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THE STRUCTURE OF

PSEUDOCOMPLEMENTED DISTRIBUTIVE LATTICES.

Ill: INJECTIVE AND ABSOLUTE SUBRETRACTS

BY

G. GRATZER AND H. LAKSERi1)

ABSTRACT.  Absolute subretracts are characterized in the classes S„,  zi < co.

This is applied to describe the injectives in S[  (due to R. Balbes and G. Gra'tzer)

and  82.

1. Introduction. In Parts I and II ([41 and  [61)  we have acquired a rather thor-

ough knowledge of the structure of pseudocomplemented distributive lattices.   In

this paper we use this knowledge to extend the results of R. Balbes and G. Grätzer

[il on injective Stone algebras to any  ÍB  .  (Recall that  fB.   is the class of Stone

algebras; for the notation, see  §2.) It turns out, however, that there are rather

few injectives in m  .  It appears that weak injectives and absolute subretracts are

more appropriate to investigate in general.  In  ß.   they coincide with injectives.

Accordingly, our main result is a description of weak injectives as presented

in Theorem 1.  An explicit construction  (unique up to isomorphism) is given in

(c) of Theorem 1  (corresponding to Theorem 2 of [ll) and an internal description

in  (d) of Theorem 1   (corresponding to Theorem 1 of [ll).

It turns out that weak injectives are injectives in .15. and Ay, thus our result

implies the results of [ll, in fact, it yields a somewhat sharper form of Theorem 1

of [il.  A description of injectives in J>2 is given in Theorem 3.

In  §2 we introduce weak injectives, absolute subretracts, and investigate

their interrelationships with injectives.  These observations are applied in  §3,

where a series of lemmas are given leading up to Theorem 1.   The applications

are given in  §4 including a proof of a result of R. A. Day [2l.  In the last section

we describe a first order property   $    shared by the weak injectives in %    such

that any first order property of weak injectives follows from  $  .

2. General algebraic preliminaries. We first recall some notations and results

of Part II [4],  The equational classes of pseudocomplemented distributive lattices
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are the trivial class  A   ,, the classes  £> ,  22 > 0, and the class  Jo   .   Each  X> ,
— 1' n'       —     ' o> n'

22 > 0, is generated by the subdirectly irreducible pseudocomplemented distributive

lattice   B   , where  B     is the  22-atom Boolean lattice  2" and  B    is  B     with a new
22' n n n

unit element. We recall that all these equational classes satisfy the Congruence

Extension Property and that ,D satisfies the Amalgamation Property if and only

if 22 = - 1, 0, 1, 2, or cu.

If A is any class of algebras an algebra  C £ X is said to be  injective  if,

given any algebras A, B £ X,  A  a subalgebra of B, and given a homomorphism

0: A —► C, there is a homomorphism  cp: B —► C extending 0.  The class  K has

enough injectives  if each algebra in A is a subalgebra of an algebra injective in

3Í.  An algebra  C £ X  is a weak infective  if, given algebras  A, B £ X,  A   a sub-

algebra of  B, and given a  surjective  (i.e. onto) homomorphism  0: A —> C, there

is a homomorphism  0: ß —» C extending  0.  An algebra  C £ X is an absolute

subretract it C is a retract of each of its extensions in K.

We present the various relations among these concepts.   The class  X will be

assumed to be an equational class.  We first have a well-known lemma.

Lemma  I.  If C  is an infective in X, then C  is a weak infective.   If C  is a

weak infective in X, then  C is an absolute subretract.

As converses to Lemma 1, we have the following results.

Lemma 2.   Let X satisfy the Congruence Extension Property.   Then each

absolute subretract in X  is a weak injective.

Proof.   Let  C be an absolute subretract in X, let A, B £ J\,  A   a subalgebra

of B, and let  cp: A —* C be a homomorphism onto  C.  By the Congruence Exten-

sion Property there is an extension C'   of C in X and a homomorphism   if/: B —» C'

such that if/\A = 0.  Since  C is an absolute subretract there is a retraction

p: C —*C.  Thus  if/p is the required extension of  0, proving the lemma.

Lemma  3.  // X satisfies the Congruence Extension Property and the Amalga-

mation Property, then any absolute subretract in X  is injective.

