and Elworthy [2]

have recently developed Wiener integration on certain Banach manifolds by using

a result in [8].   Roughly speaking, let  X^,  be a Banach manifold modelled in  B

with C-admissible atlas  \ÍU., cp .)\.   Let g .. be defined in   U ■ C\ U . by
l      r l °Z7 Z j       J

g{.(x) = exp|(l/2/)[- 2(cp.ix) - d).ix), cp.ix)) - \cp.ix) - <p\(x)|2¡

xdet«^-1)'^))).

Then the family  lg-i-     forms the transition functions for a line bundle   W (X^),

which is called the bundle of Wiener densities over  X„,  (with variance parameter

t); the sections of W(,Yu/) are called Wiener densities on  X^.  Let <f be a Wiener

density on  Xw.   Then they define a Borel measure p.i£) on  X„, by setting pí£)ÍV)

- f(b(V) ^i^dp^x) tot any open set   V in   Ujt where  p(  is the Wiener measure of
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ß with variance parameter t. They have succeeded in connecting this kind of in-

tegration theory with degree theory. However, their point of view is different from

ours.

We would like to thank Professor H. P. McKean for his valuable conversations

and suggestions.

II.  Admissible transformation and Ito's formula of the second type.   Let  U

and  V be open subsets of ß.   In [8] we define a homeomorphism   T from   Í7 onto

V  to be admissible if  T  is a C^diffeomorphism and  Tx - x £ H,  T (x) - I £

S(B, B*) tot all  x £ U, and the map x —» T'(x) - I is continuous from   U into

8(B, B*).  Here ÍB(B, B*) denotes the Banach space of all bounded operators from

B  into  B* with norm   ||S|| ß ß* = supí ||Szz||B*/||a||;   u / 0,   a£ß!.

Proposition ILL   Let  T  be admissible on an open set   U containing the origin

and let  T(0) = 0,  T'(0) = A.  Assume  T"(x) £ %(B, B; B*) for all x £ U and let  T"

be continuous from  U  into %(B, B; B*).   Then  there exists r> 0 such that

MO, r, ||-||) = [x £B;   ¡|x|| <r\CU and

\pt(T(E)) - p((E)\ < (iy/7

holds for all t > 0, all Borel subsets  E  of b(0, r, || • ||).  M  is a constant indepen-

dent of t and E.

Proof.  Let   AC = T - I.  Choose  r > 0 small enough to meet the conditions

(i) Mo, r, ||.||)ci/n Mo, i, Ml),

(Ü)  l|K"(*)||BfB;B, < 1  + ||K"(0)||BfB;B,   for all  x £ b(0, r, || • ¡|),

(iii) 2r(l+ ||K"(Ô)||BfB;B,)<S, where 8 > 0 is such that   fB expiS||x||2| P](dx) < «,,

and

(iv) |det |T'(x)| - 1| < c||x||   for all x £ b(0, r, \\ • ||), where  c  is a finite con-

stant independent of x.

Put a= 1 + ||AC"(0)||B>B;B*. From the equality K'(x) - AC'(0) = f¿ K"(sx)x ds

and (ii) we obtain immediately that ||AC'(x)||B ß* < a||x|| for all x £ b(0, r, || • ||).

Similarly, ||AC(x)||B* < a||x||2 for all x £ b(0, r, \\ ■ ||). Therefore for all 0 < s < 1

and all  x £ b(0, r, \\ • \\) we have

\(K(sx), x)|  <a||x||3,

(1) \(K'(sx)x, sx)\ <a||x||3,

\(K(sx), K'(sx)x)\ </32a2||x||4 </32a2||x||3,

where  ß is some constant such that   ||x|| < ß\x\  fot all x in  AA.

Now define a Borel measure  ifr  (dx) on  MO, r, || • ||) by  ifj (dx) = h (x)p (dx),

where  h((x) = exp[[ - 2(Kx, x) - |ACx|2]/2z!.   Let E be any fixed Borel subset of

MO, r, || • ||).   Then
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if/tÍE)-_ fBhtíx)ptidx)

= Íe íh'{0) + íl{ht{sx)- x)ds\ Pt{dx)

= PtÍE) + flds f  (b¡(sx),x)pt(dx).

Thus

(2) if/tÍE) - ptÍE) . jlQ ds J  (b¡ ísx), x) ptídx).

It is easy to check that

t*'t' (sx), x) = - rl[ÍKÍsx), x) + ÍK'ísx), sx) + ÍKÍsx), K' (sx)x)]ht(sx).

Thus from (1) we have

(3) l(zVCsx), x)| < f-1(2a + /92a2)||x||3 exp\rla^x\\3\.

Putting (3) into (2), we get immediately

\ifjtÍE) - ptÍE)\ < z-1(2a + ß2a2) fjxf exp \t~ 'a ||x|| 3 \ptidx)

<rlÍ2a +/S2a2)[je||x||6pí(z/x)]     [j£ expÍ2¿-1a«*||3¡ p((*Y)] * .

But   fE \\x\\6ptidx)<t\fB  ||x||6p,U*) and

JEexp|2i-1a||x||3}pfWx) < f  exp\2rlra\\x\\2\pt(dx)

< fEexp\8rl\\x\\2\ptidx)<  Jb exp fz5¿-MlxH2 ip/a-x)

= fBexp\8\\x\\2\pyidx).

Here we have made the change of variable  x/\Jt  —»x  in passing from  p idx) to

p Adx).  We have also used (iii).   Putting these estimates into (4), we get

(5) \ifjtÍE)-ptÍE)\ < V7(2a +/32a2)Mß!|x||6p1(zix) Jß exp {8j|*|| 2S pyídx) 1 *.

On  the  other hand,  from  Theorem  1.4 of  [8],  we  know p ÍTÍE))

= fE h (x) det |T'(x)| ptidx).   Therefore

\ptÍTÍE)) - if/tÍE)\ <  J Ä((x)|det|T'(x)| - l\ptídx)

<cfEhtíx)\\x\\ptídx)    by  (iv).

The same argument as before yields

(6) \pAj(E)) - if/tÍE)\ < c^[fB\\x\\2Pl(dx) JBexP \8\\x\\2\Pyidx)T/2.

Obviously, (5) and (6) give the desired conclusion.     Q.E.D.



