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THE STRUCTURE OF
PSEUDOCOMPLEMENTED DISTRIBUTIVE LATTICES.
III: INJECTIVE AND ABSOLUTE SUBRETRACTS

BY

G. GRATZER AND H. LAKSER(!)

ABSTRACT. Absolute subretracts are characterized in the classes 8,, n < w.
This is applied to describe the injectives in B; (due to R. Balbes and G. Gritzer)
and 3,.

1. Introduction. In Parts I and II ([4] and [6]) we have acquired a rather thor-
ough knowledge of the structure of pseudocomplemented distributive lattices. In
this paper we use this knowledge to extend the results of R.Balbes and G. Gritzer
[1] on injective Stone algebras to any %n. (Recall that .(Bl is the class of Stone
algebras; for the notation, see §2.) It turns out, however, that there are rather
few injectives in 93n. It appears that weak injectives and absolute subretracts are
more appropriate to investigate in general. In 531 they coincide with injectives.

Accordingly, our main result is a description of weak injectives as presented
in Theorem 1. An explicit construction (unique up to isomorphism) is given in
(c) of Theorem 1 (corresponding to Theorem 2 of [1]) and an internal description
in (d) of Theorem 1 (corresponding to Theorem 1 of [11).

It turns out that weak injectives are injectives in %1 and 532; thus our result
implies the results of [1], in fact, it yields a somewhat sharper form of Theorem 1
of [1]. A description of injectives in 932 is given in Theorem 3.

In §2 we introduce weak injectives, absolute subretracts, and investigate
their interrelationships with injectives. These observations are applied in §3,
where a series of lemmas are given leading up to Theorem 1. The applications
are given in $4 including a proof of a result of R. A. Day [2]. In the last section
we describe a first order property q)n shared by the weak injectives in 93" such

that any first order property of weak injectives follows from (Dn.

2. General algebraic preliminaries. We first recall some notations and results

of Part II [4]. The equational classes of pseudocomplemented distributive lattices
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are the trivial class %_ 1» the classes 93", n > 0, and the class gw. Each 93",
n > 0, is generated by the subdirectly irreducible pseudocomplemented distributive
lattice En, where B'2 is the n-atom Boolean lattice 2” and En is Bn with a new
unit element. We recall that all these equational classes satisfy the Congruence
Extension Property and that 93’1 satisfies the Amalgamation Property if and only
ifn=-1,0,1, 2, or w.

If X is any class of algebras an algebra C € K is said to be injective if,
given any algebras A, B€ K, A a subalgebra of B, and given a homomorphism
¢: A — C, there is a homomorphism ¢: B — C extending ¢. The class X bas
enough injectives if each algebra in K is a subalgebra of an algebra injective in
X. An algebra C € K is a weak injective if, given algebras A, B EK, A a sub-
algebra of B, and given a surjective (i.e. onto) homomorphism ¢: A — C, there
is a homomorphism ;: B — C extending ¢. An algebra C € X is an absolute
subretract if C is a retract of each of its extensions in X.

We present the various relations among these concepts. The class K will be

assumed to be an equational class. We first have a well-known lemma.

Lemma 1. If C is an injective in K, then C is a weak injective. If C is a

weak injective in K, then C is an absolute subretract.
As converses to Lemma 1, we have the following results.

Lemma 2. Let K satisfy the Congruence Extension Property. Then each
absolute subretract in X is a weak injective.

Proof. Let C be an absolute subretract in K, let A, B € K, A a subalgebra
of B, and let ¢: A — C be a homomorphism onto C. By the Congruence Exten-
sion Property there is an extension C' of C in K and a homomorphism ¢: B —C'
such that Y|A = ¢. Since C is an absolute subretract there is a retraction
p: C'—C. Thus yp is the required extension of ¢, proving the lemma.

Lemma 3. If K satisfies the Congruence Extension Property and the Amalga-
mation Property, then any absolute subretract in X is injective.

Proof. Let C be an absolute subretract in K. Let A, B € K and let a: A —
B be an embedding. Let ¢: A — C, let C| = Im ¢, and let B: C; — C be the
embedding. Let ¢,: A — C, be defined by ¢; that is, ¢, 8 = ¢. By the Congru-
ence Extension Property there is an algebra B, € K, an embedding y:C;— By,
and a homomorphism : B — B such that ayy = ¢,y (see Figure 1).