Proof.  Let  C  be an absolute subretract in X.   Let A, B £ X and let  a: A —»

ß  be an embedding.  Let  cp: A —> C, let C. = Im 0, and let ß: C , —► C be the

embedding.  Let  0,: A —► C.   be defined by  cp; that is,  0. ß = 0.   By the Congru-

ence Extension Property there is an algebra  ß .  6 X, an embedding  y: C , —► B .,

and a homomorphism if/: B —> B ,   such that  <X0 = 0,y (see Figure 1).

Since  ß and  y are embeddings and X has the Amalgamation Property there

is an algebra  D  in X  and embeddings  A: ß    —► D, p: C —► D  such that  yA = ßp.

Since  C  is an absolute subretract there is a homomorphism p: D —» C such that

pp is the identity mapping on  C.  Let 0 = t/zAp; then  a.0 = 0   ß = 0.  Thus  C  is

injective, concluding the proof of the lemma.
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Figure 1

We now relate the concepts of absolute subretract and subdirect irreducibility.

If A, A3  are algebras, A   a subalgebra of B, then  A3   is said to be an  essential

extension of A   if, given any congruence  0 on B   such that 0 . = to .   then 0 =

cijo.  (0^  denotes the restriction of 0 to A.  If A   is any algebra, cú¿   denotes the

congruence: x = y(cùA) if and only if x = y.)  A  maximal subdirectly irreducible

algebra  is a subdirectly irreducible algebra every proper extension of which is

not subdirectly irreducible.

Lemma  4.  Any maximal subdirectly irreducible algebra A   in a  is an abso-

lute subretract in ,K.

Proof.  Let A   be a subalgebra of  S   in  K.   By Zorn's Lemma  (see Lemma

3(b) of [41)  there is an essential extension  B .   of A   and a surjective homomor-

phism  cf>: B —> B .   such that xcp = x  for all x £ A.  Since  A   is subdirectly irreduc-

ible and  B     is an essential extension of A   it follows that  B .   is subdirectly irre-

ducible (see  [2l).  Thus, by the maximality of A,   B . = A   and so cp is a retraction

onto A.   Thus we have shown that .4   is an absolute subretract.

It is well known that a retract of an injective algebra is itself injective.  A

weaker result holds for weak injectives.  Let (A .|z' £ A) be a family of algebras

and let  cp: A —» II(A ,|¿ £ A)  be an embedding of A   as a subdirect product.   If cp

also embeds A   as a retract of II(A .|¿ £ A) we say that A  is a subdirect retract

of the family (A .| i £ I).

Lemma  5.  A subdirect retract of a family of weak injective algebras is itself

a weak injective algebra.

Proof.  Let (C.|¿ £ A)  be a family of weak injectives and let y: C—»II(C.|i £ A)

be a representation of C  as a sudirect retract; let p: II(C.|z' £ A) —» C be the

retraction, that is, let  yp = 1 r.

Let A, B  he algebras, let  a: A —> B  be an embedding, and let  cp: A —► C be

a surjective homomorphism.  If  ¿ £ A and  n. is the projection of II(C.|z £ A) onto

C ., then  vît. is surjective.  Thus  </>.: A —> C. defined by   <p ■ = cpyrr. for each

i £ I is a surjection.  Since each C . is a weak injective, there is a homomorphism

i/z.: B —» C. such that  ai/z. = cf>..  Consequently there is a homomorphism if/: B  —►
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n(C.|z  £ I)  such that if/rr■ = ip . for each  i £ I; it follows that  aip = cpy.  Thus if

0 = ifjp we find that  <x0 = 0, showing that  C  is a weak injective.

3.   Absolute subretracts in %  .  Let  B  be a Boolean algebra and let

ß["+1l = ¡<*0, x ,,..., xn) £ B" + 1|x0 < x, A ... A XJ.

B'-   ' was introduced in  [ll, and B"-"        is the obvious generalization of BL    .  It

follows quite easily that  Brn        is a pseudocomplemented distributive lattice and

that

<x0, x1,...,x|i>* = <x'1A...Ax^x'1,...,*;>.