1972] DIFFUSION AND BROWNIAN MOTION 443

The Ito formula we prove in [9] answers the following question:  Given  dX(t)

= çf(z)dW(t) + o(t)dt, where  W(z) is a Wiener process in  B, cf is an n.a.t. and  ff

is an n.a.v. (see [9] for the definitions), and a real-valued function f on  B  with

certain regularity, then what is  df(X(t))?  Now  we ask  another question:  Given

dX(t) = çf (t)dW(t) + a(t)dt and a map  8 from ß  into itself with certain regularity,

then what is  dd(X(t))?  We will prove a formula in Theorem II. 1 to answer this

question.   It will turn out that   dd(X(t)) has an expression similar to  dX(t).  In

order to state the formula we have to make the following

Definition II. 1.  A continuous bilinear map <ï> from  H x H into  H is called a

spur operator if (i) for all  h £ H, <&h £ S.(ß, AA), the Banach space of all trace

class operators, where  rj), (zz, v) = (tl>(zz, v), h)   and (ii) the linear functional  h —►

trace rj>,   is continuous.

Notation. It follows from the definition that there exists a unique element A.

in H such that \hQ, h) = trace rj), for all h in H. We denote this unique element

hQ by sp $.   The vector space of all spur operators in  AA will be denoted by  "(H).

Proposition II.2.  (i) If (¡) £ S(AA) and Íc^{~_    ¿s an orthonormal basis of H

then the series 577?°    cj)(e,, eA) converges in H.  Moreover, S?°_, $(e, , e,) = sp rj>.

(ii) S(B, B; B*) C o(H), i.e. a continuous bilinear map from Bx B into B* is

a spur operator when it is restricted to H.

(iii) // fj) £ «(AA) and S, T are continuous linear operators of H  then rj> °

(S x T) and S«$ belong to S(AA) and spS°$ = S(sp cj>).

Proof,   (i) and (iii) are easy, while (ii) follows from Proposition 0.1 of [8l.

Q.E.D.

Theorem II. 1 (Ito's formula of the second type).  Let  8 be a C2-map from B

into itself such that (i)  8'(x) - A £ S(ß, B*),  8"(x) £ %(B, B; B*) for all x in  B,

and (ii) the maps x —» ß'(x) - I, x —► 8'(x) are continuous from B   into S(ß, B*),

%(B, B; B*), respectively.

If X(t) = xq+ f'Q ¿;(s)dW(s) + p o(s)ds, where çf is a nonanticipating trans-

formation and a is a nonanticipating vector (see [9] for the definitions), then

d(X(t)) = 8(x0) + f'o8 ' (X(s)) o cf (s) dW(s)

+ flQ\8'(X(s))(a(s)) + y2sp 8"(X(s)) o [£(5) x £(s)]\ds.

Proof.   Let  b be any element in  B* and define  f(x) = (8(x), b).   Then f'(x) =

8'(x)*b and f"(x) £ %B, B*) is given by  (f"(x)u, v) = (<9"(x)(zz, v), b),  u, v £ B.

Here the star indicates the adjoint operator with respect to  AA, i.e. 8'(x)* means

(8'(x)\HY, where  8'(x)\H: H —■» H.  Note that by the assumption on  8 it follows

that f'(x) £ B* and f"(x) £ S(ß, B*) fot all  x.   Thus we can apply Theorem 4.2 of

[9] to get
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f(X(t)) = /(x0) + J'o(cf Hs)f(X(s)), d\V(s))

+ f'oHf (X(s)), o(s)) + y2 trace cf *(s)f"(X(s))£(s)\ds.
(7)

But

(8)

(9)

J'o(cf*(s)/'(X(s)), dW(s)) . J^f *(s) °0'(XU))*¿, ¿W(s))

= ífto8,(X(s))o¿;(s)dW(s), b^,

ftQ(f'(X(s)), ais)) ds=f'o(d'(X(s))*b, cÁs)) ds

= fto0'(X(s))(a(s)), b) ds = /fto8'(X(s))(o(s))ds, b\.

Now, consider the operator tf*(s)/"(X(s))çf (s) from H into itself.   Let  u, v be in

AA.   Then

(cfHs)f"(X(s))¿;(s)U, v) = <A"(X(s))cf(s)u, Ç(s)v)

= (f"(X(s))Ç(s)u, Ç(s)v) = (8"(X(s))(¿;(s)u, Ç(s)v), b)

= <6>"(X(s)) °[cf(s) x f (*}](«. v), b) = (Dfc(zv, z,),

where  <D = 8"(X(s)) ° [¿f (s) x Ç(s)\

Note that by the assumption on  8 and (ii), (iii) of Proposition II.2 it follows

that  q> £ «(AA).  Therefore,

trace cf *(s)/"(X(s))cf (s) = trace <t>b = (sp 0, b)

(10) =  <sp 8"(X(s)) o BfW x cf (s)], b).

Putting (8), (9) and (10) into (7), we get

(Ö(X(Z)), b) = (8(xQ), b) +   (jio8'(X(s))oc;(s)dW(s), b)

+ (jto\8,(X(s))(o(s)) + Y2sp d"(X(s)) °[¿;(s)x¿;(s)]\ds, b),

fot all  b £ B*.  Note that   (x, y) = (x, y), whenever x £ B* and y £ AA.   Then the

formula of the theorem folows easily.     Q.E.D.

III. Construction of diffusions on a Riemann-Wiener manifold.   Let  (iß, r, g)

be a connected, separable C -Riemann-Wiener manifold (k > 3).   Suppose for each

chart  (U, cp) in «L we are given two maps  A ,   and  a,   from cf>(U) C B  into

S(B, B) and AA, respectively, such that  A Ax) - I £ %(B, B*) and A Ax) is non-

singular for all  x £ cp(U).

Let   AC be a continuous linear operator from  B  into   B*.   Then the restriction

K|„  of  K to  H is a continuous linear operator from  AA  into itself.   Let  (Klo)* be

the adjoint operator of  AC|H.   It is easy to check that   ||(AC|H)*A||B* < \\K\\B B*\\h\\
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for all  h in  H.  Therefore there exists a unique continuous extension  (K|„)*  of

(K\H)* to B.  Obviously (K\H)*(B) C B*.  In fact it can be checked that

||(K|„)*||B B* = \\K\\B b*.  Suppose   T is a continuous linear operator of  B  such

that  (T-I)(B) C B*.  Then we define   T* = I + ttT-WTT^)*.  Clearly   T* - I £

8(B, B*).

Definition   III. 1.  By diffusion coefficients in  Üj we mean a pair (A ±, o A) tot

each chart ill, cf>) of the above maps satisfying the transformation rules:   If ÍU, cp)

and ÍV, if/) ate two charts with  U n V ¡= 0 then

(id       <
^(x)A^(x) * = ö '(x)A^(x)A^(x)*Ö '«*,

¿(x) = 0'(x)(o-0(x)) + % sp 0"(x) °[A0(x) x A^(x)],

where  6 = i/f ° cp ~ 1  and  x = dix).