Since 3 and y are embeddings and X has the Amalgamation Property there
is an algebra D in K and embeddings A: B, — D, u: C — D such that yA = Bp.
Since C is an absolute subretract there is a homomorphism p: D — C such that
pp is the identity mapping on C. Let ¢ = YAp; then ad = é,B=¢. Thus C is
injective, concluding the proof of the lemma.



1972] PSEUDOCOMPLEMENTED DISTRIBUTIVE LATTICES. III 477

Y g .p
1
a % "
|
a % C, ¢
Figure 1

We now relate the concepts of absolute subretract and subdirect irreducibility.
If A, B are algebras, A a subalgebra of B, then B is said to be an essential
extension of A if, given any congruence @ on B such that @, = w, then @ =
wg- (0, denotes the restriction of @ to A. If A is any algebra, w4 denotes the
congruence: x = y(w,) if and only if x = y.) A maximal subdirectly irreducible
algebra is a subdirectly irreducible algebra every proper extension of which is

not subdirectly irreducible.

Lemma 4. Any maximal subdirectly irreducible algebra A in X is an abso-

lute subretract in K.

Proof. Let A be a subalgebra of B in K. By Zorn’s Lemma (see Lemma
3(b) of [4]) there is an essential extension B, of A and a surjective homomor-
phism ¢: B — B such that x¢p = x for all x € A. Since A is subdirectly irreduc-
ible and B is an essential extension of A it follows that B, is subdirectly irre-
ducible (see [2]). Thus, by the maximality of A, B, =A and so ¢ is a retraction
onto A. Thus we have shown that A is an absolute subretract.

It is well known that a retract of an injective algebra is itself injective. A
weaker result holds for weak injectives. Let (Al.|i € 1) be a family of algebras
and let ¢: A — II(A |7 € ) be an embedding of A as a subdirect product. If ¢
also embeds A as a retract of (A |i € I) we say that A is a subdirect retract
of the family (4 [ € ).

Lemma 5. A subdirect retract of a family of wedk injective algebras is itself
a weak injective algebra.

Proof. Let (C i € I) be a family of weak injectives and let y: C — I(C,|i €D)
be a representation of C as a sudirect retract; let p: II(C |i € 1) — C be the
retraction, that is, let yp = 1.

Let A, B be algebras, let a: A — B be an embedding, and let ¢: A — C be
a surjective homomorphism. If i €I and 7, is the projection of ﬂ(CiIi € I} onto
C,, then ym; is surjective. Thus ¢;: A — C, defined by ¢, = ¢ym; for each
i €1 is a surjection. Since each C; is a weak injective, there is a homomorphism

Y B — C, such that ay; = ¢, Consequently there is a homomorphism ¢: B —
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H(C,-li € I) such that Ym; = ¢, for each i €I; it follows that ay = ¢y. Thus if
é = Yp we find that a = ¢, showing that C is a weak injective.

3. Absolute subretracts in 93”. Let B be a Boolean algebra and let

B["+l].—_ {(xr), xl,...,xn) €B"+1|x0 _<_X1A‘~-Axn}-

B[Z] was introduced in [1], and Blr*1l s the obvious generalization of B[Zl. It
follows quite easily that B["ﬂ] is a pseudocomplemented distributive lattice and
that

(xo,xl,...,xn)*-_-(x'l/\.../\x;, x’l,...,x'n)_

It is also clear that B, = 2["”], that if B’ is a subalgebra of the Boolean
algebra B then (B')["“] is a subalgebra of ’B["ﬂ], and that if B = ﬂ(B,y|y e
(B, B,,, y € T, are Boolean algebras), then B["ﬂ] >~ H(B,E,"ﬂ]b/ €I; thus
B["”] € %n for any Boolean algebra B. In this section we show that the absolute
subretracts in 9371 are precisely the pseudocomplemented distributive lattices of

the form B' x B["“], where B and B’ are complete Boolean algebras.

Lemma 6. Any complete Boolean algebra is an injective pseudocomplemented
distributive lattice.