It is also clear that Bn  = 2^n      , that if   ß'   is a subalgebra of the Boolean

algebra  B  then  (ß')f" + l1  is a subalgebra of B^-" + 1\ and that if B = Il(ßy|y £ F)

(B, By, y er, are Boolean algebras), then ßt" + l1 tt n(ß^" + l]|y e T); thus

B*-"     ' e S    for any Boolean algebra B.  In this section we show that the absolute

subretracts in  J3    are precisely the pseudocomplemented distributive lattices of

the form ß' x BA"      , where  B  and B'   are complete Boolean algebras.

Lemma 6.  Any complete Boolean algebra is an injective pseudocomplemented

distributive lattice.

Proof.  Let ß  be a complete Boolean algebra, let  C be a pseudocomplemented

distributive lattice, and let  A   be a subalgebra (*-sublattice) of C.  Let  0: A —*B

be a  *-homomorphism.   Let / be the restriction of 0 to(2) 5(A).  Since  S(A) is a

subalgebra of the Boolean algebra S(C) and since  B   is an injective Boolean

algebra, / lifts to a homomorphism of the Boolean algebras / : S(C) —> B.  The

mapping  cp: C —» B  given by x0 = (x**)f is a homomorphism that is the required

lifting of 0.   Thus  B   is an injective pseudocomplemented distributive lattice.

Lemma 7.   Let B  be a complete Boolean algebra.   Then ß"-"     '  is a weak

injective in  m .

Proof.  Since  B  is an injective Boolean algebra and since the equational

class of Boolean algebras is generated by the two-element Boolean algebra  2, it

follows that  ß  is a subdirect retract of a family (B    |y e Y)  of Boolean algebras

all isomorphic to  2.  We claim that consequently  B*-"     '  is a subdirect retract of

the family (BJn     'Jy e T).  If  0: B —» B'   is a homomorphism of Boolean algebras,

then  0Í" + l1: B[" + l1 MB'P+1\ given by   <xQ,. . . , x J cp^" + ̂  = (xQ0, .. - , x¿)) ,

is a ^-homomorphism.   If   77: B —» B      is onto then so is   rA"+1': B*-" + 1-   ~*

(By)[n + l1;  thus   B[" + l1   is a sudirect product of   (S^ + ll|y £ D.  If p:

ftÍB    \y £ T) —» B   is a retraction of  Boolean algebras, then

(2)Recall that S(A) = |x**|x £ A\,  the   skeleton  of A, is a Boolean algebta.
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p[n+l]: (U(By\y £ D)  "        =I1((B> + 1V £ D - ß[" + l]

is a retraction of pseudocomplemented distributive lattices; thus  ßL"        is a sub-

direct retract of the family (B[* + ll|y £ D. Since  B[n + ̂  == 2^" + 1l = B    we con-
/        r      ,     "I / tt

elude, by Lemmas 2, 4, 5, that  Br-n        is a weak injective in  S  , proving the

lemma.

It follows from Lemmas 6 and  7 that if  B  and B    are complete Boolean

algebras, then  B' x B'-"        is a weak injective  (equivalently, by Lemmas 1  and

2, an absolute subretract) pseudocomplemented distributive lattice in  A .  We now
™r     1

characterize pseudocomplemented distributive lattices of the form B' x B'-"     ', B,

B    Boolean.   Let A   be a pseudocomplemented distributive lattice.  Recall that

the set of dense  elements of A, D(A) = [x £ A |x    = 0¡, is a dual ideal of A. First

we present a result characterizing  £  .

Lemma 8.  Let  L  be a pseudocomplemented distributive lattice.   Then  L £ %

if and only if L  has the following property:  let x_, • • • , x    £ L  satisfy x .  A x . =

0 whenever i á j; then x*   V • - -   V x* = 1.' ' 0 72

Proof.  K. B. Lee [7l  gave an identity characterizing S  , to wit

(a, A . • • A a  )* V (a* A a_ A • ■ • A a  )* V • • • V (a, A • • • A a      , A a* )* = 1.
1 77 12 77 1 72-177

Let x . A x . = 0 if i / j, i, j = 0, • • • , n.   Then x . < x*  whenever  i / j.  Hence x

<x* A ••• A x*, x, <x** A x* A ••• Ax*,..., x   <x*Ax*A..-Ax**. Apply-
—        1 72 1   —        1 2 72' 72—        12 72 rr   '

ing Lee's identity with a . = x*, i = 1, • • • , n, we conclude that

*0 V ■•' V ** > (*\ A '.. • A x*)* V (x** A ... A ¿p* V • •• V (** A • • • A x**)* = 1.