Remark 1.   By assumption  d'(x) - I £ %(B, B*) and  d"(x) £ %(B, B; B*).   Thus

d'(x)A(f)(x)A(j)(x)*d'(x)* - I £%(B, B*) which is consistent with A0(x)A^(x)*-/ e

S(B, B*).  Moreover, 0"(x) o [A ¿(x) x A ¿(x)] £ cS(/í) by (ii) and (iii) of Proposition

II. 2.   Thus sp d"íx) o [A^íx) x A ¿ix)] £ H.  Note also that  d'(x)(H) C H, so

d'ixKa^x)) £ H fot all x e tp(U n V).

Remark 2.   For each x e çS((7 O V) there exists a bounded linear operator

S j (x) of B  such that  JiW- / £&ÍB, B*) and  Sj,(*)|h  is a unitary operator of

H and A^(x) = (9'(x) ° A^ (x) ° 5^ (x).   To see this simply put  S^ (x) = A ̂  (x)~ l °

d'íx)~~    ° A Ax) and use the transformation rule.

Remark 3.   From now on we will drop the indices in charts in case there is no

confusion,   for instance, when we are considering the chart ÍU, cp) and x  £ cf>ÍU)

then  A(x) and  Six) mean  A Ax) and  S , (X), respectively.   Similarly, if ÍV, if/) is

another chart such that   U P\ V / & and x £ if/ill C\ V) then  A(x) means  A Ax).

Recall that in the Riemann-Wiener manifold  (l) we have the Riemannian struc-

ture  g.  For each  x in  ÍV, gix) is a positive definite symmetric bilinear form of

H.  Thus the corresponding operator gix) of gix) (i.e. (g(x)h, k) = g(x)(A, &) for

h, k £ H) is a selfadjoint positive definite operator of £.   Hence the inverse

gix)~     of g(x)  is also selfadjoint and positive definite.   Let  g(x)_/2 denote the

selfadjoint positive definite square root of g(x)     .   It follows from the assumption

on  g  (namely, RW-3, p. 69 of [8]) that gix) is of the form  IH + K(x), where   K(x) £

J)iH0, B*).  Here we have used  IH temporarily to indicate the identity map of H

fot the sake of emphasis.   HQ denotes the normed linear space  ÍH, \\ ■ ||).  It is easy

to check that g(x)-'/j - ¡H £ !B(r7n, B*).  Let   (gix)~y' - IH)"" be the extension of

g(x)-'/2 - IH  to  B.   Thus  igix)-l/i - /wr e S(B, B*).  We will use the same notation

g(x)        to denote  lß + (g(x)_/2 - 7H)     because there is no confusion.   Therefore

g(x)-* e S(ß, B) and g(x)"^ - / e <B(B, B*)„

On the other hand, Proposition II.2 tells us that  L(x) o [gíx)~l/2 x gix)~l/l] e

S(£) because  f(x) £ S(B, B; B*) and g(x)-'/2 e S(ß, B).  Hence sp T(x) °

[g(x)~/} x gix)~/2] £ H.  Now we are ready to show the following
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Proposition III. 1.   A(x) = g(x)~y  and a(x) = - V2 sp f(x) o [g(x)-'Á x g(x)'M]

are diffusion coefficients.

Proof.   We need only to show that  A  and  o satisfy the transformation rule (11).

Let  x = 9(x), where x = cp(p) and x = if/(p) ate two charts in  ll with nonempty

common domain.   By definition   (g(x)zz, v) = g(p)((P~j) ", <f>~p v) and   (g(x) zz, v) =

g(p)(ib-1 u, ih~l v)  for all  u,v £ H.   It follows that   {g(x)8(x)u, d'(x)v)  =

(g(x)zz, i>)   for all  u, v £ H.   Therefore

(12) g(x) = (c?'U)*)-1g(x)t9'(x)-1.

(12) implies that g(x)~ x = 8'(x)g(x)~ 18'(x)*, which is the first of the transformation

rules (11).

On the other hand, it follows from (12) by a simple computation that, for all

u, v, w £ B,

g'(x)(u, v, w) = g'(x)(8'(x)-1u, 8'(x)-lv, 8'(x)-lw)

(13) - {8"(x)(8'(x)-1u, 8'(x)-lv), g(x)w)

- (8"(x)(8'(x)~lu, 8'(x)-lw), g(x)v).

Recall that the Christoffel function  T is defined as follows:   For all  u, v £ B,

F(x)(u, v) = lAg(x)-\g'(x)(u, v, .) + g'(x)(v, -, u)~g'(x)(-, u, v)\.

In particular, for all  u £ B,

(14) r(x) (u, u) = y2 g(x)~ l\g ' (3c) (u.u.A + g1 (x) (u, ;u)-g' (x) (-, zz, u)\.

If (12) and (13) are put into (14), an easy computation shows that, for all  h £ H,

r(x)°[g(x)-y'xg(x)-y>](h, h)

= 8' (x) o f (x) o [g(x)-y*   x g(x)-V>] ° [S(x) x S(x)] (h, h)

- 8"(x) °[g(x)-'/2x g(x)-yi]o[S(x)xS(x)](h. h),

where   s(x) is given by g(x)_H = 8'(x)g(x)~'/7S(x) as in Remark 2 following Defini-

tion III. 1.  Note that the three bilinear maps from H x H into  H in the above equal-

ity are all symmetric.   Therefore,

Hx) °rj(x)-a x g(x)~y'] = 8'(x) °f(x) °[g(x)-^ x g(x)-yio[S(x) x S(x)]

- 8"(x) o [g(x)-y> x g(x)-*l o [S(x) x S(x)].

Taking sp on both sides and noting that

A sp 8 ' (x) o f (x) ° [g(x)- « x g(*)rH] o [sU) x 5(x)]

= 8 ' (x) (y2 sp r(x) o [g(x)-'/z x g(x)-'/>] o [5(x) x 5(x)])

= d'(x)(% sp r(x) o [g(x)-yi x g(x)-y>])

since S(x) is unitary (see (i) of Proposition II. 2), we end up with
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0(x) = 0' ix)ioix)) + y2sp 8 "íx) o [|(x)-'/2 x gix)~H] o [Six) x Six)]

= Q' íx)íoíx)) + V2 sp 0"íx) o [g(x)-M  x gíx)-«]

which is the second of the transformation rules (11).     Q.E.D.

Definition III.2.  Diffusion coefficients (A, o) ate locally Lipschitzian if for

each point p  in Bj there exist a chart  ill, cp) at p  and a constant  a(p) depending

only on  p  such that, for all x and y  in <f>ÍU),

\\AÍx)-AÍy)\\2<aíp)\\x-y\\,

\oíx)~o(y)\<aíp)\\x-y\\.