Proof. Let B be a complete Boolean algebra, let C be a pseudocomplemented
distributive lattice, and let A be a subalgebra (*-sublattice) of C. Let ¢: A —B
be a *homomorphism. Let [ be the restriction of ¢ to(2) S(A). Since S(A) is a
subalgebra of the Boolean algebra S(C) and since B is an injective Boolean
algebra, { lifts to a homomorphism of the Boolean algebras : S(C) — B. The
mapping E): C — B given by xg =(x**)f is a homomorphism that is the required

lifting of ¢. Thus B is an injective pseudocomplemented distributive lattice.

Lemma 7. Let B be a complete Boolean algebra. Then pln+1] is a weak

injective in B .
n

Proof. Since B is an injective Boolean algebra and since the equational
class of Boolean algebras is generated by the two-element Boolean algebra 2, it
follows that B is a subdirect retract of a family (B,yly € ') of Boolean algebras
all isomorphic to 2. We claim that consequently B”*!! is a subdirect retract of
the family (B,}"”]{y €. If ¢: B — B' is a homomorphism of Boolean algebras,
then ¢>["+ﬂ: B["+1 —v(B')[”+1 , given by (xo, cee, x) qS["”]: (P o X D),
is a *-homomorphism. If #: B — B, is onto then so is 77["“]: B["H‘ -
(By)["ﬂl; thus Bl7*11 i5 & sudirect product of (Bg’,’“lly eD). If p:
H(B,yb/ €I") — B is a retraction of Boolean algebras, then

(2)Recall that S(4) = {x**lx € A}, the skeleton of A, is a Boolean algebra.
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p["ﬂ]: (H(B,y|y el

is a retraction of pseudocomplemented distributive lattices; thus B[”“] is a sub-
direct retract of the family (B!:y"ﬂ”y €T). Since B,g,"“] o olnti] B, we con-

clude, by Lemmas 2, 4, 5, that B ntil is a weak injective in ,(Bn, proving the
lemma.

[n+1]
) gn((By)[nH]W el — gl

It follows from Lemmas 6 and 7 that if B and B' are complete Boolean

algebras, then B' x B["H]

is a weak injective (equivalently, by Lemmas 1 and
2, an absolute subretract) pseudocomplemented distributive lattice in B_. We now
characterize pseudocomplemented distributive lattices of the form B' x B["H], B,
B' Boolean. Let A be a pseudocomplemented distributive lattice. Recall that
the set of dense elements of A, D(A) ={x € A]x* = 0}, is a dual ideal of A. First

we present a result characterizing an.

Lemma 8. Let L be a pseudocomplemented distributive lattice. Then L € ,‘Bn
if and only if L bas the following property: let Xgpeee, %, €L satisfy x. A x;=
0 whenever i # j; then xy V «-+ V xr =1

Proof. K. B. Lee [7] gave an identity characterizing an, to wit

* * * * \¥
@A Aa )V @ Aay Ao Aa) VeV (a A Aa,  Aad) =1

Let xi/\x,.=0 ifi#j, i, 7j=0,---,n Then xigx; whenever i # j. Hence x
Sx’;/\---Ax:,xlgx’;*/\xZ /\o--/\x:,'--,anx;‘ /\x"z‘ A... /\x:*. Apply-
*

ing Lee’s identity with a,=x;, i=1,---,n, we conclude that

xzv...vx:lz(x‘l‘/\.../\ x:)*v(x’;*/\ .../\x:)*v...v(x;/\.../\ x:*)*=l.

Thus the required property holds in 93".

Now let L be a pseudocomplemented distributive lattice such that x, A x:=
0, i#j, 4, j=0,+, n, implies that x{ V...V xp=1 Leta,-++,a_ €L and
let x0=all\ oo /\an, xlza’; /\az/\.../\ a,e, % =a, A... A an—lA a:_
Then x, Ax,=0 if i#j. Thus xg V.--Vx» =1, that is, Lee’s identity holds
for a,---, @, Thus L € 5.))".

If L is alattice with 0,1 and x € L, a dual pseudocomplement of x, denoted

x7, is the obvious dual of a pseudocomplement; x V y = 1 if and only if y > x*.

