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MUNTZ-SZASZ TYPE APPROXIMATION AND THE

ANGULAR GROWTH OF

LACUNARY INTEGRAL FUNCTIONS

BY

J. M. ANDERSON

ABSTRACT.  We consider analogues of the Miintz-Szasz theorem, as in Ll5j

and [4j, for functions regular in an angle.  This yields necessary and sufficient

conditions for the existence of integral functions which are bounded in an angle

and have gaps of a very regular nature in their power series expansion.  In the

case when the gaps are not so regular, similar results hold for formal power

series which converge in the angle concerned.

1. Introduction. Let

(1.1) A = |A0, Aj, A2, ---!

be a given set of integers satisfying 0 = A.<A.<A<---<A   <•■-. The set

of all integral functions
00

f(z) = £ anz«

72=0

for which a    = 0, n 4 A, is denoted by F (A).

The classical Miintz-Szasz theorem, as considered in [15], [4] and [lO], con-

cerns  C[0, l], the space of functions /(/) continuous for [O, l] endowed with the

uniform topology, and the linear manifold V(A) spanned by the monomials 1/  "}

for À    £ A. We state
72

Theorem A. In order that the set of functions \t «|, A    £ A, be complete in

C[0, l], i.e. that  V (A) = C[0, l], it is necessary and sufficient that
00

(1.2) Ao = °>      H K1 -"■
72=1

//, however, S°°_,A~    < 00 then  V(A) consists of the restriction to the interval' 72-1     72 '

0 < x < 1   of functions  f(z) = 2°°_„ a z" analytic in \z\ < 1 and with a    =0,'   ' ' 72-0      72 J '      ' 72 '

n 4 A.

(For proofs and further details, see e.g. [4], [lO] and also [3].)
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The latter half of the theorem is particularly useful in dealing with questions

involving the radial growth of integral functions and, in particular, can be used

to prove the following theorem of Macintyre [12].

Theorem B. Let f(z) £ E (A) for a given set A  and suppose f (x) = 0(1)

(x—►<», x  real). In order to conclude that f(z) = 0 it is necessary and sufficient

that (1.2) /az'Z to hold.

To deal with the growth of lacunary integral functions in angles of the form

a< argz < ß  it seems desirable to generalize Theorem A to this situation. This

is the object of the present paper.   In this case the appropriate space is the

space of functions f(z) regular in an angle A   (which, without loss of generality,

we may assume to be bisected by the positive real axis) and continuous on the

arms of A under the topology of uniform convergence in closed sectors

\z: \z\ <R,z £A\.

It is more convenient to make the usual exponential change of variable

z = exp(-s)  and to omit the constant term z  ° = exp(-A.s) = 1. This yields the

additional advantage that we need no longer consider the set A, defined by (1.1)

as consisting of integers, but merely of positive real numbers such that À   +1 -

À    > 8 > 0 for some fixed 8 and all «. Thus if s = a + it we denote by R (a)  the
77 '

space of functions f(s) regular for |i| < a, continuous for \t\ = a  and such that

f(s) —► 0 uniformly in t as o —> do.  The topology of R (a) is that of uniform con-

vergence on closed right half-strips \s: a > 0"., |/| < <x|.  Correspondingly we

denote by V(A)  the linear manifold of all finite linear combinations of the func-

tions  exp(-A  s), « = 1, 2, ••• .

2. Results.  We prove

Theorem 1.  In order that the set |exp(-A  s)\,    ,.  be complete in  R(a), i.e.
72 A      € A

that V (A) = R (a), it is necessary and sufficient that

(2.\) lim sup |A(r) - (a/77-) log r\ = °o

where

(2.2) W>-      Z     Kl"'
0<\„< r

Theorem 1 is briefly alluded to by Malliavin and Rubel [14, p. 204] who con-

sider a similar problem for the space R (a) endowed with the topology of uniform

convergence on compact subsets of the strip \s: - <x < o < <x>, |f| < a\. The proof

of Theorem 1 is entirely analogous to the considerations of Malliavin and Rubel

(loe. cit. Theorem 9-1) but is given in detail here because of its relevance to the

question, more interesting for our applications to lacunary integral functions, of

what one can conclude if (2.1) is not satisfied.
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The situation as regards to the appropriate generalisation of the second part

of Theorem A is somewhat more complicated. This is due to the fact that the

function A(r) — (a/77/) logr need not be an increasing function of r, and to the

possibility of the condition  lim inf _>00lA(r) - (a/77) log r\ = - 00 being fulfilled.