Remark.   || • j|2  denotes the Hilbert-Schrnidt norm.  Note that  A(x) - I £

S(B, B*) C%yiH, H) C %2ÍH, H) tot all x e çS((A  Thus  Aíx) - Aíy) £ %2ÍH, H) tot

all x and y in q>í(j).

Let (A, a) be fixed locally Lipschitzian diffusion coefficients. We will solve

the stochastic differential equation  dX(t, co) = AÍXÍt, co))dWit, co) + oiJ.it, co))dt

to get a diffusion   X(¿) in the manifold  ffi with infinitesimal generator arising from

(A, o).

(A) Local diffusions.  We use p to denote a generic point of u).   Let  ÍVÍp),

<£,   .) denote a chart at p  such that cp.  ÁVÍp)) C ß  is an open ball around cp.  ip)

and the pair (A, zj) is Lipschitzian in cp    ÁVÍp)).  This can always be done by

choosing a smaller neighborhood at p, if necessary.   Let  Wip) denote the open

neighborhood of p such that <f>    ÁWÍp)) is an open ball around cp.   Ap) with radius

half of that of cf>.  ÁVÍp)).  Recall that   UÍp) denotes an open neighborhood at  p

where exp     the exponential map at p, is a C   ~  -diffeomorphism  ik > 3).   This no-

tation will be used throughout the rest of this paper.

Let A(x) be a C ^function from  B  into [O, l] such that

A(x)= 1     if x £cp(p)iWip)),

A(x) = 0    if x $ cp{p)iVip)),

||A'(x)||ß* < 1     for all x eß.

Define

A(x) = / +. A(x)(A(x) - /).       oix) = A(x)a(x).

Then  A and  a  are globally defined in  B and A = A,  a = a on  <j>    x(W(ô)).  More-

over, /I   and  a   satisfy the hypothesis of Theorem 5.1 in [9].   Note that instead of

defining  A(x) = A(x)A(x), we define  A(x) as above in order to meet the assumption

of Theorem 5.1 in [9].   Therefore by its conclusion the stochastic integral equation

0 5) Xit) = x0 + f'oAÍXis)) dWis) + f'QoiXis)) ds

has a unique continuous solution, where  xQ e cp    AWip)).
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Let p be the exit time of  X(z) from <p.   AW(p)).  Then the local diffusion

X At) = X(t A p) begins afresh at Brownian stopping times (see [lO] for the mean-

ing) and does not depend on the mode of extension of  A  and  o.

(B) Global diffusion.  Obviously \Wip); p e ffl} is a covering on  It.   Let  df

denote the metric in  ffl induced by the Wiener structure  r.   Then  (it, dr) is a metric

space.   We assume that  (it, dA is connected and separable.   Therefore there exist

a countable number of points  \p, ; k = I, 2, ■ • ■ \ such that  \W(pA; k = 1, 2, • • • I

is a covering of ffi and  W(p A n (U^I} W(p.)) / 0 fot all  k > 2.   For the sake of
ft j — i 7

simplicity, let  W   = W(p. ) and cp, = <fi.     .,  k > 1.

We will define a path  X  on  W. U W    in the following three steps:

Step (1).   Suppose   X(0) = pQ elfj.   Let  Xj  be the local diffusion in  cpyiWy)

starting at  cp Ap A  constructed in (A) by using the standard Wiener process   Wit)

in (15).   Let p,   be the exit time of Xy  from  cpyiWy).   Defineîe

X(i) = çà7I(X1W),       t<Py.

Now, if (i) Pj = oo or  (ii) py < °° and  X(pj) e cXWj u W2) then we put p2 =

P3=---=0.

Step (2). Suppose px < oo and X(pj) elfj, the interior of W2.  Take the Wiener

process   Wit + pj) - Wip  ) in (15) and let  X2  be the corresponding local diffusion

in  tp2ÍW2) starting at  cpAJip A).   Let p2  be the exit time of  X    from cp AW A.

Define

lit) = cp2 1(X2(/-p1)),        PJS/SPJ+P2-

If (i) p2 = oo or (ii) p2 < oo and  3C(pj + p2) e z3(W j U W  ), then we put  p, = p.

= . . . = 0.

5jep (3).  Suppose p2 < oo and X(pj + p2) e wj.  Take the Wiener process

Wit + p2) - Wip2) in (15) and let  X,  be the corresponding local diffusion in

cpyiWy) starting at  cp yiUp { + p2)).   Let p3  be the exit time of  X    from  cp (W ).

Define

X(z) = c6~1(X3(¿ - py  - p2)), Pi  + P2 < t < Pi  + P2 + Py

Repeating the previous procedure, we end up with a process   X  in  W   U W.

defined up to the "explosion time"  p = p y + p2 + ■ ■ ■ .  Using Ito's formula of the

second type and the transformation rule of (A, o), we can show easily the following

Lemma III. 1.   Let  ÍU, if/) be a chart with  (JCFjU W      Suppose £ is a stop-

ping time such that £< p and X(£) e U.   Let p    be the exit time of X-Ht) =

X(zj + (,) from  LI.   Then, for t < p  ,
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X(t) = ipdkt)) = X(0) + f(oA(X(s))dW(s) + floa(X(s))ds,

where  W(s) is a Wiener process.

Remark.  The only trick in showing this lemma is the following: Let cf be a

nonanticipating transformation (see [9]) such that  cf|w: AA —► H is unitary.   Then

f0 <f(s, co)dW(s, cu) is also a Wiener process.  We sketch the proof as follows.

First observe that a process   X(z) in  ß  is a Wiener process if and only if |AziX(z)|

= \\A\\\dt for all Hilbert-Schmidt operators  A   of H.  Let  X(/) = f'Q cf(s, a>)dW(s, co),

where  W is a Wiener process, then   |Aa"X(z)|2 = |A<f (t)dW(t)\ 2 = ||Acf (t)\\ \ dt by

Lemma 3.2 of [9l.   But   ||Acf (z)|| \ = ||(Acf(z))(Acf (z))*||, = ||Acf (z)cf (t)*A*\\ l = \\AA*\\ l

= \\A\\22, since  cf(z)  is unitary.   Therefore, |AffX(z)|2 = \\A\\\dt  fot all Hilbert-

Schmidt operators  A  of H.

We now need an a priori bound.   The bound in the following lemma is weaker

than that in [lO, p. 93l.   However, it is easier to prove and is enough for our later

discussion.   Let A  and  a he given by Theorem 5.1 of [9] and   ||A(x) - /||    < AC,

|ff(x)| < K fot all  x in  B.