Thus the required property holds in J>  .

Now let L he a pseudocomplemented distributive lattice such that x. A x . =

0, i / j, i, j = 0, • • •, n, implies that x* V- • • V x* = 1. Let a .,•••, a £ L and

let x   =a   A ... Aa ,  x, = a* A a_ A... A a  ,-.., x   =a,A...Aa      , A a*.
U 1 «ll 2 7Z' '        72 1 72—1 72

Then  x¿ A x . = 0 if i / j.  Thus x*  V — V x* = 1, that is, Lee's identity holds

for a ,,••., a  . Thus  L £ % .
V '        72 72

If L is a lattice with 0, 1 and x £ L, a dual pseudocomplement of x, denoted

x   , is the obvious dual of a pseudocomplement; x V y = 1   if and only if y > x   .

Lemma 9.  Let  L  be a pseudocomplemented distributive lattice and let n > 1.

The following two conditions are equivalent:

(a) There are Boolean algebras  B  and B'  such that  L = B' x B^n    K

(h) L  has the following five properties:

(i) L£%n,
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(ii) DÍL) has a smallest element d;

(iii) d has a dual ps eudocomple ment which is central (complemented)

in  L;

(iv) there are elements  e ,,••■, e    £ L such that  e . A e . = 0  if i é i,
\     / 1' '     rz t     '    j -,   '       r '.'

e . V e* = d for ail i, and e* A... Ae* = 0;
il' 1 n '

(v) given u .,•••, u    £ D(L) there is an x £ L  such that (x A e .)* V d

= zz. for  t=l,..., 22.

Proof.  Let L = ß' x B^"+1'.  Then  L e S .  The smallest dense element in L
n

is  z/=  (1,   (0, 1, •••!))   and d   =  (0,  (1, 1, • • • , 1))   whose complement in L  is

(1,   (0, 0,... , 0» .   For each  i = I,--- , n, let e.= (a1.,(0, a l;,. . • , a^.))   where

«„ = 0 if z ^ ;  and a.. = i.   Then  (iv) of (b) holds.   To establish (v) note that

D(L)=|(1, (x, 1,..., 1»   eß'xßK

Let  u.= (I, (x., 1,..., 1))  ,   ¿= 1,..., 22.  Then x = (0,  (0, x'y,...,x')).

Now let (b) hold. We show that  L S ß' x ß[* + 1l where ß' == (a'++] (¿++

exists, and equals  d    , because d    is central) and  B ^ D(L).

We first show that id    ]  is a Boolean lattice; we claim, for each x e L, that

x* A d      is the complement in  id     ]  of x A d    .  Clearly   (x A d    ) A ix* A. d    )

= x A x* A d*+ = 0. Now (x A ¿+ + ) V (x* A a"++) =(»V x*) A a^; since x V x*

£ D(L), x V x* > a? > a,++ and consequently (x  Ad++) V (x* A/% zi++, estab-

lishing our claim.

That D(L) is Boolean will emerge during our proof of the representation.

For each  i = 1, • • • , 22, define   /.:£—» D(L) by requiring that xf. =

ix* A e)* V z/.   The /. will correspond to the projections  ß' x ß[" + 1] _, ß.  We

claim that each /. is a homomorphism.   First note that, for all x, y £ L,

ixAy)* =(x** A y)* =(x**Ay**)*.

Indeed

(xA y)* =(xA y)*** = (x** A y**)*,

x A y <x**   A y <x** A y**;

thus

(xAy)* >(x**Ay)* >(x** A y**)*,

establishing the triple equality.