These possibilities do not arise in the case a= 0.  Such questions are discussed

in V§6, 7 infra.  For sufficiently regular sets A we have

Theorem 2. Suppose that A, defined by (1.1), is a set of integers such that the

limit

/= lim \\(r)- ((b - zî)/277)log r\
r~* 00

exists. Suppose, further, that /(z) £ F (A) and that \f(z)\ < K for a < arg z < b,

where  K  is some fixed constant. In order that these hypotheses imply that f(z)

is identically constant it is necessary and sufficient that  I < 00.

Theorem 3. Suppose that A   is a set of positive numbers |A   \ such that  0 <

A, < A, < ■ ■ • , A   -, — À    > § > 0 for all n and that
12 72 + 1 72 '

(2.3) - 00 < liminf|A(r) - (a/rr) log r\ < limsup|A(r) - (a/77) log r\ = I,
r — 00 r -.00

say.   If the set lexp (-A  s)\.      . is incomplete in R(a)  {i.e. I < 00) and f(s) £

V(A) then f(s) is the restriction to the domain  \t\ < a  of an integral function of

the form

oo

(2.4) /(*)= 2Xexp(-Ans).
72=1

Making the substitution z = exp ( —s), and considering the A     to be integers

again, we see that, if I, defined by (2.3), is finite, i.e. if the monomials |z   n\ ate

incomplete in the sector |arg z\ < a, with the appropriate topology, then only inte-

gral functions of the form

72=1

can be approximated in the sector  |arg z| < a  by polynomials containing only the

exponents JA  S.

3. Proof of Theorem 1. The proofs are based on the following theorem of

Fuchs [7], in which A (k) denotes the class of functions f(z) regular in x = Re z

> 0, continuous in x > 0, and such that \f(z)\ = 0 (exp (k \z\)), z —> 00.

Theorem C. // A = \\v\°°=. is an increasing sequence of real numbers such

that Av + 1 -\v>8> 0   {u = 1, 2, 3,- ■ •) then the hypotheses f(z) £ A{k), /(Ay) = 0

(v = 1, 2, 3, • • ■ )  imply that f(z) = 0 if and only if lim sup ^    |A (r) - (k/n) log r\

= 00 where K(r)  is defined by (2.2).
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Proof of Theorem 2. If V(A) ¿ R(a) we consider R(a) as a subspace of the

vector space of functions continuous in the strip  |i| < a, with the same topology.

On applying the Hahn-Banach theorem we can determine a measure p(s) with sup-

port in some closed right half-strip, and a function g(s) £ R(a) such that

Jexp(- À s)dp(s) = 0,       « = 1, 2, 3, • • • ,
(3.1)

fg(s)dp(s)¿0.

We show that if (2.1) holds a contradiction follows.  The function f(w) =

f exp (-ws)dp(s) belongs to A (a) and /(An) = 0,  « = 1,2, 3, ■ ■ ■ ■ Since (2.1)

holds we deduce from Theorem C above that f(w) = 0, and, in particular, that

(3.2) J exp(- ns)dp(s) = 0,       «=1,2, 3, • • • .

If p(s) has support in the half-strip \t\ < a, o>A say, then we may approxi-

mate to g(s) uniformly in the domain by linear combinations of the functions

exp(— ns), « = 1, 2, 3, ■ • ■ .  This follows readily from the classical theory of

Runge on uniform polynomial approximation.  Since (3-1) and (3.2) are then mutu-

ally contradictory we conclude that V (A) = R(a).  Thus (2.1) cannot hold.

Conversely, suppose that for all r

À(r) - (a/zr) log r < Mj.

For a sufficiently small positive constant 8  we define À '  = À    +8 and note that' r 72 72

(3.3) A'(r)=    X   (A,)"1 < M2 +(a/7r) log r

a' < r
72—

for some suitable constant AL. Following Fuchs [7, p. 108] we consider the func-

tion

FM = (1 + w)~<-<>2a/n)w+2)LwH(w),

where

H(w)= 1H—-exPT7-f'
v=l(A2, + w A„

and L is some suitably chosen constant. The convergence of the infinite product

for H (co) follows from the convergence of S^_. (\')~    . Clearly, F (A.') = 0, n =

1, 2, 3, • • • , F (z) fk 0. The function F (w)  is regular for  Re w > 0 and continuous

on the boundary.  Moreover, it follows from (3-3), as has been shown by Fuchs

(loe. cit.) that

(3.4) \F(w)\<-—' f expcxH       (ReziOO),
(1 + \w\)

for some suitable constant M   , and a suitable choice of the constant L.
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To complete the proof of the theorem we show that

(3-5) F(u>) = J exp (- ws) dp(s)

for some measure ß(s) with support in a half-strip \t\ < a, o > A and such that

(3.6) J|exp(- 8s)dß(s)\ < oo.

