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DIFFUSION AND BROWNIAN MOTION
ON INFINITE-DIMENSIONAL MANIFOLDS(})

BY

HUI-HSIUNG KUO

ABSTRACT. The purpose of this paper is to construct certain diffusion pro-
cesses, in particular a Brownian motion, on a suitable kind of infinite-dimensional
manifold. This manifold is a Banach manifold modelled on an abstract Wiener
space. Roughly speaking, each tangent space T is equipped with a norm and a
densely defined inner product g(x). lLocal diffusions are constructed first by solv-
ing stochastic differential equations. Then these local diffusions are pieced to-
gether in a certain way to get a global diffusion. The Brownian motion is complete-
ly determined by g and its transition probabilities are proved to be invariant under
d -isometries. Here d_ is the almost-metric (in the sense that two points may have
infinite distance) associated with g. The generalized Beltrami-Laplace operator is
defined by means of the Brownian motion and will shed light on the study of poten-
tial theory over such a madifold.

L. Introduction. This paper is concerned with developing a natural integra-
tion theory over a certain type of Banach manifold. It is natural in the sense that
this theory is associated with a Brownian motion. In [8] we took a step toward
this goal by constructing local measures in a Banach manifold called Riemann-
Wiener manifold. In this paper we use a different approach by considering stochastic
differential equations on such a manifold. This idea stems from [6], [7] and [9].
We will construct a general class of diffusions which includes the Brownian motion
as a special case.

Let (i, H, B) be an abstract Wiener space [4] with H-norm denoted by |-|=
(-, )% and B-norm by | -|. It is important to keep in mind that B* is imbedded
in B so that B¥C H C B. (, ) will denote the natural pairing between B* and B.
Note that (x, y) = {x, y) whenever x is in B* and y in H. b, denotes Wiener
measure on B with variance parameter ¢ > 0. We define for x in B and fora Borel
subset E of B, pt(x, E) = pt(E - x). Fernique [3] has proved recently that
(5 exp {8]|x] 2} p (dx) < e for some & > 0.

We will assume the following on (i, H, B): (1) ||-|| is of class C? off the ori-

gin and (2) there exists an increasing sequence Q,, of finite-dimensional projec-
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tions such that Q (B) CB*and Q_ converges strongly to the identity both in B
and in H. Thus we can make use of the results in [8] and [9].

In this paper we will adopt the same notation used in [8]. We refer the reader
to [8] for the following definitions. Let @, -, g) be a Ck-Riemann-Wiener mani-
fold (k > 3) modelled on (i, H, B). We will assume that (' is connected and separ-
able. We assume also that, for any ¢ , ¢‘[3 in the admissible atlas, i(Ua, B,); ac
A}, qSBO b 1 in addition to being admissible, is assumed to be of at least class
C? and to satisfy the following condition: (¢ b 1)"(x), the second Fréchet deriv-
ative of qSﬂOqS;l at x, belongs to B(B, B; B*), the Banach space of all bounded
bilinear maps from B x B into B* with norm

}]‘I)HB’ B, B*= sup {||®(z, g/ Hullllvll; «u#0, v#0, », veBl,

and x — (¢BO gb;l)”(x) is continuous from q’)a(Ua N UB) into B(B, B; B*). The
Christoffel function T" is defined by

Te)w, v) = $%el) Mg (N, v, Vg’ (N, -, u) = g (X, u, V)]

Thus T'(x) € B(B, B; B*) for each x. Finally the local measures iql(x, <) t>0,
x € &} are defined by q,(x, E) = pt(")(o, exp; '(E)), E € Borel field of U(x), where
pt(") is the Wiener measure in the tangent space Tx(m) and exp_, the exponential
map at x, is Cl-diffeomorphic in U(x).

In SII we will make an estimation for admissible transformation. Also we will
prove Ito’s formula of the second type, regarding Ito’s formula in [9] as the first
type. SIII is devoted to the construction of certain diffusions in the Riemann-
Wiener manifold by using the Itro-McKean technique ([6], [10]). In SIV we study
Brownian motion and its relation with the work of [8].

This paper is closely related to [1], although there are some technical differ-
ences between them. Furthermore, it is the author’s conjecture that a Banach-Lie
group is a Riemann-Wiener manifold. On the other hand, Eells and Elworthy [2]
have recently developed Wiener integration on certain Banach manifolds by using
a result in [8]. Roughly speaking, let X, be a Banach manifold modelled in B
with C"-admissible atlas {(U,, $,)}. Let g;; be defined in U, N U, by

8,;() = expl/20)[- 2 (¢;(x) - ¢ (x), ¢ (x)) ~ |p;(x) - ¢, (0]%}
x det((¢p 7 D’ (@,
Then the family {gij}i i forms the transition functions for a line bundle WI(XW),
which is called the bundle of Wiener densities over X, (with variance parameter
t); the sections of Wt(XW) are called Wiener densities on XW' Let & be a Wiener

density on X,,. Then they define a Borel measure u(£) on Xy by setting u(ENV)
= f¢i(v) fi(x) dpl(x) for any open set V in U, where p, is the Wiener measure of
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B with variance parameter t. They have succeeded in connecting this kind of in-
tegration theory with degree theory. However, their point of view is different from

ours.
We would like to thank Professor H. P. McKean for his valuable conversations

and suggestions.

II. Admissible transformation and Ito’s formula of the second type. Let U
and V be open subsets of B. In [8] we define a homeomorphism T from U onto
V to be admissible if T is a C!-diffeomorphism and Tx — x € H, T'(x) - €
B(B, B*) for all x € U, and the map x — T'(x) — I is continuous from U into
B(B, B*). Here B(B, B*) denotes the Banach space of all bounded operators from
B into B* with norm "S"B,B* = supt|[Sull g«/lull; «u#0, ue Bi.

Proposition I.1. Let T be admissible on an open set U containing the origin
and let T(0) = 0, T'(0) = I. Assume T"(x) € B(B, B; B*) for all x € U and let T"
be continuous from U into B(B, B; B*). Then there exists r> 0 such that
b0, r, |- 1) ={x €B; jx[| <A C U and
|6, (T(E)) - p(E)| < Myt

holds for all t >0, all Borel subsets E of b0, r, |- ). M is a constant indepen-
dent of t and E.