We can now show that /. preserves A .  Recall that U denotes the join opera-

tion in  S(L), that is, a U b = (a* A b*)*.  Now if x, y e L  then
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(xAy)/.= ((xAy)*A e.)*V d = ((x A y)* A e\*Y V d

= ((x A y)** u e*) M d = ((x** A y**)ue*)V d

= ((x** u e*)A (y** u e*.)) V d = ((x** u e*) VzA) A ((y**u e*) V «fl

= ((x* A e.)* V d) A ((y* A e )* V d) = x/. A y/..

Clearly /. preserves  0 and   1   (the   "0"  of D(L) is  d), since  e . < d.   Before

showing that /. preserves V we observe that xf. and x /. are complementary for

each x £ L.  Indeed

xfiAx*fl = 0f. = d

and

xf.y x*f.= (x* A e.)*V (x**A  e)*\t d

>(x* A e.)*V (***A e.)* y e\ \j .. • V e*_ t V e^ + J V • • • V e* = 1,

by (iv) of (b) and  (the last equality) by Lemma 8.  Since, by (v) of (b), /. is onto

(recall  (x A e .)   = (x*   A e .)*) we conclude that D(L) is Boolean; denote the

complement of u in  D(L) by  u'.

We now show that /. preserves V -  Note that x/. = x    /. since  x*/.= (x/.) .

Thus (x V y)f. = (x V y)*7i = (** A y*ff. = ((x* A y*)/.)' ~(x*f.Ay*f¡)' =

((*/,)' A(y/p')'=x/. Vy/..

Now let B' = (a"++] and let B = D(L). We show that L = ß' x BL" + 1^. Define

cp: L -+ B' x ß[" + 1] by setting

xcp = (x A ¿ + +,  {x\l d, xfv- ■ • , xf Yf.

Note that (x V ti, x/,, •••, xf ) £ ßl" + 1J  since x V d <x** V d < xf..  Since the

/. are lattice homomorphisms so is   c/j.  Also, Ocp =   (0,   (zz7, d, ■ • • , d))   and  lc/S =

(a7    ,  (1, 1,..., 1^; thus  cp preserves  0, 1.  To show that  cp preserves pseudo-

complements observe that

x*flA---Ax*fn = ((x**A e,)*A ..-A(x**A eY)\Jd

= ((x*ue\)A--- A(x*ue*))W=U*u(e* A • • • A <)) V d

= (x* u 0) V d = x* V d.

Thus

x*cp=(x*Ad++, <x*V d, x*f1,...,x*fj)

= (x*Ad++,(x*f1A...Ax*fn,x*fl,...,x*fn)}

= (x*Aa-++, (W,)'A •••AWn)',(x/1)',...,(x/n)'»
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and, since we have shown above that x* A d      is the complement in id    ] of

x A d    , we conclude that   x  0 = (x0)*.

We now show that  0 is an isomorphism.   It suffices to show that 0D(Lv D(L)

—» D(B' x  B^n + 1M and  cp        : S(D —> S(ß' x B^-n + lh ate isomorphisms.  Observe

that

D(ß'x Bln + ll)= \(d++, (u,  1,..., 1» \u £D(L)\

and that  u £ D(L) implies  zz0 = (d    , (u, 1, • • • , 1)) .   Thus  <PD(,. is an isomor-

phism.

We now show that <ps,,. is an isomorphism.  Let x £ S(L) and let x0 = 1,

that is, x0 = (d + +, (1, • • • , 1» .   Thus x A d++ = d++, that is, x > d++, and

(x* A e .)* V d = 1   for  z = 1, ••• , «.  Consequently (x    A e .)    > d    for each  z;

thus x U e*. = (x* A e?*)* = (x* A e .)* > d    and, since  e* A .. . A e* = 0, we
ii i     — 1 "        i

conclude that x = (x u e!) A • • • A (x (j e  ) > d .  Thus x > d    V d     =1, showing

that  0ÇZZ \ is one-to-one.

To complete the proof of the lemma we need only show that  0j(d   is onto.