Lemma 9. Let L be a pseudocomplemented distributive lattice and let n > 1.
The following two conditions are equivalent:
(a) There are Boolean algebras B and B' such that L = B' x pl=*1],
(b) L bhas the following five properties:
() LeB ;
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(ii) D(L) has a smallest element d,

(ii1) d bas a dual pseudocomplement which is central (complemented)
in L;

(iv) there are elements e, .-, e, €L such that e; A e = 0if i4],
eiVe;‘=d for all i, and e’; A... /\e:=0;
(v) given U000, u, €D(L) there is an x € L such that (x A ei)* Vd
=u; fori=1,++-,m

Proof. Let L = B' x BI"*1) Then L € 53". The smallest dense element in L

isd=(1, (0,1,---1)) and d*= (0, (1, 1,--+, 1)) whose complement in L is
(1, (0, 0,~.-,0)). Foreach i=1,---, n, let e;=(a,,(0, @+, a,)) where
a;=0if i#janda__1. Then (iv) of (b) holds. To establish (v) note that

D)= {1, (x 1,---, 1)) €B'xBl7*1]},

Let u,= (1, (x;, 1,-++,1)) , i=1,+++, n. Then x = (0, 0, x},--+, x')).
Now let (b) hold. We show that L =~ B’ x B["+1] where B'2 (d*1] (4**
exists, and equals d+*, because d7 is central) and B 2 D(L).
We first show that (d**] is a Boolean lattice; we claim, for each x € L, that
x* A d** is the complement in (d**] of x A d**. Clearly (x Ad*") A (x* A d*)
=x Ax*Ad* = 0. Now (x Ad*H)V (x* A d*) = (x Vx*) Ad""; since x v x*
€ D(L), x Vx*>d>d*" and consequently (x Ad**) v (x* A ¢*") = d**, estab-
lishing our claim.
That D(L) is Boolean will emerge during our proof of the representation.
For each i =1,..., n, define /i: L — D(L) by requiring that xf, =
(x* A e)* V d. The [, will correspond to the projections B' x Bl»*1) _, B, we

claim that each /i is a homomorphism. First note that, for all x, y € L,

(x A }')* = (x** A )’)* - (x**/\y**)*-
Indeed
(x A )’)* - (x A y)*** - (x** A )’**)*,
Ay <x* Ay <xFA Y
thus
(x/\y)* > (x**A )’)* > (x** A }’**)*,

establishing the triple equality.
We can now show that [, preserves A . Recall that U denotes the join opera-
tion in S(L), that is, a U b = (a* A b*)*. Now if x, y € L then



1972] PSEUDOCOMPLEMENTED DISTRIBUTIVE LATTICES. III 481

(xAy),=(xA YAeVd=((xAy)ANei")Vd
=((xAY)*ueVd=((x"*A y*™)ue})vd

=(("*uedAGueNVd= (" ue) VAN uel) v d)

=((FAe) VAN G *Ae)' V) =xf Ay,
Clearly f, preserves 0 and 1 (the **0’’ of D(L) is d), since e:.‘ <d. Before
showing that /i preserves V we observe that x/; and x*/i are complementary for
each x € L. Indeed

;A= 0f;=d

and

f V= "A e )V (A e ) Vvd

>ETAe)' VA e velvavel Vel Veeeve =1,

by (iv) of (b) and (the last equality) by Lemma 8. Since, by (v) of (b), /i is onto
(recall (x A ei)* =(x**A e)*) we conclude that D(L) is Boolean; denote the
complement of z in D(L) by u'.

We now show that [, preserves V. Note that xf, = x**[l. since x*j'i = (x/i)'.
Thus (x Vy)[,=(x V) f, = * A y*) [, = (" Ay ) =Ny ) =

((x/i)l A (}’/i)')’ = x/i V)’/i-
Now let B' = (dH] and let B = D(L). We show that L & B' x B["“]. Define

¢: L — B’ x pln+1] by setting
xp=(xAd™, (xVd, 5,0, 5 ).

Note that (x V.d, xf, -+, x[ ) € Bln*1) gince x v d<x** V d<xf,. Since the
{; are lattice homomorphisms so is ¢. Also, 0 = (0, (4, d,---,d)) and 1¢ =
(d++, (1, 1,-++, 1)); thus ¢ preserves 0, 1. To show that ¢ preserves pseudo-
complements observe that
;c*fl A---A x*/n =((x**A el)*/\ e A XA en)*)v d
=((x*u e’;)/\ oo AxPU e:))v d=(x*y (e*l' Aeee /\e;))va'

=(x*yovd=x"vd
Thus

x*¢= (x*/\ d++' (x*V d, x*fl"“’x*/,,))
= (AT (P N AR e, 2 ))
= (x*/\ d++, <(x/1)'/\ RN (xfn)" (xfl)l"“' (x/,,)l))
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and, since we have shown above that x* A d** is the complement in d**] of
x A d**, we conclude that x*¢ = (x¢)*.