Lemma III.2.   Suppose X(t) is the solution of the stochastic integral equation

X(t) = x0 + f'QA(X(s))dW(s) + ftoa(X(s))ds.

Let  p be the exit time of X(t) from  \x £ B; \\x - xQ\\ < r\,  r> 0.   Then ProbSp < (\

= o(t) as  e —» 0.  Atz fact Probip < e\ < constant x t:2 for small  e > 0, where   the con-

stant does not depend on   c.

Proof.   Obviously

Probjp < A = Prob /   sup ]|X(z) - xj > r\.
{0<t<e )

Thus our assertion is

Prob {  sup   ||X(z) - x  || > r\ = o(c)    as  e -» 0.

^0<z<e )

Without loss of generality, we may assume  xQ = 0.   By our assumption, the function

7?(x)=||x||2  is  C2.   It is easy to see that   \\r/' (x)||ß, = 2||x||,   W (x) - r,'(y)\\B* <

2\\x - y||   and   \\r]"(x)\\ßB* < 2.   For the sake of easy reading, we let  Xs = X(s)

and  Ws = W(s) in the following proof.

Apply Ito's formula of the first type to  77 to obtain

rfixt) = fMHx^'ix^dwj
(16)

+ J ¿W(XJ, o{Xs)) + A trace [A*(Xs)r,"(Xs)A(Xs)]\ds.

But
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and

f'0WiXs), oiXs))ds   < f'0\v'(Xs)\ \o(Xs)\ds

< Kßf'0\W&s)\\B.ds = IKßf'jXjds

<2Kßf(o\\Xjds    if t<c;

P  trace A*(X  )rt"(X )A(X  )ds
JO s    l       s s

<2f(l + K)2 Jß||yu2 Pj(ziy), t<«,

|-4*u)|Hif/ = ||A(x)!|HH

<l + ||A(x)-/!|HH<l + ||A(x)-/||2<l + X,

and

l»?"Wll1</Bllyll2í>iWy)h"WIB, B
tot all x e B.

Let  e > 0 be so small that  f(l + K)2 fß ||y|| 2p A\dy) < r2/2.  Then from (16) we

have, for  t < e,—

I P (A*(X y (X ), iW )| + 2Kß P ||X  I ds + 1-
J 0 s    I       s s   \ r-J qU    s" 2

X. A <

|x<112 - Y £ |.fáU*(XsV(xs), ¿ivs) + 2^ ||x Jas.

Hence

Probi   sup   ||X || > A = Probi sup    ||X||2>r2i
l(Kí<í ) \0<t<( )- -

(17)   < Prob i sup    II   ÍAHX  h'ÍX  ), dW )\ + 2Kß P||X   II ds > '— \

< Prob| sup   |/^W*0íJtV(Xs), dWs)\ > ~\ + Prob    2^/3^ |Xj ds > îj >

Now, apply (3) and (4) of [9, Theorem 3.2] to get the estimate of the first term

in the last inequality:
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Prob]   sup\('(A*(Xs)t]'(Xs), dWs)   >^-J

^ë[{/;(Anxsv(xs),^)}2]

f   &Se0\AHXsW(Xs)\2ds

S^d + KVß'&pJrjAX^ds

16
<

(18) f4 J 0

16

r

64
^-Id + Ky^&pJXj'ds^c^flWXj'ds.

On the other hand, apply Cebysev's inequality to the last term of (17) to get

Prob{2Kz3/;,,X^

(19) 2 „2

< ËUL£_  Sfo||X,||^s.        «l.s.y,
r

^&$\\\xA\2ds.
'2      Jo"    s'

Putting (18) and (19) into (17), we get immediately

(20) Prob<i   «up ||X || > A  < c&f\\Xs\\2ds
' 0<t<( t

where  c = c   + c 2.

Finally,  we consider the given stochastic integral equation

Xs =   [SAX,)dW   +   fSMX  )du = W   +   fS(A(X )- l)dW   +  fso(X )du.sJOuuJO" s       J 0 u "JO "

It can be checked easily that

(21) ë(||Xj2)<as,

where  a is a constant depending only on   AC, ß and the quantity   L ||y|| 2 p Ady).

Evidently we finish the proof by putting (21) into (20).    Q.E.D.

Let us return to the process   x(t) in  W    U W.  defined up to the "explosion

time"  p.

Lemma III.3.  // p < *> then X(p -) exists and belongs to <9(W    U W ).

Proof.   Let    Dj = dWf - d(Wl u W2)   and   D2 = dW2 - cKW, U W2).
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Let £,< £2 <£,<•■■< p be the successive hitting time of Dp D 2, D y, D2, • • • .

Let  D^"'  and   DÍ,"' be two increasing sequences of Borel sets converging to  D

and  D2 respectively suchthat  dTÍD[n), D2n)) = e{n)-*0 as  72 -» 00.   Let  E^  be

the event  ,¿\ .    ,  e D(,n) and  ¿,. e D("} for all  / = 1, 2,- • • |.   To finish the proof

it is sufficient to show that Prob(£  ) = 0 for all  22 > 1.
77 —

Now by Lemma III.2, ProbS^. -£._! < lh\ £_j <<*>!< constant x I//2.   If

Prob(£  ) > 0 for some 22 then on the even  E    we have  p > tail of 2°° .  I// = 00
rz n r 7=1

by an application of the first Borel-Cantelli lemma.   But this contradicts the as-

sumption  p < 00.   Therefore Prob(£  ) = 0 for all  22 > 1.     Q.E.D.

Let  XAt),  t < p2, be the process in  W   U "/.  constructed before.   Let  XAt)

be the local diffusion in cf>AWA.  Using  X    and  X,  in place of  X    = 07  (X ) and

X  , we can construct a process   X At), t < p,, in  W    U W   U W    in the same

manner.   The process   X    has the same properties as those in Lemma III. 1 and

Lemma III.3 for  X  •  namely, X    is defined up to  p,, it is compatible with local

diffusions on charts of  W^kj W2 U Wy and  X3(p3 -) e diW y U W2 u W J if p3 < 00.

Inductively, for each 72  we can construct a process  X  (/), defined up to time  p  ,

in M7=1  ^    Wltn tne same properties in Lemma III. 1 and Lemma III.3.