First observe that d   < id      A e .)    for  i = I, • • • , n, since d   Ad     A e . = 0;
— Z ' '       ' I '

thus  d+f. = U + + A e .)* V ¿ > d+ V z/ = 1, and so <?**/,- = ¿-   Observe also that if

y £ id    ] then y e S(L); indeed, y      <(a"    )      =a"     < d < y V y* and, since y =

y** A (y V y*), thus   y = y**.  Each element of SÍB' x B*-"     ')  is of the form (y,

(zz, A • • • A u , u ., • • •, u  ))   where y £ id    ] and u ,,•••, "    £ D(L).  By (v) of

condition   (b) there is an x e L  such that  zz. = (x A e .)    V d = ix** A e .)* V d,

that is, such that x*f. = a. for i - I, • • • , n. Since d f. = 1  we conclude that' Z I ' 3 I

ix* A d*)f. = a. for ¿ = 1, • • • , 22. Clearly ï'A/ e S(L); thus, since  (x* A a""1)/,- =

u. and x* A d+Ad++= 0, (x* A a"+)0= (0, (u y A ... A un, u p • • •, uj). Since

y < d      and d    f. = d it follows that yep = (y, (a", d, ■ • ■, d)). Thus (y U (x* A ^ j)0

= (y, (zz. A • • -A« ,«,,«..,»   \\, showing that 0ç/f % is onto, and thus an isomorphism.

Consequently 0: L —► B   x B1-"       is an isomorphism, concluding the proof of the

lemma.

We are now in a position to prove the main theorem of this paper.

Theorem  1.   Let 22 > 1   be an integer and let  L  be a pseudocomplemented dis-

tributive lattice.   The following four conditions are equivalent.

(a) L  is an absolute subretract in  ÍB  ;

(b) L  is a weak injective in  %  ;

(c) there are complete Boolean algebras   B  and B'  such that  L = ß' x

BU*il.

(d) L  is complete and has the following five properties:

(i)Ld;
n'

(ii) D(L) has a smallest element  d;
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(iii) d bas a dual pseudocomplement which is central in  L;

(iv) there are elements e ,,•••, e    £ L such that e . A e . = 0  if i /= j,
v      > 1' '      72 !■•'*'

e .V e*. = d for ail i, and e*  A ... A e* = 0;
2 2' 1 72 '

(v) given  u  , • • • , u    £ D(L) there is an x £ L such that (x A e .)    V d

= u . for i = 1, • • •, n.i ' '        '

Proof.  Since ío    satisfies the Congruence Extension Property  (a) and  (b)

are equivalent by Lemmas 1   and  2.  Note that if L  is complete so are all princi-

pal ideals and principal dual ideals in  L, and that if B    and  ß  are complete so

is  B' x BSn    '.  Thus, by Lemma 8, conditions (c) and  (d) are equivalent.   By

Lemmas 6 and  7, condition (c) implies  (b).  To complete the proof of the theorem

we need only show that condition (a) implies  (d).  Let  L £ fB    be an absolute sub-

retract.  Since the subdirectly irreducible members of 5)    are subalgebras of B =

2 it follows that  L   is a subalgebra, and thus a retract (preserving  *)   of a

power of 2*-"      .   Each power of  2*-"    ■*  is of the form B^"      , where  ß   is a com-

plete atomic Boolean lattice.  Since  BL"     '  is complete and satisfies  (i) to (v),

and since completeness and properties  (i) to  (v) are preserved under retraction

of pseudocomplemented distributive lattices, it follows that  L  satisfies condi-

tion  (d).  We have thus concluded the proof of the theorem.

4.  Injective pseudocomplemented distributive lattices.  As was shown in Part

II [4], $j, the equational class of Stone algebras, and  ®2 both satisfy the Con-

gruence Extension Property and the Amalgamation Property.   By Lemma 3, absolute

subretracts and injectives agree in these classes; thus Theorem 1 specializes to

the following two theorems.