For then we may choose wQ  so that F (w„) /= 0, and writing g(s) = exp((§ - w0)s)

we obtain that

fg(s)exp(- 8s)dß(s) = F(w0) / 0,

Jexp (- \ns - 8s)dß(s) = F(A^ ) = 0,        72 = 1, 2, 3, • • • .

If we choose w   > 8, as we may clearly do, then g(s) £ R(a). Since by (3-6)

there is a bounded linear functional separating g(s) from the functions  exp(-A  s)

we conclude that the set |exp(-A  s)\  is 720/ complete in R(a).

The theory concerning representations of the form (3.5) has been considered

by Macintyre [11, Theorem 5].  The Laplace transform

b(s) =f°°exp(st)F(t)dt

can be continued analytically into the region to the left of the contour, Y, indi-

cated in Figure I. Moreover, thanks to the factor (1 + |z^|)~2 in(3.4) the function

h(s) is actually continuous on Y.

- za

The inverse formula

-*■ o

Figure I

F(w) = -—r I    exp(- ws) h(s) ds
2rn  J r

gives the required representation (3.5). For the measure ß(s) defined as the re-

striction to T  of the measure (2rrz)— 1 h(s) ds  has the property (3-6) since, by

rotating the line of integration,

h(a + za) = z J    exp [(- za - a)t] F(it) dt.
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In view of the estimate (3.4) we obtain that \h(o + id)\ < K, for some K indepen-

dent of o. Thus J|exp (-8s)dß(s)\ < oo, as required, thus completing the proof of

Theorem 1.

4. Free sets of vectors.  In the case when

(4.1) A(r)-(a/77)logr <K1(1)

for some suitable constant K     the functions  lexp (-A  s)L      .  are free in R(a),

i.e. no one of them belongs to the closure of the linear manifold spanned by the

others. We may construct functions  F  (w) and h (s) as in § 3 so that

f(w)=(i+w)-«2^w+2±w n

v = l; v¿ri

A,',

K
W 2w

— exp
2w_\

>nis) =f™exp(st)Fn(t)dt,

where, as before, A . = A . + 5, 7=1,2, 3, • • • , for suitably small 8. The measures

ß (s) = (277z')~    h (s)ds  restricted to the contour Y  of Figure I all have support in

|i| < a, a > — a. It is easy to see, as before, that

I exp (-As- 8s) dß,(s) = 0, k 4 n,

=  F   (A'), ¿ = 72.
72       77     '

Thus the functions  |exp(-A s)\.      .   are free in  R(a) as asserted.
* n       An£ A

Accordingly, to each f(s) £ V[A)  we may associate an 'expansion'

CO

fis) •" J^anexp{-Xns).
77=1

In this expansion the projection maps  L  if) -a    in = 1, 2, 3, ■ • ■)  are continuous

(and so bounded) linear functionals on  R(a).  Moreover,

oo

|/(s)exp(- 8s)dßkis) = Ylan }exp(~ Ks ~~ Ss>dak(s>'
■ 72 = 1

On employing the notation, ||/||    = max |/(s)|,  cr>-a,|z|<a,we obtain that

l«J <  I^Pr'll/ILjexpi- 8s)dßk{s),

<K2ii+\'kf2a/n)xL+2)L~xk n
72=1; nák

Ai + A'
-i  exp (-4)

0) Throughout the rest of this paper the letter  K with subscripts will be used to

denote absolute constants.
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\ak\<

Since À, +. - A, > 8. > 0 we may use the estimate of Fuchs [6, i^emma 4] or [2,

p. I59] for the infinite product to obtain

K (1 + \'kf2a/n)xL+2)exp\ - 2k^(\:)-l)(AL)-xL

for some suitable constant A.

But

SUT1 = AU.)+ 0(1)     (*-»«»)

since A . = A . + 8,  i = 1, 2, 3, • ■ • .  Thus we obtain the desired estimate
77 '

(4.2) |«J1/A^<  KX/Hexp|(2a/77)logA,- 2A(A,)|||/||1a/Xfe.

It is from this estimate that our conclusions follow, though unfortunately the one-

sided condition (4.1) is of no use in this connection.

5. Proof of Theorem 3 and Theorem 2 (sufficiency).   If (2.3) holds, we con-

clude from (4.2) that

(5.1) limsup|a,|     Xfe < K,

so that the function /As) = X°°=. a    exp (-A  s)  is analytic in the right half-plane

a > log K5.