Finally we define a process  X(z) in  It up to explosion time  p = lim, ^^p,   by

X(z) = X it), t < p  .  Note that p, < p 2 < • • • < p.   X(r) is unambiguously defined

since, for each  k > 1,   X, _ .(z) = X, (z) up to  t < p,     ,.   It can be checked easily

that  X(f) begins afresh at its stopping times.  Moreover, X(r)  solves the stochas-

tic differential equation  d%it, co) = A(X(z, co))dWit, co) + oiJ.it, co))dt in the sense

of the following

Theorem III. 1.   Lei  ill, c6)  be a chart in (8.  Suppose £ is a stopping time of

X such that C < p  and X(£) e (7.   Lei pQ  ¿>e ZÄe exz'Z Zz'zzze of XHz) = X(z + t£) /row

(7.   Then, for t < p0,

X(z) S cpiJkt)) = XÍ0) + j!QAiXis))dWis) +   Pa(X(s))¿s,

where  Wis) is a Wiener process.

(C) The infinitesimal generator.

Theorem III.2.   Let f be a bounded function of class  C2  on iß.   Let  X (z)

denote the process constructed above starting at p.   Then

ê[/(X (/))]-/(p)
(22) lim -  = Y2 trace A*(x)/¿(*M(x) + (o(x), f'Ax)) ,

zlo ? 0

where &  is the expectation with respect to the standard Wiener process  icf. [9]),

x = cpip), f^ = f n cf>~ 1  and cp is a chart at p.

Remark.   The   right-hand   side of (22) is independent of the chart  cp.  This can
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be seen easily by using the transformation rule of (A, a).   This differential opera-

tor with (A, ff) given by Proposition III. 1 will be called the Beltrami-Laplace

operator of iß.  It coincides with the usual one if  (0 is a finite dimensional Rieman-

nian manifold and with the Laplacian introduced by Gross [5] if  (u is  B.

Proof.   Let (U, cp) be a chart at p such that cp(U) is an open ball around

cp(p).  Let  p„  be the exit time of  3C (t) from   (7.   Then

ë[/cyz))] = &[fap(t)). iKp ] + &[fap(t)) ■ iPq<,],

where   lß  indicates the characteristic function of the event  E.

But  ë[/(3E  (z)). 1       .    ]<||/||     Prob!pn < zi = o(z) by Lemma III.2.   Therefore

&[f(i(t))]-f(p)      ê[/(yo).i(< ]-/(?)
(23) lim-'-  = lim - •

¡lo t ilo t

Now by Theorem III. 1 on the event t < p„ the process  X(t) = cpÇX.At)) satis-

fies the equation

X(t) = cp(p) +  (toA(X(s'>)dW(s) +  C'oo(X(s))ds.

Apply Ito's formula of the first kind to jA:

yx(z)) - /y<M/>)) = jóu*(xu)v¿(x(s)), dw(s))

+ JqK/¿(x(s)), MxU)))

+ y2 trace A*(X(s))/^(X(s))A(XU))|a's.

Taking expectation on both sides and using (4) of [9, Theorem 3.2], we obtain immediately that

ë[Mx(z))] - f(p)
-&('\(f¿(X(s)),o(X(s)))
t     J °     v

(24) + y2 trace A*(X(s))f'¿(X(s))A(X(s))\ds

-+ 7Í trace A*(JC)f¿(x)A(x) + <ff(x), /¿(x)>     as  Z -, 0,

where  x = çS(p).   The theorem follows by combining (23) and (24).     Q.E.D.

IV. Brownian motion on a Riemann-Wiener manifold.  From now on ffi will denote

a connected and separable C^-Riemann-Wiener manifold  (k > 3).   Let  (A   , a ) be

defined in  ffi by Ag(x)   =   g(x)~1/,  og(x) = - y sp f(x) °   [g(x)~^   x   g(x)-§].   By

Proposition III. 1, (A     a ) are diffusion coefficients.  Moreover, (A   , a ) ate locally*>      & g     g *

Lipschitzian because they are Fréchet differentiable. To see this simply recall

that L8, Definition II.4J and the definition of T imply that A (• ) - A and iX • ) °

[£(•) ~>A x gí-)-l/i] ate Fréchet differentiable maps into S(ß, ß*) and %(B, B; B*), respec-
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tively.  The following lemma concludes that  o    is differentiable.

Lemma IV. 1.   // <J>  ¿5 a Fréchet differentiable transformation from an open sub-

set  U of B  into the Banach space S(B, B; B*), then sp fj>  is also Fréchet differ-

entiable from  U into  H.   Moreover, (sp $)' ix)u = sp[$' ix)u] for x £ U and u £ B.

Proof.   Simply note that $' (x)u £ $(ß, ß; B*) tot all x £ U and u £ B.    Q.E.D.

Let  S(z) denote the process constructed in the previous section corresponding

to the locally Lipschitzian diffusion coefficients (A   , o ).  We will call B(z) a

Brownian motion in  it.  Note that  B(/)  is completely determined by the Riemannian

structure g.   For each point p £ It,  53 it) denotes the motion  B(z)  starting at p.

Let  ßtip,- ) denote the transition probabilities of B(z), i.e. ß(ip, £) = ProbtB(z) £ E\.

We will study the spatial homogeneity of vit) and the relation between  ß.ip,-)

and the local measures   q.ip,-) defined in [8].

It has a metric  d   induced by its Wiener structure  r.   Thus we can define isom-

etries  with respect  to d   in the usual way.  However, the group of a" -isometries

is not the one with respect to which  B(z)  is spatially homogeneous.   On the other

hand, (l) has an almost-metric  d   (in the sense that two points in  It may have in-

finite distance) induced by  its Riemannian structure  g.   For a more detailed dis-

cussion of d    we refer the reader to [8].  We will define d -isometries and show

that  53(z)  is spatially homogeneous with respect to the group of d -isometries.

Definition IV. 1.  A surjective map / from It into itself is said to be d -isomet-

ne if it is at least C -diffeomorphic with respect to  r and  d ijx, Jy) = d (x, y)  for

all  x  and  y  in   It.

Remark.   We review briefly some material from [8].   For each point  x in  It,

(Rx, Tx((t)) is an abstract Wiener space with inner product gix) fot R     and norm

r(x) for  Txiw).  Let   | • |     denote the norm of  R     corresponding to gix).  Moreover,

for each point x in  It there exists a C°°-Riemannian manifold  (R(x), g) containing

x such that  Ty(R(x)) = Ry fot all y £ RÍx).  If J is a d -isometry, then  y £ RÍx)

if and only if jiy) £ RÍJÍx)) because  d ÍJX, Jy) < oo if and only if d (x, y) < oo.

Proposition IV. 1. Suppose J is a C>-diffeomorphism (/' > 2) from ¡B 022Z0 itself

with respect to r. Then J is a d -isometry if and only if, for each x e ffl, j' íx)ÍR )

C f!       j a72a' j'ix)  is a unitary operator from  R     into  R..   ..