Proof. Let K= T - I. Choose 7> 0 small enough to meet the conditions
i) b0, r, |-Dcunlo, 1, |-,

() K g g,gx <1 + KON g g, g+ forall x b0, r, |-,

; (iii) 271 + | K”(O)“B,B ;B*) <8, where 8> 0 is such that [; exptd|x| %} p (dx) < oo
an

(iv) |det |T'(x)| = 1] < c|lx|| for all x € b(0, 7, || - [|), where c is a finite con-
stant independent of x.

Put a=1+ KO g g,p+. From the equality K'(x)~ K'(0) = [} K'(sx)x ds
and (ii) we obtain immediately that |K'(x)| g g« < allx] for all x € (0, 7, |- ).
Similarly, |[K(x)| g« < allx]|? for all x € 5(0, 7, |- ). Therefore forall 0< s < 1
and all x € (0, 7, || - ||) we have

|(K(sx), 0)| < allx||?,
1) (K (sx)x, sx)| < alx||?,
|(K(sx), K'(sx)x)| < B2a?||x|4 < B2a?||x|3,
where 3 is some constant such that ||x|| < Bl|x| for all x in H.
Now define a Borel measure (/rt(dx) on b0, 7, |- 1) by ¢, (dx) = bt(x)pt(dx),

where 5 (x) = expil - 2(Kx, x) - |Kx|21/2t}. Let E be any fixed Borel subset of
50, r, |- ). Then
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W E) = [ b p (dx)

- [, {bl(o) s [l s0). ) ds} p (dx)
= p(E) + [ds [ (b (sx), %) p ().

Thus
) b (B) - (B = [ ds [/ (sx), ) p (0.

It is easy to check that

(btl (sx), x) = — t~ H(K(sx), %) + (K'(sx), sx) + (K(sx), K' (sx)x)]bt(sx).
Thus from (1) we have
3) |, (sx), x)| < ¢~ 120 + B%a?)|x||? expit~la|x|3}.

Putting (3) into (2), we get immediately

1¥,(B) - ,(B)| < 720 + B2 [ |1x|1? exple=talx] ) p ()

4 ] 2]
@ <t 12a + B%a?) [fE"x"épt(dx)] [IE exp{2t~ta|x||3} Pt(dx)] " .

But [g [1#[|6p,(dx) < 3 [ Ix]|®p (%) and
f gexpl2etallx| Y p, (dx) < f gexpl2e™ trallx|| 4 p ()

< fpexptor xlip, (a0 < [, explor ]2l p ()

= [pexp il p, (a0,

Here we have made the change of variable x/\t — x in passing from pt(dx) to

p (dx). We have also used (iii). Putting these estimates into (4), we get

) 10, (B) - p(E)| < Vi 20 + Bza%[fsnxuwdx) [ exp xauxn%,ux)]%.

On the other hand, from Theorem 1.4 of [8], we know pl(T(E))
= [g b,(x) det |T'(x)| p,(dx). Therefore

2 TE) -y (B < [ b )|det| T"(0)] - 1] p,(d)

<c fEbt(x)Hx"pt(dx) by (iv).

The same argument as before yields

© 1o, (TE) -y (B < Vi [jannzpl(dx) [ e {8|ix||2}pl(dx)]%.

Obviously, (5) and (6) give the desired conclusion. Q.E.D.
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The Ito formula we prove in [9] answers the following question: Given dX(t)
= &() dW(t) + o(t) dt, where W(t) is a Wiener process in B, € is an n.a.t. and o
is an n.a.v. (see [9] for the definitions), and a real-valued function [ on B with
certain regularity, then what is df(X(#))? Now we ask another question: Given
dx(t) = £(¢)dW(t) + o(t)dt and a map 6 from B into itself with certain regularity,
then what is d6(X(#))? We will prove a formula in Theorem II.1 to answer this
question. It will turn out that d0(X(¢)) has an expression similar to dX(¢). In
order to state the formula we have to make the following

Definition II.1. A continuous bilinear map ® from H x H into H is called a
spur operator if (i) forall h € H, ®, € ﬁl(H, H), the Banach space of all trace
class operators, where (Db(”’ v) = (®(u, v), b) and (ii) the linear functional » —
trace ¢, is continuous.

Notation. It follows from the definition that there exists a unique element b,
in H such that (bo, h) = trace (I)b for all » in H. We denote this unique element
b, by sp @. The vector space of all spur operators in H will be denoted by S(H).

Proposition 11.2. (i) If & € S(H) and te 17’ | is an orthonormal basis of H
then the series EZ___lQ(ek, e,) converges in H. Moreover, 2 ole,, e) =spd.

(ii) B(B, B; B*) C MH), i.e. a continuous bilinear map from B x B into B* is
a spur operator when it is restricted to H.

(iii) If ® € MH) and S, T are continuous linear operators of H then @ o
(Sx T) and S o @ belong to S(H) and sp S ©® = S(sp ).

Proof. (i) and (iii) are easy, while (ii) follows from Proposition 0.1 of [8].
Q.E.D.

Theorem I1.1 (Ito’s formula of the second type). Let 0 be a C%-map from B
into itself such that (i) 0'(x) - I € B(B, B*), ¢"(x) € B(B, B; B*) for all x in B,
and (ii) the maps x — 9'(x) — I, x — @'(x) are continuous from B into B(B, B*),
B(B, B; B*), respectively.

If X(8) = xq+ [ £()aW(s) + [¢ o(s)ds, where & is a nonanticipating trans-
formation and o is a nonanticipating vector (see (9] for the definitions), then

B(X(1)) = Bxg) + [£0" (X(5)) © € () aW(s)

+ f;ie'(X(s)) (o{s)) + % sp 6" (X(s)) o [£(s) x &(s)ds.

Proof. Let b be any element in B* and define f(x) = (A(x), b). Then ['(x) =
0'(x)*b and ["(x) € B(B, B*) is given by (/"(x)u, v) = (6"(x)u, v), b), u, v € B.
Here the star indicates the adjoint operator with respect to H, i.e. 6'(x)* means
(0'(x)|)*, where 6'(x)|,: H— H. Note that by the assumption on 6 it follows
that /'(x) € B* and /"(x) € B(B, B*) for all x. Thus we can apply Theorem 4.2 of
[9] to get
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JXW) = [(xg) + [ (EXS) (X(s)), aW(s)

) t [ "
+ [L (X(D), o)) + % trace EX(s) " (X(DE ()l ds.
But
[LE* @) X, dwis) = [[(E*(s) 08" (X(s)*b, dW(s))
(8
= (f10" ) £ @ames), 8),

[/, o) ds = [ (0" (X(s) *b, ols)) ds

©)

- [£ 0" (XN (ole)), b) ds - ( [Lo'x(sN(ts ds, b>.

