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MODULAR REPRESENTATIONS OF METABELIAN GROUPS
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B. G. BASMAJI

ABSTRACT. The irreducible modular representations, the blocks, and the

defect groups of finite metabelian groups are determined. Also the dimensions

of the principal indecomposable modules are computed.

1. Introduction.   Let  G  be a finite metabelian group and 0 be an algebraically

closed field with characteristic  p dividing the order  \G\   of G.   The purpose of

this paper is to determine the irreducible representations over ÎÎ, the blocks

(^-blocks), the defect groups of G  and the dimensions of the indecomposable com-

ponents of O.G.  This is done by applying a number of fundamental results due to

Brauer, found in Curtis-Reiner  [6, Chapter XII], to the results of  [l].   In  §2 we

fix the notations.  We prove a lemma in  §3  and apply it to determine the irreduc-

ible  inequivalent modular representations of  G  over Í).   Assuming the knowledge

of linear representations of some subgroups, we are able to give in  §4 the blocks

and their defect groups.   This makes it possible to determine all blocks contain-

ing a linear representation.  We prove that all principal indecomposable modules

belonging to a block have the same dimension and we compute this dimension.   In

§5  we compute the decomposition and Cartan matrices of a block of the metacyclic

group.

2. Notations.  Let  G  be a finite group and A   be a normal abelian subgroup

of  G and assume  G/A   is abelian.  Let W be a subgroup of A   and let  K(W)/W be

a maximal abelian subgroup of N(W)/W containing A/W where  N(W) is the nor-

malizer of  W in  G.   The subgroup  K(W) is not unique and can also be defined as

a subgroup of G  containing  A, the derived group  K(W)   C W; and  K(W) is maximal

in the sense that if  K.   is a subgroup of G  containing  K(W) and  K. C W  then  K.

= K(W).  If W .  is a subgroup of W, then for each  K(W .) we can choose a  K(W)

containing  K(W  ).  If W .  is conjugate to  W then we may let  K(W A = K(W).  Also

if W 0 = C\x e c x - l Wx then we may choose  K(W Q) = K(W).

Let  £ be a subgroup of A   such that A/H is cyclic and let z .A, • • • , z   A

be  a  basis  of   K(H)/A   with   z .A   of order   /..   Let Q   be the algebraic

closure of the field 0  of the rationals and let   T be a linear representation
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(over O) of A  with kernel H.  There exist  |AC(AA)/A|  distinct representations  T

which are extensions of  T to  AC(AA) and  T'(z) ' = T(z .').   From [l]  the induced

representation  T       of G is irreducible of degree  \G/K(H)\.  All the irreducible

inequivalent representations of G  are given by the set of all  T      with  T' £

KJR  (H, K(H)) where the union is over all nonconjugate  H  such that A/H is

cyclic and  R   (H, K(H)) is a complete set of representatives of the conjugate

classes of the set  R(AA,  K(H)) of all extensions   T    of every possible  77 with ker-

nel  H.  In this paper conjugacy will mean  G-conjugacy unless stated otherwise.

If 5 is a linear representation of a subgroup K of G, K 'D A, then S can be

extended to a subgroup AC j D K provided that AC! Ç kerS H A. In this case there

are  |AC./AC|  distinct such extensions of S.

Let p(fixed all through this paper) be a prime dividing the order  \G\   of G

and let  v    be a fixed valuation of 0  extending the  £>-adic valuation of 0,  v (p)

= 1.  Let  0 be the local ring of iz    in 0,   \) the corresponding unique maximal

prime ideal, and Q = 0/p\.  The residue class map of O  onto Ct  is denoted by

bar; iz —► v.  We let   1  =1  and  0=0.   If 5  is a representation of G  over 0  and

S(g) = (v..),  g £ G, then the representation S   of G  over ii  is defined by S (g) =
—  \ \ ■ ~C     ~~G

(v..).  If S  is a representation of a subgroup  K of G over  0  then S     - S    ,

where in both cases the same coset representatives of AC in G are taken. Note

that the representations  T, T', and  T'     ate over  0  and thus   T, T', and  T'

ate defined.   For convenience we let  r= T,  r' = T', and   r      = T     , and the sub-

scripts on  T ate carried on to  r as in  t.— T, and  r!     = T',    .  Note that in all
r l l 1X Ix

cases by S     we mean S' .  Representations over 0  are called ordinary and will

be denoted by capital Latin letters without bars, and those over ÎÎ  are called

modular and will be denoted by capital Latin letters with bars or by small Greek

letters.