The method of [l, Theorem 3], for example, enables one to show, by approxi-

mating to j As) and f (s)  in the domain ff > log K  , by suitable polynomials that

/.(s) = /(s) in that domain.  The details, being well known, are omitted;  but we

point out that it is here that the condition that the set I exp (-A  s)SA   eA be incom-

plete in  R(a) (i.e. that  / < °°), as well as the left-hand inequalityof (2.3), is used.

To complete the proof of Theorem 3 we note that the constant  K, of (5.1)

depends only on the set A and not on any particular function f (s)  in P(a).  Thus

given any f (s) £ R(a) we may apply the above reasoning to f (s + B) for an arbi-

trary positive constant B.  Clearly, f (s + B) £ R(a) and is analytic for a + B >

log K  . Since B   is arbitrary f (s) is an integral function and is evidently of the

form (2.4);  thus Theorem 3 is proved.

For the sufficiency part of Theorem 2 we require only that

(5.2) um sup I A( r) - ((b - a)/2rr)log r\ < oc
r -» 00

(for a further discussion of this condition see §7 infra). We assume that b - a,
■ a

a = - a.  This involves only a replacement of f (z) by f (zel  ) for some suitable 6.

We also subtract the constant term, a~z  °, and assume, without loss of generality,

that /(0) = 0. The function f2(s) = /[exp (-s + B)] (B teal) belongs to R(a) and

also belongs to V (A) since / (z) may be approximated uniformly in any c ..mpact

set by the partial sums of its power series.
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The coefficients of fAs) must satisfy the inequality (4.2). Thus

(5.3) |fl;iJ1/Xfeexp(-B)<K6(A)||/2||a.

In this expression the term KAA) depends only on A and ||/2||a is bounded above

by a constant independent of B, by the hypotheses of Theorem 2. Thus in (5.3)

we may fix A,  and let B —► -oo. We conclude that a^   = 0 for k = 1, 2, 3, • - • .

Thus f (z) = 0, and the sufficiency part of Theorem 2 is established.

6.  Density conditions.  There are a number of well-known theorems relating

the growth of a lacunary integral function in an angle A to its growth in the whole

z-plane.  Before discussing these we introduce some notation;  for an integral

function f (z) we define

M(r, /) = max|/(z)|, \z\ < r,

M(r, A) = M(r, f, A) = max |/U)|,        \z\ <   r, z £ A.

The order, p, and angular order p (A)  of /(z) are defined by

log log M(r) . log log M(r, A)
p = lim sup —;- ,       P(A) = lim sup-;- ,

r -, oo log r r^oo log r

respectively.

The following theorem was proved independently by Edrei [5] and Malliavin

[13, §10.4.2].

Theorem A. Suppose that f (z) £ E (A) for some set A  of the form(l.l). Then

(6.1) p(A) = p

for every angle A   of opening greater than 27rA(l) where

A/1Ï       ,•     .• (Mx) - A(x^)   )
A(l) =   hm  hmsupi--—-\,

¿f->l- x->+oo   ((1 -ç)logx   i

is the maximum logarithmic density of the set A.

In this theorem the conclusion (6.1) need not follow if the constant 27rA(l) is

replaced by any smaller constant.  For an earlier result see [16].  In the case of

more rapidly growing functions similar, though less precise, results have been

established in [l]. In the case of sets A of irregular growth we must associate

with A  a 'densité extérieure' as defined by Kahane [9].  In Theorem 2 the set A

satisfies a more stringent requirement of regularity, but, with that requirement,

one can obtain a more precise theorem regarding growth of functions in angles.

This regularity can be dispensed with altogether in Theorem 2 if we consider,

instead of E(A), the class E(A, a, b) consisting of those functions f (z) regular

for a < arg z < b and continuous on the boundary such that, for some sequence

i«t>jLmii tne relationship
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/(z)= lim Y a zA"       (A   eA)

is valid for a < arg z < b  (see Theorem 5 below).

From inequality (4.2) one can readily deduce the following theorem.

Theorem 4. Suppose that A   is a set satisfying the hypotheses of Theorem 2

and that -oo < / < oo. Let f{z) £ E (A), and suppose that

(6.2) M{r, f, A) = Oexp((a+ e)rß)       {r _► <*)

for each e > 0, where A   is the angle a < arg z < b.   Then

(6.3) M(r, /) = Oexp((r + f)r^)        (r — oo)

for each t > 0, where r = o exp |/3 ((6 - a)/2)|. /t2 particular, p (A) = p = ß.

Similar, though somewhat less precise, theorems can be proved for rates of

growth faster than (6.2).  These are similar to the results of [l] and so we omit

discussion of them here.

We remark also that in the case when  b ~ a we obtain that r = o and the theo-

rem reduces to a result of Gaier [8, Theorem 6].