Proof of sufficiency.  Note first that /'(x)(i<x)= RJ(x) because  j'(x) is a uni-

tary operator.   Furthermore, J' (x)(Tx(VS) n Rcx) = TJ(x)(W) O Rc x) because  /'(x)

is nonsingular, where  c denotes complement.   It follows easily that

(25) \jAx)u\J(x)=\u\x     fot all u£Txm.

Recall that we used the convention \u\x = 00 if u e TJM nRc in [8] in defining

the almost-metric  d .
8

Let x and  y be any two points in  It.   Let  r be a piecewise differentiable curve
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connecting x and y, i.e. KO) = x, Hi) = y.  The L  -length of r is defined in [8] by

L  (r) = f1. \r'(t)\..,dt. It follows from (25) that  L A] o r) = L(r).   Thus  d (x, y) =

inf   L  (r) = inf   L   (j ° r) > d (jx, Jy).  Conversely, d (jx, ]y) > d (x, y) because

/ is onto. Hence, d (]x, Jy) = d (x, y) fot all x and y in tß.

Proof of necessity.  Let  zz £ T (if!) and let r be any piecewise differentiable

curve in  ffl   such that  r(0) = x and  r (O) = zz.   Then   |zz|    = lim,,n (l/i)ci (x, r(t)).
x u" £

On the other hand, the curve  / ° r is such that  / ° r(0) = /(%),  (/ ° r)' (O) = /' (x)u.

Thus   |/'(x)zz|;(x) = limtiQ(l/t)dg(j(x), / o r(t)).  But by assumption d (](x), ] o At))

= dg(x, r(t)).  Therefore, \j'(x)u\j (x)=limtl0(l/t)dg(x, At)) = \u\x. Hence if u £ Rx

then   \u\x < co and   \]' (x)u\J(x) < m, hence  ]'(x)ueRJ(x).  Thus  /' W(«x) C RJ(x)

and /  (x) is an isometry.   It can be checked easily that  /' (x)(R  ) = R .        by the
X J \X }

assumption that  /'(x) is nonsingular from   T ((f)) into  T.,   .(ffi).   Therefore,   /'(x)
X J \X )

is a unitary operator from  A?     into  Ac..   ..     Q.E.D.

Remark.   In [8, §II.e]    we show that if  r is a curve in  ffl such that r(0) = x

and r'(0) = u £ R% then  At) £ R(x)   for small  t.  Thus   |zz|x < oo  if and only if

dg(x, r(t)) < oo for small  t.  On the contrary, u £ Rc% n Tx(ffi) if and only if At) £

R(x)c.  Thus   fa|, = oo  iff d(x, At)) = oo for small t.
g

Proposition IV.2.   Suppose  ]  is a d^-isometry of iß.   Let  (U, cp) and (V, iff)

4>A~
be two charts of (l) such that ]  is C -diffeomorphic from   U onto  V.   Let  J

ip]<P~  •   Then for all x £ cp(U) C B  we have

°g% ,<fx) = l'<pA {x) {ag(x)) + % SP ¡4>, 0(x) ° [As{x) x A8l*)l

Remark.   For every  x in  cf>(U),  ] 'i Ax) ° [A   (x) x A   (x)] is a spur operator of

H.   This will be shown in the proof.

Proof.  It follows from Proposition IV. 1 that, for each y £ U,   (u, v)   =

(]'(y)u, j'(y)v) .. , holds for all u, v £ R . This is equivalent to saying that, for each  x

£ cp(U), (g(x)h, k) = (gd^^J^^h, J¿J*)k)  holds for all  h, k £ H.  There-
fore we have

(26) sw = /;,0w*°s(/^*w;0w-

This implies that g(] . ^x)~ : = /^ jMjjK*)- ] 1 J,x)* fot all  x in  cf>(U).  Note

that (26) is similar to (12) in Proposition III. 1.   Thus by the same computation and

argument we can obtain easily that

- }'^ 0 (x) o f (x)'ö [g(x)->A x g(x)-'A] o [S(x) x S(x)]

= - /;_ i (x) ° [g(X)-'A x g(x)~'A] o [Six) x Six)},
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where  Six) is given by  A  (/ ,    ,x) = J '.    Ax)A  ix)Six) as in Remark 2 following

Definition III. 1.   But we know that the left-hand side of the above identity is a spur

operator.  Therefore, J'i   Ax) °  [g(x)-1/i   x   g(x)~l/*]    is also  a  spur operator since

Six) is a unitary operator of H and  o (]^ ^x) - J^   Ax)io ix)) = l/7 sp j"^ J,x) o

[A   (x) x A  (x)] by taking   -  Yj sp on both sides.  Hence

a8(J<l>, 4,x) = /¿. 0 (x) (ffg(x)) + * SP /Ï. 4 {x) ° [Ae{x) x Vx)L      Q-E-D-

Theorem IV. 1 (Spatial homogeneity).   Let ßip,-) be the transition probabili-

ties of 33(z).   // /   is a d -isometry of iß then ßt(jp, JE) = ßt(p, E) for all t > 0,

p e It and all Borel subsets  E  of It.

Proof.   Let  v~H.t) = /B(t).   Let  25  (r) be the process  93(z)  starting at p e ffl.

Then  S/(/) s /B (/) is a process starting at j(p).   Let  ((/, 0) and ÍV, if/) be

charts at p  and  /(p) respectively such that  /  is C-diffeomorphic from   U onto

V.   Let  / ,   , = i/z/0_1  as in Proposition IV.2.   Let p„ be the exit time of 35At)

from   U.   Then pQ  is also the exit time of  33¿(z)  from   V.  Let  X(z) = 0(53  (z)) and

y(z) s i/H33^(z)),   Then   y(z) = xfjjcp- l(d&p(t)) = J^^Xit)).   It follows from Theorem

ULI that

X(z)=X(0)+  ('A  (Xis))dWis)+   ('o(Xis))ds,       t < p..
Jos Jos ro

Apply Ito's formula of the second type to get

h, *{X{t)) = /*. * (X(0)) + /o /* ^ {X(s)) ° VX(s)) ^W(s)

+ /o!^,0(X(s))(ffs(X(s)))

+ lA sp /£ 0 (X(s)) o [Ag(X(s)) x Ag(X(s))]MS.

Now, we use Proposition IV.2 and obtain immediately that

Yit) = if/ijip)) + f'QAgij ¿^ Xis))S-Hxis))dWis)

where  Six) is given in the proof of Proposition IV.2, i.e.