The notations  S ~ Z and o ~ ¿f, mean equivalence of these representations

over 0   and over Cl respectively.   If  AC  is a subgroup of G  then  S „  and  oK

mean the restrictions of S and o respectively to  AC.

We make a note about Brauer characters that will be used several times in

this paper.   Let S  be a linear representation of a subgroup  K of G,   K D A.   Then

there exists a linear representation Z  of  AC  such that  Z(k) = 1   if k is a p-ele-

ment and  Z(k) = S(k)  if k is  p-regular.   Let  y and  ifi be the characters of S

and  Z     respectively.  Then  y(g) = i/>(g) = 0 if g i K, and  X^) = "M^) =

S     /-//e S(kx)  if Zè  is a p-tegulat element of  K, where x £ G/AC means  x runs

over a coset representative of  K in  G and  &x = x~  zex.   Thus the Brauer charac-

ters of S      and Z     are equal and by  [6, (82.7)1, S      and Z     have the same

composition factors.

3.   Irreducible representations.   Assume the notations of  §2.  We have
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Lemma.   Let p\\A/H\.

(a) t       is an irreducible representation of G.

(b) Let  T    be a linear representation of K(H) with kerT' O A = H.  conju-

gate to H.   Then  r     ~ r.     if and only if r    and r!   are conjugate.

(c) Let  T'   be a linear representation of K(H .),  kerT! r~l A = H., p\ |A/r/,|,

and H.  not conjugate to H.   Then r       and r'     are inequivalent.

Proof,  (a)  Let  K = K(H).  For x e G assume  r'(kx) = r'(k)  fot all  k £ K.

Then  r'ik~lkx) = 1   or k ~ 1kx = k~lx-lkx is in kerr' O A = kerT' n A = H.

Thus  zä~ x-  zex e £  and x e K.   Hence for each x ¡É K there exists at least one

k £ K such that t ikx) ¡t r (&).  Thus   K is the inertia group of  r    and  r    has

|G/K|   distinct conjugates which we denote by  r   ,  r  ik) = r  ikx). Note that

(r     )k~¿,  er/KT     wnere the summation is direct sum of representations.

Assume  r'G  is reducible and let a be an  (irreducible) composition factor of  r

such that  t    is a composition factor of zj„.   By Clifford's theorem ([5, Theorem l],

[6, (49.7)]), o„ is equivalent to  e  copies of ¿j   eC/KT' '  Thus o-~r'      and  r

is irreducible.  An elementary but considerably longer proof of (a) could also be

given.

(b) Assume^'G~r;G    Since ir'G)K^x£ G/K ?'x   and (r[G) K^lxeG/Kr[x,

it follows that  r     is conjugate  t .  The converse is easy.

(c) Let  K = K(H),   Kl = K(H A, and assume   \K\ = |rvj|, for otherwise there is

nothing to prove.  Let 772 = \G/K\  and let G = x   K u • • •  U xm K = y .K. U

U y    K,.  For any x. and y . there exists d £ A   such that d } £ H and  z^  1 ¿ H ,.
J m      \ '      t J i 1

Assume 5 = (v..) is an m xm matrix over 0 such that St' (g) = r'. (g)S fot all

g £ G. Then, in particular, this is true for g = d or v ..r'(d ;) = r' (d l)v ... Since

1 = r'(d 7) ■/■  r' (d  l) we have  v .. = 0 and thus 5 = 0 which proves the result.

Using the notations of §2 let p\ \A/H\ and M(H, K(H)) be the set of all t'

where T' £ R(H, K(H)). Let Al (H, K(H)) be a complete set of representatives of

the conjugate classes of A1(W,  K(H)).