Proof of Theorem 4. We may suppose, as before, that a = - a, b = a. We now

consider the function

fR(z) = f(Rz) = /j(exp(- s + log R)),

say, for arbitrary R > 0.   It is clear that /    £ V (A) and that the inequality (4.2)

applies in this situation.  However, some further consideration is necessary.  The

constant K    in (4.2) arises partly from the factor Lw   in the definition of F Aw).

If each function  F Aw) is to satisfy the inequality (3.4) as we require, it is clear,

from the estimate of Fuchs [7, p. 108], that  L must be chosen so that

K4exp|(2a/77)logAfe - 2A(Ajfe)| -♦ K4exp(- 21) < 1.

It is here, of course, that the hypothesis of Theorem 2 has been used.

On applying (4.2) then, we obtain

With the hypothesis of Theorem 4 this becomes

\ak\ <  K8k2kR"Xkexp\{o+(){eaR)ß\,

for arbitrarily preassigned e > 0 and  k > k{(), say.

We minimize the right-hand side with respect to R by choosing R =

e~a{n/ß{o + e))   '".  The desired conclusions now follow from the well-known

formulae giving the order and type of an integral function in terms of its coeffi-

cients [2, §2.2]. In particular, we note that
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ßk'1
limsuplAJaJ     k   \< ß(a + e)exp|l + aß\,

fe-»oo

for arbitrary e > 0.  The estimate (6.3) now follows from [2, Theorem 2.2.10].

7. Proof of Theorem 2 (necessity).  The proof of the remaining part of Theorem

2 is contained in the proof of the following theorem, alluded to in §6.

Theorem 5.  Suppose that A, given by (1.1), is a set of integers such that

-»</,= liminf |A(r) - ((b - a)/2n)\og r\ < lim sup \\(r)-((b - a)/2n)log r\ = °o.
r-»oo r->oc

Then it is possible to choose a subsequence I«, lt°=1   and coefficients \a   \  m.  so

that the limit

nk

f(w)= iimy>>

represents a function F (w), regular for a < arg w < b, continuous on the arms of

the angle, and such that F (w) —► 0 as   \w\ —► oo uniformly for a < arg w < b. More-

over, the function so constructed will be an integral junction if I. = °°.

Proof.  As before, we consider only the angle |arg w\ < a, and suppose the

sequence I«. ÎT-,   to be such that
1 fe fe~ i

(7.1) lim |A(« )- (a/77) log«, ¡ = 00.

We consider the function

(7.2) G(z) = (1 + z)-2¿2a^* f[ j^^-expf- 2
v_l f Av - z V

Since the A     are integers, S^L. A~    < 00, and this implies the convergence of the

infinite product in (7.2). We take also that branch of z•2a'n'z which is real for

z > 0.  Thus, if z = x + iy = re'   , the function G (z) defined by (7.2) is regular for

x > 0.  Moreover, as we have already seen [7, p. 108]

(7.3) |G(z)| < •-^—2- X-Xexp|- 2x[A(r) - (a/ir)log r] - ar\
|1 + z\

for x > 0 and suitable  K   .

We define

FR(^)= fwzG(z)dz,

where  C is the contour consisting of the semicircle   \z\ = R, |arg z\ < rr/2  (where

R¡¿A   ,«=1,2, 3, • • • ) and the segment -R < y < R of the y axis, taking, again,
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the principal value of wz.  Clearly,

FpW =    /.aw",
K *—f        72

\„<R

where

(7„   ..-2.->*<«-™.-Hi-».>-^|££ „pQj,

and so is of the required type.

Now, for |arg w\ < a, \wz\ < exp (ar). Hence from (7.1) and (7.3) we conclude

that the representation

Jlak
wzG{z)dz,

in.

•lak

where   a, = A      + e (or small e > 0, is valid for  |arg zz;| < a.  The estimate (7.3)

shows that   fl°°   wzG{z)dz exists for each w and tends to zero as   \w\ —► oo   uni-
/ — ZOO ii

formly in |arg w\ < a.

The function  Fiw) has all the properties required.  If we apply an estimate of

the type (7.3) to (7.4) we obtain, in the case when  /. = oo, that lim ^^a  |       " = 0.

Therefore, the function  F Aw) = X°°_. aw"  is an integral function.  It is not diffi-

cult to verify that F(w) = F Aw) for |arg w\ < a. Hence, when /. = oo,  F(w) is an

integral function, as required.  Thus Theorem 5 is proved.

8. Acknowledgment. It is a pleasure to thank Professor W. K. Hayman for his

help in the preparation of this paper.
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