Now, consider the operator &¥(s)f "(X(s))¢(s) from H into itself. Let u, v be in
H. Then

(EXS"XNESIa, v) = (["(XNE S, €(s)v)
= (PXE (), E(sI) = (0" (X() (€ (S, E(s)0), b)
= (0"(X(s)) o [£(5) x £ (w, v), &) = B,(u, v),
where ® = 6"(X(s)) © [£(s) x &(s)],

Note that by the assumption on 6 and (ii), (iii) of Proposition II.2 it follows
that @ € O(H). Therefore,

trace £ *(s)f"(X(s))€(s) = trace D, = (sp @, b)

= (sp 0"(X(s)) o [£(s) x £(s)], b).
Putting (8), (9) and (10) into (7), we get

OXW), 1) = Oxo), 8) + ( L0°(X() o £(s)aw(s), 5)
+{ [0 XN o) + % sp 0(X()) © [€(s)x Els)ds, B,

(10)

for all b € B*. Note that {x, y) = (x, y), whenever x € B* and y € H. Then the
formula of the theorem folows easily. Q.E.D.

IIL. Construction of diffusions on a Riemann-Wiener manifold. Let (@, 7, g)
be a connected, separable Ck-Riemann-Wiener manifold (k > 3). Suppose for each
chart (U, @) in & we are given two maps A¢ and o from #U) C B into
B(B, B) and H, respectively, such that A¢(x) -1 € %(B, B*) and A¢(x) is non-
singular for all x € ¢(U).

Let K be a continuous linear operator from B into B*. Then the restriction
KlH of K to H is a continuous linear operator from H into itself. Let (KlH)* be
the adjoint operator of K|,. It is easy to check that [[(K|,)*|lgx < I|KﬂB’B*I|bH
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for all » in H. Therefore/_@e exists a unique continuous extension (/K\l;)* of
(Kl )* to B. Obviously (K|,)*(B) C B*. In fact it can be checked that
||(K|H)*||B B* = ||K||B B* Suppose T is a continuous linear operator of B such
that (T - 1)(B) C B*. Then we define T*=1+ (T y)*. Clearly T*— 1 €
R(B, B*).

Definition III.1. By diffusion coefficients in { we mean a pair (Aqs, 005) for
each chart (U, ¢) of the above maps satisfying the transformation rules: If (U, ¢)
and (V, ) are two charts with U NV £ O then

A¢(§)A¢(§) *=0 I(")A¢(")A¢(X)*6 "(x)*,
Ow('f) =0'(x) (aq,)(x)) + Y% sp0”x) o [A¢(x) x Aé(x)],

where 0= o¢~! and % = 6(x).

Remark 1. By assumption 6'(x) — I € B(B, B*) and 8"(x) € B(B, B; B*). Thus
0'(x)A 4 (x)A 4 (x)*6'(x)* — I € B(B, B*) which is consistent with A ,(¥)A (R~
B(B, B*). Moreover, §'(x) o [A (x)x A (x)] e S(H) by (ii) and (iii) of Proposition
II.2. Thus sp 8"(x) o [A (x) x A (x)] € H Note also that 6'(x)(H) C H, so
o' (x)(o¢(x)) € H forall x € q.’>(U nv).

Remark 2. For each x € ¢ (U N V) there exists a bounded linear operator
S (x) of B such that S, (x)-1¢€ B(B, B*) and S &)y is a unitary operator of
H and 4 ,(x) = 0'(x) oA (X) ©S4(x). To see this sxmply put Su(x) =4 ()" 1o

0'(x)~1o A¢,(x) and use the transformation rule.

(11

Remark 3. From now on we will drop the indices in charts in case there is no
confusion, for instance, when we are considering the chart (U, ¢) and x € ¢(U)
then A(x) and S(x) mean Aqs(x) and S, (X), respectively. Similarly, if (V, ) is
another chart such that UNV £ @ and ¥ € Yy(U N V) then A(X) means A &)

Recall that in the Riemann-Wiener manifold 0 we have the Riemannian struc-
ture g. For each x in (0, g(x) is a positive definite symmetric bilinear form of
H. Thus the corresponding operator g(x) of g(x) (i.e. (g(x)h, k) = g(x)(h, k) for
b, k € H) is a selfadjoint positive definite operator of H. Hence the inverse
g2(x)~1 of g(x) is also selfadjoint and positive definite. Let g(x)~" denote the
selfadjoint positive definite square root of g(x)~1. It follows from the assumption
on g (namely, RW-3, p. 69 of [8]) that g(x) is of the form I, + K(x), where K(x) €
EB(HO’ B*). Here we have used I, temporarily to indicate the identity map of H
for the sake of emphasis. H  denotes the normed linear space (H, | -|). It is easy
to check that g(x)~" — I € %(H B*). Let (&(x)=% - 1,)" be the extension of
gx)~% - I, to B. Thus (g(X) 4 -1 ) € B(B, B*). We w1ll use the same notation
glx)~ % to denote Ig + (§(x)_% - IH)N because there is no confusion. Therefore
g(x)~% € B(B, B) and 3(x)~% - I € B(B, B*).

On the other hand, Proposition II.2 tells us that T'x) o o [glx)~* X g(x)~ "] €
S(H) because T(x) € B(B, B; B*) and g(x)~" € B(B, B). Hence sp T'(x) o
[g(x)~% x gx)~ %] € H. Now we are ready to show the following
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Proposition IIL. 1. A(x) = g(x)~% and o(x) = - % sp I'(x) o [g(x)~* x g(x)~*]
are diffusion coefficients.
Proof. We need only to show that A and o satisfy the transformation rule (11).

Let X = 6(x), where x = ¢(p) and X = Ys(p) are two charts in & with nonempty
common domain. By definition (g(x)u, v) = g(p)(d)'; u, qS;p v) and (g(x) u, v) =
g(p)(l,ll"l u, lﬁ v) for all u, v € H. It follows that (g(*)0'(x)u, 6'(x)) =
(g(x)u, v) for all u, v € H. Therefore

(12) X)) = (0'(x)") " 1g(x)0 ' (x)~ 1.

(12) implies that g(x)~! = 0'(x)g(x)~16'(x)*, which is the first of the transformation
rules (11).