Yít) = if/ÍJÍp)) +  f' AÍYÍs))dW'is)+  f'oíYís))ds,
J o    o Jos

where   IV' (s) = /* 5~ 1(X(zz))a'W(a) is a Wiener process (cf. the remark  below

Lemma III. 1).  On the other hand, <A^(f)(z) also satisfies the above stochastic

integral equation.   Thus   Y(t) = t/zB;(?)(z) by the uniqueness of solution.  There-

fore, 2V(z) = 53^      (/).   It follows that for any  Borel subset  £  of ffl we have
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ßtijp, JE) = Ptob\sB](p)it) £ JE\ = ProbjB^(z) e JE\

= Prob!/53p(z) e JE] = Prob|33p(z) e E\ = ßAp, FA.      Q.E.D.

In the rest of this paper we will compare results in this paper with those in

[8].   Recall that for each  x in  It there exists an open neighborhood   llix) of x

such that exp  : exp- 1 ÍUÍx)) C T (it) —» llix) is C -diffeomorphic.  A local measure

with parameter  Z > 0 at  x is defined by  a (x, £) = py'Xo, exp~  (£)), in which  £

is a Borel subset of  llix) and  pj*' is Wiener measure in  T  (It).   In § 0 of the

introduction to [8] we remarked that the local measures  \q (%,•)} are local first

order approximations to the transition probabilities of a Brownian motion.  This

will be shown in the following theorem.   We will also study the equivalence-perpen-

dicularity relation between them.

Theorem IV.2.   (i) Let x be any fixed point in  it.   Then for any Borel subset

E of [/(*),

lim — 1/3,(x,  E) - q ix,  E)\ = 0,     where  0<a<Y2.
zlo  t '

(ii) Let x    £ (t and let  II be a subdomain of a chart such that  11 'D llix A.

If x  is in  U then ß ix, ■ ) and q ixQ,-), as measures in  UÍxA, are equivalent if

and only if t = s  and d ix, x A < oo.   Otherwise they are mutually singular.

Remark.  We conjecture that ßA\x,-) and ßgiy,-) ate equivalent if and only

it t = s and d ix, y) < oo and that they are mutually singular otherwise.

Proof of (i).   Let p be the exit time of 53  (z) from   UÍx) and let  6 ix, E) =

Prob!53x(z) e E,  I < p\.   Let  E  be any Borel subset of  UÍx); then  0 < ßtix, E) -

dix, E) < Problp < t\ = oit) by Lemma III. 2.   Thus to show (i) it is sufficient to

prove that, for  0 < a< Y2,

(27) »*-= \0,(x, E)-qix, E)\ = 0.
zlo z

1

On the other hand, if a > 0  then  p[x)(0,\u e Tx(ffi); r(x)(zz) > a\) = oitn) for

any integer 22 > 1  by Fernique's theorem [3].   This remark and Lemma III.2 show

that we need only prove (27) for  E of the form  £ = \y £ if!; d (x, y) < a\ C UÍx),

where  a > 0 is small.

Recall that  UÍx) is contained in a chart  ((/, 0)  at  x.   Let  X(z) = 0(53  it)),

t < p.   Then

X(z) = 0(x)+   C'A   ÍXÍs))dWís)+  C!oíXÍs))ds.
Jos Jos

Piech [ll] constructs a fundamental solution  ir (y,- )!  of the parabolic equation
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c9zz(z, y)/dt = y2 trace A*(y)u     (t, y)A  (y) + (ff (y), zz  (t, y)) .

It can  be checked that

lim 4 \rU(x), 0(E)) - pU(x), 0(E))| = 0,
i ¿o t      '

where  0 < a < l/2 and  p    is Wiener measure in  ß  with parameter  t > 0.   Moreover,

by using the same idea as in [13, Theorem 3l we can show that  rt(cf>(x), cp(E)) =

8 (x, E).   On the other hand, let  r^Xx,-) be defined, as in [8], byí

- 1
(28) r^Xx, E) = pi(0,^xOexp;1(E)).

Then it can be checked easily that

lim i \q(x, E)-MXx, E)\ = 0.
«loza

Therefore we end up having to show that

(29) lim ^ \pt(cf>(x), cp(E)) - r^Xx, E)| = 0

in order to finish the proof of the assertion (i).   Let  T = cp       ° exp~    ° cf>~    °

',,   ,, where    ¿<¿(xn is the translation by cp(x), i.e.   l^^Xy) = y + cp(x), y £ B.

Then it is easy to check that  T satisfies the assumption of Proposition II. 1 and

the conclusion there implies (29).

Proof of (ii).   Let  (U,cp) be a chart with   (7 given in (ii).   Define  A^Xx0, • )

by (28).   Then we show in the proof of  [8, Lemma III.3] that  qs(x0, ■ ) and

A^Xx  ,• ), as Borel measures in   U(xA, ate equivalent, i.e.

(30) (*., .)*r[*Xxn, •)    in   U(xA.'sv   0

Let p be the exit time of 8^(z) from   U and let  8{x, ■ ) be defined by 8 (x, D)

= ProbfBx(z) £ D, t < p\ in which  D £ Borel field of   U(xQ).   Then

(31) £,(*, A^8t(x, ■)    in   U(x0)

as in the finite dimensional case.

Let  X(z) = cp($x(t)),  t < p.   Then  X(t) satisfies the stochastic integral equa-

tion

X(t) = <pix)+   ('A  (X(s))dW(s)+   ro(X(s))ds.

The corresponding parabolic equation is

du(t, y)/di = y2 trace  A*(y)u(t, y)A(y) + (a (y), u (t, y)) .
e        yy s s y
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Let \r(y,-)} be the fundamental solution of the above equation constructed

by Piech [ll] and note that  A     is nonsingular.   It can be checked that "absolute-

ly continuous" in Theorem 1 of [12] can be replaced by "equivalent".   Therefore,

rtiy, ■ ) ^ p((y, • )  in  B.   On the other hand, dix, D) = ricpix), 0(D)) by the remark

in the proof of (i).   Hence we have

(32) dt(x, ■)* pt(4>(x),d>(A)    in   LlixQ).

Finally, let  T = 0^ ^ o exp-l o 0- 1 o   /^^ where    /^^ ¡s the translation

by  0(x).   If d ix, xA < oo  then 0(x) - 0(xQ) e H and it can be checked easily

that  T is admissible.   Therefore, if d ix, xQ) < oo, then p((0(x), 0( • )) ^

A^'ixQ, •) if and only if  Z = s.  Otherwise, they are mutually singular.   If d ix, xQ)

= oo then obviously p Acpix), 0( • )) and  ryXx»,-) ate mutually singular for any

t, s > 0.  The results in this paragraph and the relations (30)-(32) give our asser-

tion (ii).    Q.E.D.
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