Theorem 2.   Let L £ A .   The following three conditions are equivalent:

(a) L  z's injective in S  ;

(b) there are complete Boolean algebras  B  and B'  such that  L = B' x B      ,

(c) L  is a complete lattice and L  has the following four properties:

(i) D(L) has a smallest element d;

(ii) d has a dual pseudocomplement which is central in L;

(iii) there is an element  e £ L such that e* V e** = d;

(iv) given u , u2 £ D(L) there is an x £ L  such that  (x A e)* V d = u

and (x Ae*)* V d = u

Proof.  We need.only show that (iii) and  (iv) are equivalent to (iv) and  (v)

of Theorem 1 for n = 2.  Clearly  (iii) and  (iv) imply  (iv) and  (v) of Theorem 1

with n = 2.  Set e    = e,   e    = e  .  We need only establish that  e    V e* = e    V e

= d;  d <e ^\/ e* - e \J e* <e** y e* = d.  On the other hand, let  e     e     satisfy

(iv) and  (v) of Theorem 1  with n = 2.  Then  e    A e    = 0, that is  e    < e*   imply-

ing e   > e     . Since e    A e ' = 0 implies  e. < e       we conclude that e    = e
* *
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Set e = e*y   and note that (x A e)* = (x A e*)* = (x A e**)* = (x A e  )*  and that

(x Ae*)* = (x Ae**)* = (x A e ,)*.

Theorem 3.  Let  L  be a Stone algebra.   The following three conditions are

equivalent:

(a) L  is an injective Stone algebra;

(b) there are complete Boolean algebras  B  and B'  such that  L=B' x B'-2 ,

(c) L   is   a complete lattice and has the following three proper ties:

(i) D(L) has a smallest element d;

(ii) d has a dual pseudocomplement which is central in  L;

(iii) given  u £ D(L) there is an x e L  such that x    V d = u.

Proof.  We need only show that condition (c)  is equivalent to condition (c)

of Theorem 1  where 22 = 1.  From (iv) of Theorem 1, e     V e* = d and e* = 0, that

is, e y = d, and (v) of Theorem 1  implies x* V d = ix A d**)* V d = (x A d)* V d

= a, since  rf      =1.  Thus  (c) of Theorem 1   is equivalent to  (c) of the present

theorem with  e    = d, thereby completing the proof.

Injective Stone algebras were characterized in [l].  Condition  (b) of Theo-

rem 3  appears there, but rather than condition  (c) the following characterization

is given: a Stone algebra  L  is injective if and only if the following conditions

hold:

(a) L  is complete;

iß)  L  has a smallest dense element;

(y)  L  is also a dual Stone algebra;

Í8) a    = b    and a    = b    imply a = b.

We wish to remark that these conditions of [ll  easily imply those of Theorem 3,

indeed, (y)  implies that d has a dual pseudocomplement which is central, and

(y), Í8)  imply  (iii)  of Theorem 3-   For  u £ D(L), let x - u  ; we claim that x* V d

= u. Since  u     is central  (u  )* = u     ; thus  ix* V d)    = (a      V d)    = (a V d)    = u

since u>d.  Also, (x* yd)* = 0 = a*.  Consequently, by  (zS), x*  V d = u.

To complete our discussion we present a result of R. A. Day  [2], giving a

proof in the spirit of this paper.

Theorem 4 (R. A. Day [2l).   The only nontrivial equational classes of pseudo-

complemented distributive lattices that have enough injectives are %., 38., a22a'

%T   If % is any other equational class of pseudocomplemented distributive lat-

tices, then  L  is injective in 38  if and only if L   is a complete Boolean algebra.

Proof.  That ,&~, j>., and 38,  have enough injectives follows from the fact

that their respective subdirectly irreducible generators are injective in the respec-

tive class.  The injectivity of complete Boolean algebras is Lemma 6.

We now show that 38  ,  22 > 2, has no other injectives.  Let  L £%    be
72' ' n
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injective.  If L   is a Boolean algebra, then  L   is a retract of any complete exten-

sion and so  L  is complete.  Otherwise there is a dense element  a e D(L) such

that a   4 1.  Map By ( = {0, e,  11, 0 < e < l)  to  L  by sending  0 to  0, 1  to   1, and

e  to  u.  Since  B    is an extension of B., we get a  *-homomorphism  cp: B    —* L

separating e  (the smallest dense element in B   ) from  1.  Since the subdirectly

irreducible members of ÍB    are subalgebras of B   , there is a  *-homomorphism

p: L —* B    such that up /I, hence  e0p = e.  As was noted in Part I [61, the con-

gruence collapsing  e  and   1   is the smallest nontrivial congruence in B   .  Conse-

quently  0p: B    —► B     is an isomorphism and thus  B     is a retract of the injective

algebra  L  and is therefore injective.  This conclusion would show that 38    has

enough injectives and consequently satisfies the Amalgamation Property.  Thus

22 = 1  or 2.  Thus 56 , n > 2, can have no injectives other than the complete

Boolean algebras.