On the other hand, it follows from (12) by a simple computation that, for all
u, v, w € B,

g' @)y v, w)=g' )@ (x)"'u, 6'(x)"1v, 6'(x)"1w)
13) — (0" (0" ()", 6'(x)"10), B®)w)
(0" () (O () Y, 0" ()~ 1), GE).
Recall that the Christoffel function F is defined as follows: For all u, v € B,
T () =4 2@ U @ v, V4 g' @D, - 0) = g’ @, u )
In particular, for all « € B,
14) TE @ =%z Mg @ u, Vi g @ - 0)-g' @, 0
If (12) and (13) are put into (14), an easy computation shows that, for all b € H,
I'®) o [5@)~% x &)~ %15, b)
20" (x) o Tx) o [5)~% x g(x)~ %1 o [S(x) x S(x)] (&, b)
~ 0" (x) o [8(x)~ % x 36~ ] o [S(x) x S(x)1 (B, b),

where §(x) is given by (%)~ " = 6'(x)g(x)~¥S(x) as in Remark 2 following Defini-
tion IIL 1. Note that the three bilinear maps from H x H into H in the above equal-
ity are all symmetric. Therefore,

') o [EE) % x &)~ = 6'(x) o T'x) o [8(x) =% x g(x) = %] o [S(x) x S(x)]
- 0'(x) © [g(x) =% x g(x) =] o [S(x) x S(x)].

Taking sp on both sides and noting that
% sp 6" (x) o T'(x) o [5(x)~% x B(x)" %] 0 [5(x) x 5(x)]
= 6" (x) (% sp T'(x) o [g(x)~% x gx)~%1 o [5(x) x S()])
= 0" (x) 04 sp T'x) © [F(x)~% x 3(x)~*%])

since S(x) is unitary (see (i) of Proposition II.2), we end up with
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o(®) = 0’ (x) (olx)) + ¥ sp 8" (x) o [g(x)" x g(x)~ %] o [S(x) x S(x)]
=0' (x)(ox)) + % sp 0°(x) o [g(x)~ " x g(x)~*]

which is the second of the transformation rules (11). Q.E.D.

Definition III.2. Diffusion coefficients (A, o) are locally Lipschitzian if for
each point p in & there exist a chart (U, ¢) at p and a constant alp) depending
only on p such that, for all x and y in (U),

4G - AW, < alp)llx — v,
o) - oly)] < ap)x - y]I.

Remark. |- |l2 denotes the Hilbert-Schmidt norm. Note that A(x) -1 €
B(B, B¥) CB (H, H) C B(H, H) for all x € (V). Thus Alx) - Ay) € B(H, H) for
all x and y in @(U).

Let {A, o) be fixed locally Lipschitzian diffusion coefficients. We will solve
the stochastic differential equation dX(t, w) = A(X(z, @) dW(¢, ©) + o(X(t, w))dt
to get a diffusion X(¢) in the manifold @ with infinitesimal generator arising from
(4, o).

(A) Local diffusions. We use p to denote a generic point of 0. Let (),
#,) denote a chart at p such that ¢, (V(p)) C B is an open ball around ® (p)0)
and the pair (A, o) is Lipschitzian in ¢~(p )(V(p)). This can always be done by
choosing a smaller neighborhood at p, if necessary. Let W(p) denote the open
neighborhood of p such that ¢ (W(p)) is an open ball around ¢, )(p) with radius
half of that of ¢, ,(V(p)). Recall that U(p) denotes an open neighborhood at p
where exp,, the exponential map at p, is a ck- 2-d1ﬂ’eomorphxsm (k > 3). This no-
tation will be used throughout the rest of this paper.

Let Alx) be a Cl-function from B into [0, 1] such that

Mx) =1 if eqS(p)(W(p)),
Mx)=0 if x ¢¢(p)(v(p)),

A" ()l ge <1 for all x € B.
Define

A6 = 1 MDA = D). 56 = Ax)olx).

Then A and 0 are globally defined in B and A=A, 5=0on b )(W(p)) More-
over, A and o satisfy the hypothe51s of Theorem 5.1 in [9]. Note that instead of
defining Al) = M(x)A(x), we define A(x) as above in order to meet the assumption

of Theorem 5.1 in [9]. Therefore by its conclusion the stochastic integral equation
(1s) XW = xo + fLAXNAWE) + [15(X(s)) ds

has a unique continuous solution, where x, € ¢(p)(W(p)).
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Let p be the exit time of X(¢) from b, )(W(p)). Then the local diffusion
X ,(£) = X(t A p) begins afresh at Brownian stopping times (see [10] for the mean-
ing) and does not depend on the mode of extension of A and o.

(B) Global diffusion. Obviously {W(p); p € W} is a covering on 0. Let d,
denote the metric in O induced by the Wiener structure 7. Then ({0, dr) is a metric
space. We assume that (I, dr) is connected and separable. Therefore there exist
a countable number of points fpk; k=1,2,---} such that {W(pk); k=1,2,...}
is a covering of ® and W(pk) n (Uf:i W(pj)) # O for all k£ > 2. For the sake of
simplicity, let W, =W(p,) and ¢, = q’)(pk), k>1.

We will define a path X on W, U W, in the following three steps:

Step (1). Suppose X(0) = by €W,. Let X, be the local diffusion in q.’)l(Wl)
starting at ¢>1(p0) constructed in (A) by using the standard Wiener process W(¢)
in (15). Let Py be the exit time of Xl from ¢1(W1). Define

X0 = 71X, (),  t<p,.

Now, if (i) p; = e or (ii) p; < and X(p,) € d(W, U W,) then we put py=
p3 =eee= (),

Step (2). Suppose p, < e and X(pl) € Wg, the interior of W,. Take the Wiener
process W(t + pl) - W(pl) in (15) and let X, be the corresponding local diffusion
in ¢,(W)) starting at ¢,(X(p,)). Let p, be the exit time of X, from ¢,(W,).
Define

x(t)=¢;1(xz(t—pl)), pL<t<py+p,

If (i) py = or (ii) p, <= and X(p, +p,) € AW, U W,), then we put P3=p,
R

Step (3). Suppose p, < oo and 35(pl + p2) € W(l). Take the Wiener process
Wit + pz) - W(pz) in (15) and let X3 be the corresponding local diffusion in
¢,(W,) starting at ¢,(X(p, + p,)). Let p, be the exit time of X, from ¢ ,(W)).
Define

X(t)=¢1—l(x3(t‘P1_P2))a PL+ Py StSpp+py+pse

Repeating the previous procedure, we end up with a process X in W, uw,

(X}

defined up to the ‘“‘explosion time’’ p = py+py+---. Using Ito’s formula of the

second type and the transformation rule of (A4, 0), we can show easily the following

Lemma III.1. Let (U, ¢) be a chart with U C W, U W,. Suppose { is a stop-
ping time such that { < p and X({) € U. Let p, be the exit time of X4 =
X(t + ) from U. Then, for t < Pos
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X(1) = g(EHD) = X(O) + [LAXENAWES) + [ olX(s)ds,

where W(s) is a Wiener process.

