TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 169, July 1972
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ABSTRACT. Let X be a Riemann surface (compact or noncompact) with the
property that the length of every closed geodesic is bounded away from zero.
Then we show that sufficiently small complex structures on X can be described
without making use of Schwarzian derivatives or the theory of quasiconformal
mappings. Instead, we use methods developed in Kuranishi’s work on the exis-
tence of locally complete families of deformations of compact complex manifolds.

We introduce norms | I (k a positive integer) on the space of C™ (0, p)
forms with values in the tangent bundle on X, which are similar to the usual
Sobolev || “k-norms (In the compact case | |, is equivalent to || || .) Then we
prove that certain properties of “ B crucial é)r Kuranishi’s approach, are also
satisfied by | lk’

0. Introduction. The idea of deformation of a Riemann surface was initiated
by Riemann who computed the number of parameters on which the deformation
depends. In more recent years O. Teichmiller based the study of the space of com-
plex structures of a compact Riemann surface on the theory of quasiconformal map-
pings.

The most remarkable progress in this direction was made by L. Ahlfors and
L. Bers whorigorously developed the ideas initiated by Teichmiller and showed

that the space of classes of equivalent Riemann surfaces has a complex structure
(see [1], [4]). Moreover, their work extended the theory to the case of open

Riemann surfaces where it was established that the space of classes of equivalent
complex structures on an arbitrary Riemann surface is isomorphic to a bounded
domain in a complex Banach space (21, [sD.

In 1957 X. Kodaira and D. Spencer [6] made the first steps toward developing
a systematic theory of deformations of compact higher dimensional manifolds.
They defined the notion of a universal family of deformations of a compact complex
manifold and gave examples of manifolds for which such families exist. The gen-
eral problem of existence of universal families was solved by M. Kuranishi ([7],
(8)).

The purpose of this paper is to describe sufficiently small complex structures

on Riemann surfaces without making use of quasiconformal mappings and Schwarzian
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318 GARO KIREMIDJIAN [July

derivatives. At the same time it is illustrated how Kuranishi’s methods can be
extended to certain noncompact manifolds.

In $1 we list certain differential operators on complex manifolds and give
their explicit expressions for Riemann surfaces. We also give a proof of the simple
but important fact that the tangent bundle of every nonexceptional Riemann surface
is WO’O-elliptic (see also [3]).

§2 deals with standard facts about almost complex and complex structures
which are taken from [9].

In$3 we proceed toward proving the main theorem (Theorem 3.10). First, on
the space of (0, 0) and (0, 1) C* forms with values in the tangent bundle of the
Riemann surface X we introduce the norm | | g One of the important properties of
this norm (and also a crucial fact in our argument) is given by Proposition 3.4:
|G|, 4, < c,l@|, for sections @ of the tangent bundle. This is Friedrichs’ in-
equality with respect to | ‘k' We also need a Sobolev inequality with respect to
| |, (Proposition 3.5.1 and Corollary 3.5.2). In order to obtain it, we impose a
certain geometric condition on X. More specifically, we require that there exists
a number ¢ > 0 such that the length of every closed geodesic is greater than or
equal to t. We note that this property holds for compact Riemann surfaces and
also for a large class of noncompact Riemann surfaces. We should point out that
this condition is imposed by the approach we are taking. As it was said before,
the result we are after is known for arbitrary Riemann surfaces using the theory
of quasiconformal mappings and Schwarzian derivatives.

Now we have the tools to apply the implicit function theory for Banach
spaces in order to solve differential equation & (w(s) o /%) = 0 for diffeomorphisms

/¥: X— X. This enables us to complete the proof of our

Main Theorem. The universal family for complex structures, represented by
(0, 1) C* forms with finite | | -norm is the set B, of C™ (0, 1) forms w of the
form @ =A%, with ||, < oo and supy|w| <1, where X is the complete Poin-

caré metric on X and Y is a holomorphic quadratic differential.

I would like to extend my gratitude to Professors Lipman Bers and Masatake

Kuranishi for their valuable advice during the preparation of this paper.