For 38^, an injective Boolean algebra must be complete, as above.  If L e ¡B

and  L   is injective and non-Boolean, then—as above—there is a  *-homomorphism

0: B —► L  separating the two dense elements of B  for any nontrivial Boolean

algebra  B.  Thus  0 is one-to-one, and to obtain the desired contradiction we need

only choose  B   so that its cardinality is greater than that of  L.

5.  First order properties of weak injectives.  The internal characterization

of weak injectives in Jo  , Theorem 1(d), is in terms of first order properties (con-

ditions  (i)—(v) of Theorem  1(d)) in addition to a second order property, namely

that  L  be complete.   In this section we show that all first order properties of

weak injectives follow from a single first order property.

Let B be a Boolean lattice. We say that B splits  if|ß| = lorß^ß0x

By, where  B 0 is atomic and there are no atoms in  B,   (therefore, either  |B.| = 1

or B.  is infinite).

Lemma 10.  Every complete Boolean lattice splits.

Proof.  Let B   be a complete Boolean lattice and let a  be the join of all

atoms in B.  Then  B S ía] x (a']  and  («1  is atomic while  (a']  has no atoms.   To

prove that (a]  is atomic one has to use the Infinite Distributive Identity which is

known to hold since  B  is complete.

It is easy to see that not all Boolean lattices split.

Lemma 11.   There is a first order sentence  <5 such that, for any Boolean lat-

tice B,   $ holds for B   if and only if B  splits.

Proof.   The sentence should state that there is a smallest element a  such

that all atoms are contained in  a.

Let  $n be the first order sentence  (in the language of pseudocomplemented
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distributive lattices) that states  (i)—(v) of Theorem  1(d) and requires that (d   A

and D(L) split.

This makes sense since by the proof of Lemma 9, conditions  (i)—(v) imply

that (d    ] and D(L) ate Boolean.

Theorem 5.   The first order sentence $    holds for any weak injective in S .

Conversely, if V ¿s any first order sentence that holds in any weak injective in

% , then m follows from $  .
72 ' ' 72

The first part of Theorem 5  is already known.

An equivalent form of the second part of Theorem 5  is the following:

Theorem 5 .  A pseudocomplemented distributive lattice  L  is elementarily

equivalent to a weak injective in %     if and only if $    holds in  L.

Theorem 5    implies Theorem 5.   Indeed, let Theorem 5    hold, let ? be a

first order sentence that holds in any weak injective in S  , and assume that $

does not imply  *P.  Then there exists a pseudocomplemented distributive lattice  L

satisfying $    but not x¥.  By Theorem 5', there exists a weak injective   L ,   in S

that is elementarily equivalent to  L.  Hence W does nor hold in  L ., contradicting

the definition of W.

Proof of Theorem 5 .   The "only if"  part is trivial.  Now let  L  be a pseudo-

complemented distributive lattice satisfying $  .   By Lemma 9, we can assume

that L = B' x B'-"    ', where B'  and B  are Boolean lattices that split.

By A. Tarski  [8l, any two infinite nonatomic Boolean lattices are elementa-

rily equivalent and (see also Theorem 38.5 of G. Gratzer [3])  every atomic Bool-

ean lattice is elementarily equivalent to a complete and atomic Boolean lattice.

Since by S. Kochen [5l  finite direct products preserve elementary equivalence,

there are complete Boolean lattices  C and  C    such that  B = C and  ß  = C

(= denotes elementary equivalence).

It is easy to see that  B —► BL"     '  commutes with prime limits.   Therefore by

S. Kochen  [5l  (or by direct computation) B^" + 1^ = C^n+l\  Thus

L = ß'xß[" + l]^C' xc[n+l\

and the right side is a weak injective in   ß    by Theorem 1, completing the proof

of Theorem 5 .
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