Remark. The only trick in showing this lemma is the following: Let & be a
nonanticipating transformation (see [9]) such that &|,: H — H is unitary. Then
[t &(s, @) dW(s, ) is also a Wiener process. We sketch the proof as follows.
First observe that a process X(¢) in B is a Wiener process if and only if |AdX()|2
= [|All24t for all Hilbert-Schmide operators A of H. Let X(¢) = [§ &(s, w)dW(s, w),
where W is a Wiener process, then |AdX(s)|% = |AE()dW()|2 = ||Af(t)ﬂgdt by
Lemma 3.2 of [9]. But [|A£()] 2 = [(AEONAE ¥ | = |AEDE()*A*|| | = laa*|,
= [|A[|3, since £(¢) is unitary. Therefore, |AdX()|? = ||A||§dt for all Hilbert-
Schmidt operators A of H.

We now need an a priori bound. The bound in the following lemma is weaker
than that in [10, p. 93]. However, it is easier to prove and is enough for our later
discussion. Let A and o be given by Theorem 5.1 of [9] and [|A(x) - I||, < K,
lo(¥)| < K for all x in B.

Lemma II1.2. Suppose X(t) is the solution of the stochastic integral equation

X(@ = xq + (A W) + [ oX(s))ds.

Let p be the exit time of X(1) from {x € B; ||x - x|l <}, r> 0. Then Probip < ¢

= ole) as € — 0. In fact Problp < ¢ < constant x €2 for small €> 0, where the con-
stant does not depend on .

Proof. Obviously
Prob{ < e} = Prob su X(t) -x > .
pP= {0<t£€" 0"_’

Thus our assertion is
Prob { sup [[X(£) - x| > r} =ole) as ¢ — 0.
0<¢t<e
Without loss of generality, we may assume %, = 0. By our assumption, the function
7(x) = %2 is C% It is easy to see that |7’ Ngs =2llxll, lIp" (=) - 7MWl g« <
2||x — y|| and ”77”(")"3,3* < 2. For the sake of easy reading, we let X_= X(s)
and W_= W(s) in the following proof.
Apply Ito’s formula of the first type to 7 to obtain
X) = [ (@ X n'(x), aw )
(16)

+ [ (), 0(X ) + % trace [A%(X )X JA(X )]}ds.
But
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U;(q'(xs), olX )} ds

< f :)11;'(xs)| lo{(x )| ds

< KB [olln' X )l ju ds = 2KB [ X, |1 ds

<2KB[ X llds i t<e

and
U-; trace A*(Xs)q"(Xs)A(Xs)ds

< Jl g, gl XN Ay s

< fe2+ k2 [y p,(dy)ds

< 261 + K)? fB lyll? p,(dy), t<e
since

”A*(")“H' H= ”A(x)”H' H
<1+ AW - I"H, <1+ flAlx) - 1"2 <1+K,

and

Il < flyI2 0@ I, e forall x € B.

Let €> 0 be so small that (1 + K)? [ llyll2p (dy) < 7%/2. Then from (16) we
have, for t <e,

2
1,112 < U;(A*(xs)q’(xs), aw )| + ZKBIZHXSH ds + =

or

r

2
%02 - 5 < lf;(A*(Xs)n'(Xs), aw )

€
+ 2K [ 11X | ds.

Hence

Ptob{ sup [|X,|| > r} = Prob{ sup "X,HZ > rz}
0<s<e 0<t<e
17) < Prob{ sup

i 2
x 1 € ’
0<t<e ) A X ' (X ), “’WS){ + ZKﬁfoﬂxs“ ds > ?)

2 2
< Prob{ sup f;(A*(Xs)q'(XS), dWs)’ > %} + Prob ZK/SIZ XNl ds > %}

0<t<e

Now, apply (3) and (4) of [9, Theorem 3.2} to get the estimate of the first term
in the last inequality:
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72
2'2'}
< lr—f &[{ feaxtx ' x)), dws)} 2]

6 ,
- :4 &€ 1ax(x ' (x )| 2ds

Prob { sup

s m'x ), aw)
0<t<e

(18)

16 252 € 4 2
< W KB [l )20 ds
64
- r_4(1 + K)2B2 &fg IX |2 ds = clé;f;uxsu? ds.

On the other hand, apply CebySev’s inequality to the last term of (17) to get

Prob {21<,3f§||xs|| ds > %} < 64Iiz/32 5[{f§|lxsll ds}z]

64 K*B%e € 2
< == B fLIx 7 as

r

64K2B2 € 2
< ==k é;_[onxsn ds, €<1, say,

r

=, & [C)x, )2ds.

(19)

Putting (18) and (19) into (17), we get immediately
(20) Prob{ sup [|X,|| > r} < c&f‘ ||xs"2 ds
0<t<e 0

where ¢ = €, +c,.

Finally, we consider the given stochastic integral equation
S S S S
Xo = [oAX AW, + [*o(X )du =W+ Jolax,) - naw, + fo(x,)du.

It can be checked easily that
(21) E(Ix 1) < as,

where a is a constant depending only on K, 8 and the quantity [g lly“zpl(dy).
Evidently we finish the proof by putting (21) into (20). Q.E.D.
Let us return to the process X(¢) in W, v W, defined up to the ‘‘explosion
time”’ p.

Lemma IIL.3. If p < o then X(p -) exists and belongs to AW, uw,).

Proof. Let D, =oW, - 6(Wl U Wz) and D,=dW, - a(WlU Wz).
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Let {, < {, <{, <---<p be the successive hitting time of Dy, Dy, D}, D,---.
Let D(l") and D;") be two increasing sequences of Borel sets converging to D
and D, respectively such that d(D(") D(n)) ") 0 as n— «. Let E  be
the event {{,. | € D{®) and ¢y € D(") for all j =1, 2,---}. To finish the proof
it is sufficient to show that Prob(En) =0 forall n> 1,

Now by Lemma III.2, Prob{éj - Cj—l < 1/j) éj_l < oo} < constant x 1/j2. If
Prob(E_) > 0 for some 7 then on the even E_ we have p > tail of 2;‘;1 1/j=o
by an application of the first Borel-Cantelli lemma. But this contradicts the as-
sumption p < oo, Therefore Prob(En) =0 forall n>1. Q.E.D.