Theorem 1. All the irreducible inequivalent representations of G over Í2 are

given by the set of all r       where  r' £ \J M (H, K(H)) and the union is over all

nonconjugate H, A/H cyclic, and p \\A/H\.

Proof.   The lemma implies that all the representations  r       in the theorem are

irreducible and inequivalent.   Thus the p-rank of the decomposition matrix is

greater than or equal to   | U M  (H.  KiH))\.

Any irreducible ordinary representation of G  is given by   T'      where  T'   is a

linear representation of K(H  ) with kerT^ O A = H..  Now H.  determines a

unique subgroup H of A  such that H   CH, p\ |A/£|, and H/H j is a (cyclic)

/5-group.   Pick  K(H)D X(H .) and let 5  be a linear representation of K(H  ) such
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that S(k) =1   if  k is a  p-element and  S(k) = T'.(k)  if k  is  ¿»-regular.  Now

kerS O A = H and thus there exist |AC(AA)/AC(AA j)|  extensions S'  of S to  /C(AA).

Since S'   H   . = S, it follows that SK(H)~£s'  and thus SG~£s'G where the

summation (direct sum of representations) is over the   \K(H)/K(H ,)|   extensions

S    of S  to  K(H).  Each S    is conjugate to some  r'  £ M  (H, AC(AA)) and thus each

S'      is equivalent to some  r'G.   From §2, the Brauer character of T.'      is a sum

of Brauer characters of some  t'c' with  t'  £ M  (H, K(H)).  Thus the decomposition

matrix has  p-rank equal to   |  U ZM  (AA,  AC(AA))|, and by  [6, (83.5)1  the result follows.

Remark.  Let A/H be cyclic (p may divide  \A/H\) and let K/H and  AC/AA

be two maximal abelian subgroups of N(H)/H,   K./H ¡5 A/H,   i = 1, 2.  Set  K =

AC j n AC2 and let 5 be a linear representation of AC with kerS D A = AA.  Let S

be an extension of S  to  K,.  Then, as done in the proof of Theorem 1,  S    ~2j5,

where the summation is over the distinct   |/C./AC|   extensions  5    of S  to  AC..  Sim-

ilarly S    ~2jS     where  S2 runs over the  \K2/K\  extensions of S to  AC2.  Since

S     and S     ate irreducible, it follows that each 5,    is equivalent to some  S 2

and conversely each S2   is equivalent to some  S,.   In particular   |/C.| = \K  \.  Let

X be the character of S , .  Then  x vanishes outside  AC  and thus it depends only

on S.  Thus  S , ~ S '.     fot any two extensions  S    and S'.   of S to  AC,.   Therefore

all S     and S2   ate equivalent.  This implies that the Brauer characters of S ,

and    r ''  are equal, and by  [6, (82.7)1  they have the same composition factors.

In particular if p-\~ \A/H\, then S G and S2   ate irreducible and thus equivalent.

4.   Blocks.  Let p\ \A/H\, A/H cyclic, and let Sub(AA) be the set of all sub-

groups L  of H such that A/L  is cyclic and AA/L  is a p-group.  Let L,,..., L

be the nonconjugate minimal subgroups in Sub (H) and set  A = I 1._, L . and   K =

AC(A).   If  A, = O'L  and  A2 = (l'(0x€ Gx~ l Lx)  where the intersection ÍT   is

of all elements  L  of Sub (H), then we may pick  AC(Aj) = iC(A2) = K(A) = AC.   For

each  L £ Sub(AA) choose   K(L) 7J K.  Let  C(H, K(A)) be a complete set of repre-

sentatives of the conjugate classes of the set of all linear representations o of

K with  kerff n A = H.  Let  B(<7, H) be the set of all representations  T'     where

T'   is a linear representation of  AC(L),   L £ Sub(AA), with ker T   O A = L  and  1'

conjugate to o.   Include in B(o, H) the irreducible composition factors of  T     ,

T      £ B(o, H)  and identify equivalent representations.   Note that two irreducible

representations S and Z  are in the same block if and only if they are linked.  We

say S  and Z  are linked if there exist irreducible representations  S = 5Q, S 1? • • • ,

5    = Z  such that S . and  S .    ,   have a composition factor in common for  ¿ = 0, 1,72 Z 2+   1 r

• • • , n - 1.  We prove

Theorem 2. All the distinct blocks of G are given by the collection of the

sets B(a, AA) where H runs over all nonconjugate subgroups of A, A/H cyclic,

p \ |A/AA|, and a runs over the elements of C(H, K(A)),
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Proof.  If L  is any subgroup of A  such that A/L  is cyclic, then  L  is con-

jugate to some element in Sub(H) for some H.  From §2 we may take  L £ Sub(H).