We now show that ¢ is an isomorphism. It suffices to show that ¢D(L): D(L)
— D(B' x glr*1ly ana b5y S(L) — S(B" x B["ﬂ]) are isomorphisms. Observe
that

DB x By ((a*, (u, 1, -, 1)) |« € D(L)}

and that # € D(L) implies uc = (d++, (#,1,+++, 1)). Thus ¢D(L) is an isomor-
phism.

We now show that ¢'S(L) is an isomorphism. Let x € S(L) and let x¢p =1,
that is, x¢p = (d**, (1,+-+, 1)). Thus x A d** = d** thatis, x > d**, and
(x* A ei)* Vd=1 for i=1,++-, n. Consequently (x* A ei)* > d* for each i;
thus x Ue} = (x" A e =(x*Ae)" > d* and, since e} Ao Aer=0, we
conclude that x =(x Ue]) A --- A (x ye)) > d*. Thus x>d*vd** =1, showing
that ¢S(L) is one-to-one.

To complete the proof of the lemma we need only show that ¢, , is onto.
First observe that d* < @ A ei)* for i=1,+-+,n, since d* Ad** A e, =0
thus d+/i =@t A e)*Vvd> d* Vd =1, and so d++/i =d. Observe also that if
y €(d**] then y € S(L); indeed, y** <(@*hH** = att <d <y Vy* and, since y =
y** A (y Vy*), thus y = y**. Each element of S(B' x B["”]) is of the form (y,
(uyANeee N uyyeee, u,)) where y €(d**] and uyy++e, u, €D(L). By (v) of
condition (b) there is an x € L such that «, = (x A ei)* Vd=x*A el.)* Vd,
that is, such that x*fi =u; for i=1,-++, n. Since d+/i =1 we conclude that
(x* A d+)/i =u; for i=1,.+., n. Clearly x*Ad* € S(L); thus, since (x*A d+)/l.=
u;and x*Ad*Ad™ =0, «*Ad)p= (0, (@, A-eeAu, u,-ee,u)). Since
y <d* and d**f = d it follows that y¢ = (¥, (d, d,--+, d)). Thus (y U (x* A d))¢
=(¥ (4, A-. A, wgy e, u)), showing that ¢S(L) is onto, and thus an isomorphism.

Consequently ¢: L — B’ x B["“] is an isomorphism, concluding the proof of the
lemma.

We are now in a position to prove the main theorem of this paper.

Theorem 1. Let n > 1 be an integer and let L be a pseudocomplemented dis-
tributive lattice. The following four conditions are equivalent.
(a) L is an absolute subretract in 93n;
(b) L is a weak injective in ,(Bn;
(c) there are complete Boolean algebras B and B' such that L = B' x
B[ﬂ"ll;
(d) L is complete and has the following five properties:
D LeB;
(ii) D(L) has a smallest element d;
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(ii1) d has a dual pseudocomplement which is central in L;
prese, €L such that e, /\e].= 0if i#j,
e; Ve:.‘ =d for all i, and e’; Aot A e:=0;

(v) given u ,«--, u, € D(L) there is an x € L such that (x A ei)* vVd

(iv) there are elements e

e
=u; for i=1,+0-,n.
Proof. Since %n satisfies the Congruence Extension Property (a) and (b)
are equivalent by Lemmas 1 and 2. Note that if L is complete so are all princi-
pal ideals and principal dual ideals in L, and that if B' and B are complete so
is B' x B["H]. Thus, by Lemma 8, conditions (c) and (d) are equivalent. By
Lemmas 6 and 7, condition (c) implies (b). To complete the proof of the theorem
we need only show that condition (a) implies (d). Let L € an be an absolute sub-
retract. Since the subdirectly irreducible members of Bn are subalgebras of En%'
2["”] it follows that L is a subalgebra, and thus a retract (preserving *) of a
power of 2[”“]. Each power of 2["”] is of the form B["+1 , where B is a com-
plete atomic Boolean lattice. Since B["H] is complete and satisfies (i) to (v),
and since completeness and properties (i) to (v) are preserved under retraction
of pseudocomplemented distributive lattices, it follows that L satisfies condi-

tion (d). We have thus concluded the proof of the theorem.