Let X,(¢), < p,, be the process in W, U W, constructed before. Let X 5(2)
be the local diffusion in ¢,(W,). Using X, and X, in place of X, QS‘I(X ) and
X,, we can construct a process X3(t), t<pypin W UW, U W, in the same
manner. The process X3 has the same properties as those in Lemma III.1 and
Lemma III.3 for xzz namely, x3 is defined up to p;, it is compatible with local
diffusions on charts of W, U W, U W, and }:3(173 -) e a(WI uW,u W3) if py <oo.
Inductively, for each n we can construct a process % (t) defined up to time p_,
in Ul -1 W with the same properties in Lemma III.1 and Lemma IIL 3.

Fmally we define a process X(t) in [0) up to explosion time p = hmk woPp bY
X(¢) = xn(t), t<p,. Note that p, <p, <...<p, X(t) is unambiguously defined
since, for each &> 1, xk—l(t) = xk(t) up to ¢t < p, . It can be checked easily
that X(t) begins afresh at its stopping times. Moreover, X(t) solves the stochas-
tic differential equation dX(¢, w) = A(X(t, ) dW(t, ©) + 0 (X(t, w))dt in the sense
of the following

Theorem I.1. Let (U, ) be a chart in O. Suppose { is a stopping time of
X such that { < p and X({) € U. Let p, be the exit time of X(0) = Xt + &) from
U. Then, fort < P o

X(2) = (X)) = X(0) + f ;A(X(s))dw(s) + f; o(X(s)) ds,

where W(s) is a Wiener process.
(C) The infinitesimal generator.

Theorem I11.2. Let { be a bounded function of class C? on B©. Let X (t)
denote the process constructed above starting at p. Then

(‘5[/(3€p(t))] -/
(22) lim = % trace A*(x){3(x)A(x) + (o(x), (),

tlo t

where & is the expectation with respect to the standard Wiener process (cf. [9]),

x = ¢(p), /¢ =fo¢~ ! and ¢ is a chart at .
Remark. The right-hand side of (22) is independent of the chart ¢. This can
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be seen easily by using the transformation rule of (A, o). This differential opera-
tor with (4, o) given by Proposition IIl.1 will be called the Beltrami-Laplace
operator of 0. It coincides with the usual one if ® is a finite dimensional Rieman-
nian manifold and with the Laplacian introduced by Gross [5] if 0 is B.

Proof. Let (U, ¢) be a chart at p such that ¢(U) is an open ball around
#(p). Let p, be the exit time of xp(t) from U. Then

B/ (X, (0 = B/ (1,0 - 1,0, 1+ BY G, 0) - 1, ]

BRI
Py<t

where lE indicates the characteristic function of the event E.
But 6[/(xp(t)) 1p0<t 1<, Probip < t} = o(t) by Lemma IIL.2. Therefore

&lf (X - &l (X, () - - /(p)
23) . [/ X, (N - /() i UG- 1,0, f(p.
tlo t t10 t

Now by Theorem IIL.1 on the event ¢ < p the process X(t) = qS(xp(t)) satis-
fies the equation

X0 = $p) + [ AKX dWs) + fox(Nds.
Apply Ito’s formula of the first kind to /4):

1o X = [5(B(p)) = [ (AXX() 4 (X()), dW(s))
+ [HIHX($)), olX(D)

+ % trace A*(X(s))f 3 (X(s)A(X(s))}ds.

Taking expectation on both sides and using (4) of [9, Theorem 3.2], we obtain immediately that

Elf (XN -710) | _ _,
t - t_& f 0{( 15(X(5)), o(X(s))

(24) + ¥ trace A*(X())/5(X(s)A(X(s))}ds
— Y trace A*(x)/('{')(x)A(x) + {olx), f<;5(x» as t — 0,

where x = ¢(p). The theorem follows by combining (23) and (24). Q.E.D.

IV. Brownian motion on a Riemann-Wiener manifold. From now on ) will denote
a connected and separable C*-Riemann-Wiener manifold (& >3). Let (Ag, o) be
defined in by Ag(x) = g(x)~%, og(x) =-Ysp F‘(X) o [gx)=% g(x)~ "], By
Proposition III.1, (Ag, og) are diffusion coefficients. Moreover, (Ag, ag) are locally
Lipschitzian because they are Fréchet differentiable. To see this simply recall
that [8, Definition II.4] and the definition of 1° imply that A (.) -1 and I'(.)o
g() % x ﬁ)'%] are Frécher differentiable maps into (B, B*) and B(B, B; B*), respec-
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tively. The following lemma concludes that o, is differentiable.

Lemma IV.1. If ® is a Fréchet differentiable transformation from an open sub-
set U of B into the Banach space B(B, B; B*), then sp ® is also Fréchet differ-
entiable from U into H. Moreover, (sp ®)' (x)u = spl®' (x)u] for x € U and u € B.

Proof. Simply note that @' (x)u € B(B, B; B*) forall x € U and « € B. Q.E.D,

Let B(¢) denote the process constructed in the previous section corresponding
to the locally Lipschitzian diffusion coefficients (A e C ) We will call B(¢s) a
Brownian motion in U. Note that B(¢) is completely determmed by the Riemannian
structure g. For each point p € O, B (t) denotes the motion B(¢) starting at p.
Let 3,(p,-) denote the transition probabxlmes of B(2), i.e. B,(p, E) = Prob{% (8) € E}.
We will study the spatial homogeneity of B(s) and the relation between 8, (p,
and the local measures g (p,-) defined in [8].

® has a metric d, induced by its Wiener structure 7. Thus we can define isom-
etries with respect to @, in the usual way. However, the group of d -isometries
is not the one with respect to which B(¢) is spatially homogeneous. On the other
hand, ® has an almost-metric a'g (in the sense that two points in @ may have in-
finite distance) induced by its Riemannian structure g. For a more detailed dis-
cussion of d_ we refer the reader to [8]. We will define d g-isometries and show
that B(¢) is spatially homogeneous with respect to the group of d -1sometr1es

Definition IV.1. A surjective map | from O into itself is saxd to be d_-isomet-
ric if it is at least C2-diffeomorphic with respect to 7 and d (]x, Jy)=4d (x, y) for
all x and y in ®.