Thus any irreducible ordinary representation of G  is given by S     where 5  is a

linear representation of  K(L),  ketS O A = L, with  L e Sub(tf) for some  H.  From

the proof of Theorem 1  we have the composition factors of S     equivalent to rep-

resentations t       where  r' £ M   (H, K(H)).  Hence the set of all irreducible repre-

sentations S   , S any linear representation of  K(L) with kerS O A = L  and  L

any element of Sub(H), forms a collection of blocks.   This means we only need to

study this set of irreducible representations.

Let   1 < g < t, A   = fl?_ 2 L . and let p    be a linear representation of  K(A )

2 K such that p  K = a.  Let  Rep(/x  ) be the set of all irreducible representations
s Z\ g

S     where S is any linear representation of K(L) D K(A ), ketS C\ A = L, the

restriction of S   to  K(A )  is conjugate to p  , and  L  is any element in Sub(H)
Ë s

with L D L . fot some  z,   1 < z < g.  We use induction on g to prove that any two

elements of Rep(^i )  are linked, 1 < g < t.  Note that p, = o and Rep(zj) forms

the set of ordinary representations of B(a, H).

Assume g = 1.  Let p = p.  and  / = K(L .)  and pick  K(L) 2 J  whenever  L £

Sub(fz) and  L 7) L ..  Let  8 ,,•••, 8     be all the nonconjugate linear representa-

tions of  K(H) 2 /   such that 8 -, = p,   1 < i < m.  Then  8. ,   1 < z < 772, are all irre-

ducible and inequivalent.  Let Z  be a linear representation of /, with  kerZ O A

= L ,  and Z conjugate to p.  Then Z     is irreducible.  Let Al be a linear repre-

sentation of /,   M(k) =1   if k is a p-element and  M(k) = Z(k)  if k is  p-regular.

Since kerAl D A = H we have   |K(H)/f<:(jL j)|   extensions  Al'   of M  to  K(H).  Every

Al    is conjugate to some   8. and conversely every  8 -,   1 < 2 < to, is conjugate to

some Al .  Also  Al    ^¿¿M'^ where the summation is over all the extensions  Al

of Al  to  K(H).   From the lemma every  Al       is equivalent to some  8.   and con-

versely every  8. ,   1 < ¿ < 222, is equivalent to some  Al'    .  Thus every  8. ,   1 < z

< to, and no others, appears as a composition factor of Zr.

Now let  S be any linear representation of  K(L) 3 /,  kerS C\ A = L,  S ,  con-

jugate to p,  L 2 L j, and  L e Sub(£).   Take   K(H) D KiL).  Define a linear repre-

sentation  N  of K(L) suchthat N(k) = 1   if k is a p-element and N(k) = S(k) if

k is  p-regular.  Using the same method as above, we have some  8■ , and no

others,  appear as  composition factors of S   .  Thus  S      and  Z     have a composi-

tion factor in common.  Since  S  was arbitrary it follows that any two elements of

Rep(fi) are linked.

If t = 1  then there is nothing more to prove.

Let Z>1,   Kg<t,  A=Ag = nf=1L¿,and V = Ag_, = flf ~\ L ..  Let / =
K(A) D K, £ = K(D 2 ]  a"d  F = K(L  ) 2 /•  Let /x be a linear representation of

/  such that pK = a, i.e. p = zj  , and let  r] and  £ be any linear representations of
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E  and  E  respectively such that  rj. = Ç,. = p.  (Note  77 = p   _,.) Define the set

Rep(z^)  as done above for p., i.e.   by replacing  ¿, for p.  and  L     for L r  Let

the sets  Rep(/n)  and  Rep(rj), p = p    and  77 = p  _ j, be as in the beginning of this

proof.  From the above any two elements of  Rep(z^)  are linked.  Assume any two

elements of Rep (77)  are linked.  We shall construct two equivalent irreducible rep-

resentations of  G  one belonging to  Rep(7i)  and the other to  Rep(t^).  Since  77 and

Ç, were arbitrarily chosen provided that  r¡, = C,. = p, this will prove that any two

elements of  Rep(/j)  are linked, which completes the induction process defined

above.