4. Injective pseudocomplemented distributive lattices. As was shown in Part
It [4], 931, the equational class of Stone algebras, and 932 both satisfy the Con-
gruence Extension Property and the Amalgamation Property. By Lemma 3, absolute
subretracts and injectives agree in these classes; thus Theorem 1 specializes to

the following two theorems.

Theorem 2. Let L € ‘(Bz' The following three conditions are equivalent:
(a) L is injective in .(132;
(b) there are complete Boolean algebras B and B' such that L = B' x sl 3];
(c) L is a complete lattice and L has the following four properties:
(i) D(L) has a smallest element d,
(ii) d has a dual pseudocomplement which is central in L;
(iii) there is an element e € L such that e* \V e** = d,;
(iv) given u,, u, € D(L) there is an x € L such that (x A eY*Vd=u

and (x Ne*)* Vd-= u,.

1

Proof. We need.only show that (iii) and (iv) are equivalent to (iv) and (v)
of Theorem 1 for 7 = 2. Clearly (iii) and (iv) imply (iv) and (v) of Theorem 1
with n= 2. Set e =e, e, =e". We need only establish that e, Vel=e, Ve;
=d; d<e Vel=eVe'<e"™Ve*=d Onthe other hand, let ¢, e,
(iv) and (v) of Theorem 1 with n» = 2. Then e, A e,= 0, that is e, < e?, imply-

satisfy

ing e} >e}". Since e] A e} =0 implies e < e}* we conclude that e} = e}’
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Set e -_—e"; and note that (x Ae)* = (x A e‘;)* =(x A e’;*)* =(x A ez)* and that
(x Ae®)*=(x A e*i*)* =(x A el)*.

Theorem 3. Let L be a Stone algebra. The following three conditions are
equivalent: )
(a) L is an injective Stone algebra;
(b) there are complete Boolean algebras B and B' such that L=B' x B[zl;
(c) L is a complete lattice and has the following three proper ties:
(i) D(L) has a smallest element d;
(ii) d bhas a dual pseudocomplement which is central in L,
(iii) given u € D(L) there is an x € L such that x* V d = u.

Proof. We need only show that condition (c) is equivalent to condition (c)
of Theorem 1 where n = 1. From (iv) of Theorem 1, e 1 \ e’; =d and e"l‘ = 0, that
is, e, =d, and (v) of Theorem 1 implies *Vd=(xAd**NV'Vd=(xAdD*Vd
=u, since d** = 1. Thus (c) of Theorem 1 is equivalent to (c) of the present
theorem with e, = d, thereby completing the proof.

Injective Stone algebras were characterized in [1]. Condition (b) of Theo-
rem 3 appears there, but rather than condition (c) the following characterization
is given: a Stone algebra L is injective if and only if the following conditions
hold:

() L is complete;

(B) L has a smallest dense element;

(y) L is also a dual Stone algebra;

(8) a* =b* and a* =b" imply a = b.

We wish to remark that these conditions of [1] easily imply those of Theorem 3,
indeed, (y) implies that d has a dual pseudocomplement which is central, and
(3), (8) imply (iii) of Theorem 3. For u € D(L), let x = u*; we claim that x* Vd
~u. Since #¥ is central (@N* =« thus * VD =@t V) = @wvd) =4t
since u >d. Also, (x*Vd)* = 0= u*. Consequently, by (8), x* Vd = u.

To complete our discussion we present a result of R. A. Day [2], giving a

proof in the spirit of this paper.

Theorem 4 (R. A. Day [21). The only nontrivial equational classes of pseudo-
complemented distributive lattices that have enough injectives are 930, .(Bl, and
.(82. If B is any other equational class of pseudocomplemented distributive lat-

tices, then L is injective in B if and only if L is a complete Boolean algebra.

Proof. That 330, .(ﬁl, and 532 have enough injectives follows from the fact
that their respective subdirectly irreducible generators are injective in the respec-
tive class. The injectivity of complete Boolean algebras is Lemma 6.