Remark. We review briefly some material from [8). For each point x in [,
(R_, T () is an abstract Wiener space with inner product g(x) for R, and norm
(%) for Tx(w). Let |- |, denote the norm of R, corresponding to g(x). Moreover,
for each point x in © there exists a C®-Riemannian manifold (R(x), g) containing
% such that Ty(R(x)) =R forall y ¢ R(x). If J isad g-isometry, then y € R(x)
if and only if J(y) € R(J(x)) because d (]x Jy) < oo if and only if d (x, y) < oo,

Proposition IV.1. Suppose | is a Cl-diffeomorphism (j >2) from ® onto itself
with respect to 1. Then | is a dg-isometry if and only if, for each x € 0, J ()R

C Rj(x) and ]'(x) is a unitary operator from R into R](x y

Proof of sufficiency. Note first that J'GXR ) =R (x) because J'(x) is a uni-
tary operator. Furthermore, J' (x)(T @ nRS) = Ty )( ) N R .y because J'(x)

is nonsingular, where c¢ denotes complement It follows easily that

(25) @l )= lul, forall weT (D).

Recall that we used the convention |u| = if u € Tx(m) N RS in [8] in defining
the almost-metric dg.

Let x and y be any two points in 0. Let 7 be a piecewise differentiable curve
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connecting x and y, i.e. {0} = x, {1)=y. The L g-length of 7 is defined in [8] by
L ()= sl (0], (,y4t. It follows from (25) that L g oD =L (). Thus d (x,y) =
mf L (r) = inf L (] ory>d (]x, Iy) Conversely, d (]x, ]y) >d (x, y) because
] is onto Hence d (]x, ]y) d (x, y) for all x and y in &.

Proof of necessny Let u € Tx((l/) and let r be any piecewise differentiable
curve in O such that 7(0) = x and 7'(0) = u. Then lul = lim, |, (l/t)dg(x, ).
On the other hand, the curve ] 7 is such that J ©#0) = J(x), (J ©7)'(0) = J' (x)u.
Thus |J’ (")“‘](x)— lxmllo(l/t)d (J(x), J o H2)). But by assumption d (](x) J ors)
=d (x, 7). Therefore, |]' (x)ulj(x)-— hm,lo(l/t)d (x, A2)) = [uf,. Hence if ueR,
then |u| < and |J’ (x)ulj( y < o hence J' (x)u €R; ) Thus 7 (x)(Rx)CR](x)
and ] (x) is an isometry. It can be checked easily that ]' ()R, =R, by the
assumption that J'(x) is nonsingular from Tx(m) into T,,_ (D). Therefore, J'(x)
Jxy QED.

Remark. In [8, $1l.e]l we show that if r is a curve in O such that 7(0) = x
and 7 (0)=u € R, then (t) € R(x) for small t. Thus |ul, < oo if and only if
dg(x, 7()) < e for small . On the contrary, u € RT N Tx(m) if and only if (¢) €
R(x)°. Thus |u| =oo iff d (x, r(2)) = o for small 1.

J(x)
is a unitary operator from R_ into R

Proposition IV.2. Suppose | isad g-isometry of O Let (U, @) and (v, ¢)
be two charts of W such that J is C2. a'z//eomorpbzc from U onto V. Let ]¢ G
YJp~L. Then for all x € $(U)C B we have

gy ¢,x)'1 = ](;, ¢(x)§(x)_ 1](;’ L%
ag(]¢, ¢,x) = ]q,b, ¥ (x) (ag(x)) +Y% sp ];’ lll(x)o [Ae(x) % Ag(")]-

Remark. For every x in ¢(U), ]C'l'),w(x) o [Ag(x) x Ag(x)] is a spur operator of
H. This will be shown in the proof.

Proof. It follows from Proposition IV.1 that, for each y € U, (u, v) =
('O, '(y)u) ) holds for all u, v € R,. This is equivalent to saying that, for each x
€ ¢(U), (g(x)b k) = (U, v g, lb(x)b J . Jx)k) holds for all b, k € H. There-

fore we have
(26) Blx) = Jg g 0g(Uy 2oy (x).

This implies that §(]¢ ‘/lx)“ = ]¢ lb(x)g(x) 1]¢ Jx)* for all x in @(U). Note
that (26) is similar to (12) in Proposition III.1. Thus by the same computation and
argument we can obtain easily that

Uy y®) (80 0% x a1y 0%
- ];5' ) (x) o T(x) [B(x)~% x g(x)="%] o [S(x) x S(x)]
== Jg 4 () o [Bx)"" x gx) "] o [5(x) x S(x)],
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where S(x) is given by Ag(]qb o) = ](; w(x)Ag(x)S(x) as in Remark 2 following
Definition III.1. But we know that the left-hand side of the above identity is a spur
operator. Therefore, ]é’, ¢,(x)° [g(x)="% x g(x)~%] is also a spur operator since
S(x) is a unitary operator of H and o (]¢> d}x) - ]¢ ¢(x)(o (x)) = Y% sp ]¢ lL,(x) o
[A (x) x A (x)] by taking - Y sp on both sides. Hence

ag(]¢, ¢,x) = ];5”[, (x) (og(x)) + Y% sp ];’5' ¢ (x) o [Ag(x) x Ag(x)]. Q.E.D.

Theorem IV.1 (Spatial homogeneity). Let B,(p,-) be the transition probabili-
ties of B(t). If | isad g-isometry of O then BJp, JE) = B,(p, E) for all t>0,
p € ® and all Borel subsets E of 0.

Proof. Let BJ(¢) = JB(). Let B (t) be the process B(¢) starting at p € Q.
Then %"(Z) = ]% (8) is a process startmg at J(p). Let (U, ¢) and (V, ¢) be
charts at p and ](p) respectively such that | is C? -diffeomorphic from U onto
V. Let ], ,=¢Jé~ ! as in Proposition IV.2. Let p, be the exit time of B,
from U. Then p is also the exit time of %J(t) from V. Let X(¢) = gb(% (t)) and
Y(e) = 1/1(?3](1)) Then Y(t) = ¢ jép~ 1(¢B (t)) =Jg, lb(x(l)) It follows from Theorem
III.1 that

X0 = XO) + f{A (XNaW) + [Lo (X(Nds, < p,.

Apply Ito’s formula of the second type to get
T,y X = [, (XO) + []4, (X(5)) 0 4 (X(s)) dW(s)
+ o4, KN @ (X0
+%sp Jg o (X(s)) o [Ag(X(S)) x A (X(s)} ds.