Using the notations of the preceding paragraph, let  AC ,/AA  and  K2/H be max-

imal abelian subgroups of N(H)/H with  AC, D E  and  K?D F.   Moreover, let R =

ACj n AC2,  C = R D E,  D = R n F,   V = DC, and W = RE.  Let M be a linear rep-

resentation of /  with kerZM n A = H and M = p.  From the definitions of  E  and

E we have  ED F = C O D = /.  Thus there exist bases  x ,/,•••, x  /  of C/J

and y j/, • • •, y   /  of D//  such that   V/J = (x ./, y ./| 1 < ¿ < zz,   1 < 7 < zzz)   and

(x ./)  n  (y •/) = ///  for  1 < i < n,   1 < j' < 77z.  This implies that there exists an

extension  ZM    of ZM  to  V such that  ZM.~ = r]c and ZM„ = £-.  Let  ZV  be an exten-

sion of Al'   to R. Since  W/R = E/C, there exists a basis z jR, ..., zsR  of W/R

such that 2T.C, • • •, z  C is a basis of E/C  and the orders of z .R  in  W/R  and
1   '        '    s 2

z .C  in E/C  are equal.  Thus there exists an extension  Z  of  ZV  to  W  such that

Z„ = 77.  Let Z'  be any extension of Z to AC,. Then Z'     and Z      are irreducible and

Z G £ Rep(7/).  Similarly we can find an extension   Y    of  ZV  to  AC7  such that  YF

= Ç,.  Again   Y      and  Y       are irreducible and   Y      £ Rep(c^).  From the remark in

§3  it follows that  V       and Z       are equivalent, and thus any two elements of

Rep(/i) are linked.  Now the inductive hypothesis implies that any two ordinary

representations in  B(c, H)  ate linked.

Let p ,,.>., p     be the set of all nonconjugate linear representations of

AC(AA) 2 K(A) = AC such that piK = o.  Let 77'G £ B(o, H),   T'  as in first part of

this section.   Let 5  be a linear representation of  K(L) such that S(k) =1   if k  is

a  27-element and S(k) = T'(k) if k is  p-tegulat.   Then kerS Cl A = H and S    ~

¿S       where the summation is over all extensions  S'   of S  to   AC(AA) D AC(L) 7J K.

Since  SK  is conjugate to a it follows that only representations p.   appear as

composition factors of  T     . Since for each p. there exists a linear representa-

tion S of  AC(AA) such that S = p ., it follows that p   ,  i = 1, • • • , m, ate the only

modular representations in  B(o, H).  Now consider some   B(o,, H A  and let Ç,.,

j = 1, • • • , zz, be its modular representations where  £., • • • , ¿,    ate all the non-

conjugate linear representations of K(H A D AC(A.) = AC,   such that £.„   = ct..

Here  A,   is defined for H.   as  A was done for H. Now if H.   is not conjugate to

H or o.   is not conjugate to o then p.   and  £ .    are inequivalent.  If Z  is an
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irreducible representation of G and Z £ B(a, H), then Z e Bio., H A with either

H    not conjugate to  H or ct.  not conjugate to cr.  Thus only representations  £•

appear as composition factors of Z  or Z  is not linked to any element of Bio, H).

Hence Bio, H)  is a block which completes the proof of the theorem.

Note that the blocks  B(cr, H)  where  H 2 G ,   G    the derived group of G, are

the only blocks of G  containing linear representations.  If we set A = G'   then

these blocks are simply given by  Bio, G ).  By Brauer [4, Proposition (4E)] these

blocks are flat (as defined in [4]).