We now show that %n, n > 2, has no other injectives. Let L € 53,, be
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injective. If L is a Boolean algebra, then L is a retract of any complete exten-
sion and so L is complete. Otherwise there is a dense element # € D(L) such
that u # 1. Map El (=1{0,e, 1}, 0<e<1) to L by sending 0 to 0, 1 to 1, and
e to u. Since En is an extension of 1_31, we get a *-homomorphism ¢: En — L
separating e (the smallest dense element in Bn) from 1. Since the subdirectly
irreducible members of .‘Bn are subalgebras of §n, there is a *-homomorphism
p:L — En such that up £ 1, hence e¢p = e. As was noted in Part I [6], the con-
gruence collapsing e and 1 is the smallest nontrivial congruence in B . Conse-
quently ¢p: B, — B is an isomorphism and thus B is a retract of the injective
algebra L and is therefore injective. This conclusion would show that 93'2 has
enough injectives and consequently satisfies the Amalgamation Property. Thus
n=1 or 2. Thus 311, n > 2, can have no injectives other than the complete
Boolean algebras.

For %w, an injective Boolean algebra must be complete, as above. If L € wa
and L is injective and non-Boolean, then—as above—there is a *-homomorphism
¢: B — L separating the two dense elements of B for any nontrivial Boolean
algebra B. Thus ¢ is one-to-one, and to obtain the desired contradiction we need

only choose B so that its cardinality is greater than that of L.

5. First order properties of weak injectives. The internal characterization
of weak injectives in 93’1, Theorem 1(d), is in terms of first order properties (con-
ditions (i)—(v) of Theorem 1(d)) in addition to a second order property, namely
that L be complete. In this section we show that all first order properties of
weak injectives follow from a single first order property.

Let B be a Boolean lattice. We say that B splits if |B| =1 or B X B x
B, where B is atomic and there are no atoms in B (therefore, either |B | =1
or B, is infinite).

Lemma 10. Every complete Boolean lattice splits.

Proof. Let B be a complete Boolean lattice and let @ be.the join of all
atoms in B. Then B 2~ (4] x (a'] and (4] is atomic while (a'] has no atoms. To
prove that (a] is atomic one has to use the Infinite Distributive Identity which is
known to hold since B is complete.

It is easy to see that not all Boolean lattices split.

Lemma 11. There is a first order sentence ® such that, for any Boolean lat-
tice B, ® holds for B if and only if B splits.

Proof. The sentence should state that there is a smallest element @ such
that all atoms are contained in a.

Let @ be the first order sentence (in the language of pseudocomplemented
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distributive lattices) that states (i)—(v) of Theorem 1(d) and requires that @*
and D(L) split.

This makes sense since by the proof of Lemma 9, conditions (i)—(v) imply
that (4**] and D(L) are Boolean.

Theorem 5. The first order sentence @  holds for any weak injective in .‘Bn.
Conversely, if ¥ is any first order sentence that holds in any weak injective in

.'Bn, then ¥ follows from ® .

The first part of Theorem 5 is already known.

An equivalent form of the second part of Theorem 5 is the following:

Theorem 5'. A pseudocomplemented distributive lattice L is elementarily
equivalent to a weak injective in an if and only if ®  bholds in L.

Theorem 5' implies Theorem 5. Indeed, let Theorem S’ hold, let ¥ be a
first order sentence that holds in any weak injective in %n, and assume that @
does not imply W. Then there exists a pseudocomplemented distributive lattice L
satisfying ® but not W. By Theorem 5', there exists a weak injective L, in %n
that is elementarily equivalent to L. Hence ¥ does nor hold in L, contradicting
the definition of W.

Proof of Theorem 5. The *‘only if”’ part is trivial. Now let L be a pseudo-
complemented distributive lattice satisfying ® . By Lemma 9, we can assume
that L = B' x B[" l] where B' and B are Boolean lattices that split.

By A. Tarski [8], any two infinite nonatomic Boolean lattices are elementa-
rily equivalent and (see also Theorem 38.5 of G. Gratzer [3]) every atomic Bool-
ean lattice is elementarily equivalent to a complete and atomic Boolean lattice.
Since by S. Kochen [5] finite direct products preserve elementary equivalence,
there are complete Boolean lattices C and C' such that B = C and B'=C
(= denotes elementary equivalence).

It is easy to see that B — B["H] commutes with prime limits. Therefore by
S. Kochen [5] (or by direct computation) glrt1l_ clet1] phys

L=8'xsl*loc x C["“],

and the right side is a weak injective in 53” by Theorem 1, completing the proof
of Theorem 5'.
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