Now, we use Proposition IV.2 and obtain immediately that

YO = pU@) + [ A, XNS™HX() dW(s)

t
+ fo 0, (J 4 4 X(s)ds,
where S(x) is given in the proof of Proposition IV.2, i.e.

YO = gD + [ AN () + [1 o (v(s)ds,

where W' (s) = [6S~ UX(x))aW(x) is a Wiener process (cf. the remark below
Lemma III.1). On the other hand, (,bB I )(t) also satisfies the above stochastic
integral equation. Thus Y(¢) = lﬁ%](p )(t) by the uniqueness of solution. There-
fore, BJ (t) %] ® )(£). It follows that for any Borel subset E of U we have
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B,Jp. JE) = Prob{B | () € JE} = Prob{B)(2) € JE}

J(p)
= Prob{j%p(z) € JE} = Prob{B (1) € E} = B,(p, £).  Q.E.D.

In the rest of this paper we will compare results in this paper with those in
[8]. Recall that for each x in I there exists an open neighborhood U(x) of x
such that exp_: exp;1 (U(x)) C Tx(w) — U(x) is C!-diffeomorphic. A local measure
with parameter ¢ >0 at x is defined by ¢,(x, E) = pf")(O, exp; Y(E)), in which E
is a Borel subset of U(x) and pt(x) is Wiener measure in Tx(m). In $ 0 of the
introduction to [8] we remarked that the local measures {qt(x, )} are local first
order approximations to the transition probabilities of a Brownian motion. This
will be shown in the following theorem. We will also study the equivalence-perpen-

dicularity relation between them.

Theorem 1V.2. (i) Let x be any fixed point in ©. Then for any Borel subset
E of Ux),
ltllr(r)l tia |B¢("» E) - qt(x, E)| =0, where 0<a<y.
(i) Let x € @ and let U be a subdomain of a chart such that U D Ulx,).

If x isin U then B(x,.) and q (x,-), as measures in Ulx,), are equivalent if

and only if t =s and dg(x, xo) < oo, Otherwise they are mutually singular.

Remark. We conjecture that B,x,-) and B_(y,-) are equivalent if and only
if t=s and dg(x, y) < and that they are mutually singular otherwise.

Proof of (i). Let p be the exit time of %x(t) from U(x) and let 6,(x, E) =
Prob{B (1) € E, 1 < p}. Let E be any Borel subset of U(x); then 0 <B,x, E) -
Ot(x, E) < Probip < t} = o(¢) by Lemma II.2. Thus to show (i) it is sufficient to
prove that, for 0 < a< 1,

(27) iig)% 16,(x, E) - q,(x, E)| = 0.
\J

On the other hand, if @ > 0 then pl(" X0,{u € Tx(lﬁ); r(x) ) > a}) = o(t™) for
any integer n > 1 by Fernique’s theorem [3). This remark and Lemma IIL.2 show
that we need only prove (27) for E of the form E = {y € 0} d(x, y) < a} C Ulx),
where a > 0 is small.

Recall that U(x) is contained in a chart (U, ¢) at x. Let X(¢) = #(B (),
t <p. Then

X(1) = ¢(x) + f ;Ag(x(s))a’w(s)+ f ;og(X(s))ds.

Piech [11] constructs a fundamental solution irt(y, -} of the parabolic equation
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dult, y)/ 3t = Y% trace A:(y)uyy(t, y)Ag(y) + (ag(y), uy(t, y)).

It can be checked that
’1‘31‘a Ir,(@(x), BE)) - p,($lx), HEN) =
t
where 0 < a<)4 and p, is Wiener measure in B with parameter ¢ > 0. Moreover,
by using the same idea as in [13, Theorem 3] we can show that 7 (¢(x), #(E)) =

Gt(x, E). On the other hand, let rt(d’)(x,-) be defined, as in [8], by

(28) rﬁd’)(x, E)= Pt(O, ¢* % ° CXP;I(E))-
Then it can be checked easily that

1
lim= |¢q.(x, E) = *®Xx, E)| = 0
Lim -2 g, : I

Therefore we end up having to show that
(29) lim= | ($(x), $E - ¥, E)] = 0
tlo ! t

in order to finish the proof of the assertion (i). Let T = ¢ ° exp'1 ogp-lo
¢( y Where I, . is the translation by ¢(x), i.e. Lgx )(y) =y + ¢x), y € B.
Then it is easy tocheck that T satisfies the assumption of Proposition II.1 and
the conclusion there implies (29).
Proof of (ii). Let (U, ¢) be a chart with U given in (ii). Define r(‘t’)(xo,-)
by¢(28) Then we show in the proof of [8, Lemma III.3] that ¢ $xgs+) and
,( )(x

0" -), as Borel measures in U(x ) are equivalent, i.e.
(30) g, (g, )P, ) i Ulxy).

Let p be the exit time of B_(:) from U and let ¢ (x,-) be defined by 6 (x, D)
= Prob{B_(¢) € D, t < p} in Wthh D € Borel field of U(x o)- Then

€3)) B,lx, Y~ 0(x, ) in Ulxy)

as inthe finite dimensional case.

Let X(¢) = ¢(Bx(t)), t < p. Then X(t) satisfies the stochastic integral equa-
tion

X(2) = ¢lx) + f (A X(s) dW(s) + f L0 (X(s))ds.
The corresponding parabolic equation is

dult, y)/0t = 1 trace A*(y)u (t y)A (y)+ (0 (), u, (f y)).
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Let {Tt(y,- )} be the fundamental solution of the above equation constructed

by Piech [11] and note that A is nonsingular. It can be checked that “‘absolute-

ly continuous’’ in Theorem 1 of [12] can be replaced by ‘‘equivalent’’. Therefore,
r(y,-)% p(y,-) in B. On the other hand, 6, (x, D) = r ($(x), (D)) by the remark
in the proof of (i). Hence we have

(32) 0,(x, )~ p(lx), (N in Uley).

Finally, let T = ¢>* g ° exp;o1 ogp~lo l¢>(x)’ where 1¢>(x) is the translation
by ¢(x). If 4 (x x,) < oo then (x) - ¢p(x ) € H and it can be checked easily

that T is admxsszble Therefore, if d (x, x,) < oo, then p, (p(x), B()) ~

(¢)(x -) if and only if ¢ = s. Otherwxse they are mutually singular. If d (x xg)

= o0 then obviously p (#(x), ¢(-)) and r(‘b)(xo, ) are mutually singular for any
ty s > 0. The results in this paragraph and the relations (30)—(32) give our asser-
tion (ii). Q.E.D.
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