Now consider  KÍH) 2 KiA) = K. Since  K(H) is metabelian and A   is a nor-

mal subgroup of K(H), the blocks of  K(H) ate given by  b - bip, H) where  H runs

over all nonconjugate  (in  K(H)) subgroups of A   such that A/H is cyclic and

p \ |A/£|.  Let co,   be the corresponding linear character of the center Z(ÎÎK(H))

of ÇlKiH).  Consider the block  B = Bio, H) of G and let  co„  be the corresponding

linear character of ZiQ,G).

Assume  H is conjugate  (in  G) to H and define  A for H  as  A was done

for H.  Take   K(A) = K(A) = K and assume p is conjugate to o.  There exists a

linear-representation S of K(H) in  b - b(p, H)  such that Sik) = 1  if k  is a p-

element,   S    = p, and  kerS f~l A = H.  Now SG  is irreducible and SG £ B = Bio, H).

Using the characters  y and  y     of S and  S     respectively it is easy to show

that co? = coB  and thus  b     is defined and bG = B.   (The definitions of co? and ¿>

can be found in [2, §2] or [3, §2, 7l and need not be confused with induced representa-

tions.) Also, by Brauer [3, (4D)1, B  covers  b.  Assume a block  b.  of  K(H) is

covered by B, then by [3, (4A)1  some constituent of (r)„.„. belongs to b ..

Thus we have

Corollary.   Ler  K(H) 2 K(A).   The blocks  b = bip, H) of K(H) with ¡i conju-

gate to a and H conjugate to  H are the only blocks of K(H) such that  b    =

B(o, H).   Furthermore, these are the only blocks of KW) covered by B(o, H).

Now since  b(o, H) contains a linear representation S  of  K(H) with S„ = a

and  ker S n A = H, it follows that any  ¿7-Sylow subgroup of  K(H) can be taken

as a defect group of b(o, H).   Since  S     is an irreducible representation and S     £

B(a, H)  it follows that the defect  d of B(a, H)  is given by pd \ \ \K(H)\.  Thus

from Brauer [2, (2B)]  we have

Corollary.   Let  K(H) 2 K(A).   The defect group of B(a, H)  is the  p-Sylow

subgroup of K(H).

A principal indecomposable module belongs to a block B   if all its composi-

tion factors afford  (modular) representations in B.

Theorem 3.  The dimension of any principal indecomposable module belonging

to the block  Bio, H)  is  pa\G/KÍH)\  where  pa \\ \KiH)\.
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Proof.  Let  L £ Sub (H) and let p     £ B(a, H)   where p is a linear representa-

tion of AC(AA) D AC(L) 2 AC(A) = K with pK = a.  Set  AC(L) = /  and pl = |A//L|.

Let  T be a linear representation of A  with kerT = L  and T = p..  Then

there exist cp(p )  such representations  77 where  cp is Euler's function.

Let  T    be an extension of T to /   such that  T   = /j .  and let  p1 \\  \J/A\.  For

each  T there are p1  such extensions  T .

Let  jy(L) be the number of conjugates of L  in  Sub (H).  Then there are

v(L)p,cp(p) representations   T'  of /  such that  kerT' O  A = L j £ Sub(AA),  Lj  is

conjugate to  L, and  T   =p,.

Let  A = l\p A be the inertia group of p.  in  G.   Then  A D AC(AA).  Thus, since

the inertia group of T   is /, there are

conjugate classes in the set of all representations   T    defined above.

Now fix a representation  T    satisfying the above conditions.  Let ZM  be a rep-

resentation of /   such that  M(k) = 1   if k  is a  zj-element and  ZM(ze) = T'(k)  if k  is

p-regular.  Then  Mc and  T       have the same composition factors.   Also M    ~

¿ZM'      where the summation is over all the   |AC(AA)//|   extensions  ZM'   of ZM  to  K(H).

Let ps || |AC(AA)//|; then there are ps extensions ZM' such that ZM   = p. Note that

for all ZM , ZM. = p. = M.  Since   AC(AA) is the inertia group of p it follows that the

number of linear representations   8   of AC(AA) such that  8 is conjugate to p and

8. = p. is  |//AC(AA)|.  This implies that the multiplicity in which p     appears in

the composition factors of T       is  m. = ps\I/K(H)\.

Combining the above results it follows that the part of the column of the de-

composition matrix  D  corresponding to p     and the above representations   77       is

m ¡Jig i) where  A(g.) is the  (g.  x 1)  matrix  '(1,..., 1).   (The part of this column

corresponding to the remaining representations that we get from  K(L) and L   is

zero.)

Let  U be a principal indecomposable module such that  ¿7/(7'  affords p

where  U    is the unique maximal submodule of  U.  From  [6, (84.4)1  the dimension

of  U is

" =ZmL«L lG//^

where the summation ¿j    is °ver all nonconjugate elements   L  of Sub(AA).  A short

computation gives

u = pa-a\G/K(H)\Ycp(pl)
rr

where  pa \ |  |A|   and the summation is over  all elements of Sub(AA).  The proof

will be complete if we show ¿jCp(p) = pa■
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Since p\ \A/H\ we have pa |1 \H\.  Let H = Q x P with  \P\ = pa and p -{- |Q|.

Then H/L  is a p-group if and only if L D Q.  If £/L  is a p-group then  H/L  is

cyclic if and only if A/L  is cyclic.  Thus without loss of generality we may take

H = P and Q = I. Now £</>(p¿) = pa follows from the formula in [l, §3] which

completes the proof.

Corollary.   Let u be the dimension of a principal indecomposable module.

Then Vpiu) = vpi\G\).

Since every modular representation in Bio, H) has the same degree   |G/K(H)|

we have

Corollary.   The dimension of the unique two-sided indecomposable ideal of ÙG

that corresponds to Bio, H)   is   hpa\G/KiH)\2 where  pa \\ \K(H)\  and h  is the

number of the  iinequivaient)  modular representations in Bio, H),

By block some authors mean the two-sided ideal in the above corollary.   (See

[61.)

5.  Metacyclic groups. Consider the group

G = (a, b\an - bm = 1, ak = bl,   b~ lab = aT)

with r'-l = 7«r-/é=0 (mod 22) and / | ra.  Set A = (a).   For x | n  let  t    be the

smallest positive integer such that r x = 1  (modx).  Let  H   = (ax) and  K   =

K(H ) = (a, b'x). Let 22 = pV,   t = pS t'  and t   = p xf , where  (p, rí) = (p, 2") =

(p, /') = 1. We have  |G/K  | = t   = p xz"   and  \K   /Al = í/í   = p      * Z'/t".  If 2 I x

then t    \ t   ,   t' \ t', and 8    <8  .
Z   *     X       z   '    x' Z —     X

Let s I 72'   and let  r    be a linear representation of A   such that  r  (zî) = z^ ,

where  £    is a primitive sth root of unity in  ÎÎ and (y, s) = 1.   Note that  ker rs =

H  .  For each  rs   there exist / /<    representations r'   of K    such that r^ = T .

Here  r'ib's)1    ts - t (a).   Each r       is irreducible.   To get all the irreducible

inequivalent representations of  G  over ÎÎ we let s  run over all positive divisors

of 22',  y £ Ms/R  , and  r^   over all the  Z'/z"   representations with  r'A = T . Here

zM    is the multiplicative group of the reduced residues (mods) and  R     is the sub-

group of Al     generated by  r.  For each s  we have  l'cpis)/t   t'   inequivalent modu-

lar representations  r'     where cp is Euler's function.

Let z = p s  and let  r   - t .  Let o    be a linear representation of  K = K

such that  a  a = T .  Then  B(o , H ) is a block of  G.  We get different blocks by

letting s  and y run over the same values as above and o    run over the  t /¿z

distinct representations such that a   . = r .  Thus for each s  we have / cp\s)/t  t'

distinct blocks.   Each block Bio , H ) contains  h   ' = t'/t'    irreducible modular
z      s z   s

representations.   These are given by p?,   1 < ¿ < h     , where p . is a linear repre-

sentation of  K    with 11.^-0 .
s ZzK z
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Fix  s  and a    and let a = a ,  AA = AA  , and  h = h^s\ We shall give the decom-
z z' s' °

position and Cartan matrices of the block B(a, AA). Let p., • • •, ph be as above. Set s¿ =

p*s, t   . = /., 8    =ß.,  H    =L. and F. = AC(L .) = (a, bfi) where i = 0, l,---, a.

Note that s0 = s,   sa = z,   ts = fQ,   tz = fa,  8s = ßQ, and  Sz = /3a.  Also  Ks = EQ

3 F. I> ••• 3 E   = AC   = K where  E./F. is of order /.//., a > i > i > 0.
—       1 — —      a z t       j )      1    \    — .

Let A. = Z   ., À, = Z      then  r = r . r 2 (mod p ' ) where  r     =1   (mod p ' ) and

/-?     =1 (mod p'),  À, | p — 1,  0 < w < i.  Assuming tzz  is a smallest such positive

integer we have   À. = À .pw.  Thus  À .      /À. = p or   1   for  ¿ > 1.   But for  i > 1, / . =

lcm[À., /0]  which proves that /.   ./f. = p  or   1   for ¿> 1.  Since /,//0 divides

Aj  it follows that /i//0 divides  p - 1   and ß{ = ßQ.  Note that /¿//j  divides

p'~ :,  1 < i < a. Since iz/*s = fa/f0 = (/oZ/i^/i //o) we have the number of mod-

ular representations in  B(a, H)  equal to h = t /t    = /, //. and thus  h \ p — I.

Since   |E./A| = t/f. it follows that the highest power of p dividing  t/f. is  p       '

Fix  E.,   z> 1.  There exist  cp(p')  linear representations  T  of A   with ker 77

= L. and T = o . .  These partition into f ncp(pl)/f. conjugate classes.  Since

fa/f ■ is a power of p, it follows that each  77 has  p       ' = p       Z(fCL//f ■)  exten-

sions  T    to  E . such that  T„ = o.  Thus there exist exactly

t>i = p*~SzfJ0<p(piVtf

nonconjugate linear representations   T    of  F . such that  T„ = a.  The representa-

tions  T       ate irreducible and inequivalent and belong to  B(o, AA).  Using the

Brauer character of   T      and the method of this paper, it follows that every p. ,

j = 1, • • ■ , h, appears with a multiplicity /.//,   as composition factors of  T     .

For  i = 0 we have  hQ = p       s(/.//.) = p       sh  nonconjugate representations

T    of  AC   = E„  such that  TÍ, = tr.   Each  T       is irreducible.   Thus for each p.,

j= I,.--, h, there are  h0/h = p       s representations  T       such that   77     ~ p. .

The number of the ordinary representations in  B(o, H)  is   ¿j-_Qh..

Using the above and arranging the representations  T       and p.   appropriately,

the transpose of the decomposition matrix  D  of  B(o, H)  is given by

'D=('D0. <£>,,...,'Dj

where

Do = diag(l(hQ/h),...,I(b0/h))

and

D^f/f^Kh.),..., 1(h)),       z> 1,

with  A(x) the  (x x 1)  matrix    (1, • • •, 1)  and  D .,  0 < i < a, has  h columns.  The

Cartan matrix is given by
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C= 'Dod=  £ tD.oD.= pS~SsEb +  £ if./fx)2h.ilih),...,lih))

i- 0 z'= 1

where Eh is the h x h identity matrix.  A short computation gives  det C =

(p        s)   pa which is a power of p  as expected from [6, (84.17)].

Let  U . be a principal indecomposable module such that U ./U'.   affords pr

where   U.   is the maximal submodule of  U ..  Then   U . is of dimension  p       s     t  .

This could also be computed using the Cartan matrix above.   In the composition

factors of U .,   p       s[l + (pa- 1) /b]  factors appear that afford p?  and for each

Q /= 7>   1 < a < h,   p       sipa- l)/h  factors appear that afford p   .

In particular if p = 2  then h = 1   and each block of G  contains one irreducible

modular representation, and thus the two-sided ideal of Í2G  that corresponds to

Bio, H)  is the direct sum of  t     isomorphic principal indecomposable modules.
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