1. Preliminaries. Let X be a complex manifold and let E & X be a holomor-
phic vector bundle over X with fiber C™. Let U = {Ui}iEI be a coordinate cover-
ing of X such that E/Ui is isomorphic to U, x C™. Let e u,n U]. — GL (m, C)
be the holomorphic cocycle defined by the conditions that CI)i(z, fl) = ‘D]. (z, el.].{"i)
where @ are the isomorphisms U, x C™ — E and (fl. are the fiber coordinates
i—jl
For example, the tangent bundle 0 will be defined in terms of a choice of

over U, . The dual bundle E* — X is defined on the same covering U by ‘e

local coordinates (z:. ar it e, z:.') on U, by the cocycle ]l.]. = 8(zi)/3 (z,.).
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1. 1. Definition. A C* form of type (p, q) with values in E is a C* section
of the bundle E ® 6*® ® 8*9, where 0*? = AG* and 0* denotes the complex
conjugate of 6*.

Thus, locally on U, such a form will be given by a column vector

i
$:-| -
Ler
such that, on U, ¢i are C* forms of type (p, ¢) and, on u,n U]., b, = ei].qS]..

The vector space of C* forms of type (p, g) with values in E will be denoted by
Cc?9(X, E).

Next, we introduce a hermitian metric ds? =2 Zga-B'dzadEB on X and a
hermitian metric on the fibers of E. The latter will be given by a hermitian scalar
product Mz, v), u, v € #~ Yz), which depends differentiably (i.e. C*) on the base
point z. Locally on Ui’ if {:i and 7, are the fiber coordinates of « and v,
bu, v) = 'ﬁibitfi, where b, is a positive definite hermitian matrix in particular, a
hermitian metric on the fibers of the holomorphic tangent bundle € will be the
datum on X of the hermitian metric dsZ.

1. 2. Definition. We introduce the following operators on the space C =
® ce-ax, E):

(1.2.1) 3: CP-9(X, E) — C* 9*1(X, E),

the exterior differentiation with respect to the complex conjugates of the local

holomorphic coordinates: It has the following property: 99 = 0.

(1.2.2) * 2 CPA(X, E) = €72 "78(X, ) (n=dimX),
locally defined by
+¢p = cdet (ga,'B)Z sgn (K Kisgn(LSL)pL K  gzK A gzL,
We explain the notation. First of all, ¢ = qu"]‘dz' A dz] where I = (il’ cee, ip),
J=Gpooeesgdy iy <ene<yy ji<een <, 1<ig<n, 1< jg<n, and dz' =
dz''A .. A 42", a7l —dFV A... AdF'9. Further, K€ is the increasingly
ordered g-tuple consisting of the subset of {1, --- , n} complementary to K; and
imilarly for L, gLK = gLKND g — Grere if A and 1 1
similarly for , P =g <,‘[>”, where, i an are p-tuples and
B and | are g-tuples,
g AB) _ 3 on(r)sgalo) gt 2T g @by igbo(e)

7,0

where 7 and 0 run over all permutations of the sets {1 ,--., p} and {1, ..., ¢},
respectively. Finally, ¢ is a constant, chosen so that xx¢ = ( — 1)? ¥4,

(1.2.3) #: CP 9(X, E) — C9 ?(X, E*),
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which is defined locally, on U, by

(#p), = b b,
We note that # commutes with the operator x.
(1.2.4) 5: CP (X, E) — CcP 171 (X, E),
defined by

S=—pl*dx 4
We call & the formal adjoint of d.

If ¢,y € CP9X, E)!p A #* ¢ is a scalar (n, n)-form which we denote by
A, Y)dX, dX being the volume element in the considered metric on X. In the
space L?'9(X, E) = {¢ € C?*4(X, E)| [xA(d, ) dX < o}, the scalar product (¢, ) =
Jx Al@, Y)dX is defined and gives L?4(X, E) the structure of a complex prehil-
bert space. If supp¢ Nsuppy is compact then (3¢, ¥) = (¢, 8¢), for
¢ € CPUX, E), ¢ € CP+9+1(X, E). This follows easily by Stokes’ theorem.

Let D2+9(X, E) be the space of C* forms of type (p, ) with values in E
with compact support. Let £2:9(X, E) be the completion of D?+9(X, E) with
respect to the norm || = (¢, ¢)%; WP+9(X, E), the completion of D?+9(X, E) with
respect to the norm N(#) = [($, ¢) + (T, Ip) + (5, )% WP+9 is canonically
regarded as a vector subspace of £pea,

1.3. Definition (see [3]). We say that the vector bundle E is W?*%-elliptic if there
exists a constant ¢ >0 such that, for every ¢ € DP+U(X, E), 4|2 < (|3l % + |66] 2
with respect to some hermitian metric on X and a hermitian metric on the fibers of E.

Let O =030 + 8d: CP»4(X, E) — C?+4(X, E) be the Laplace-Beltrami operator.
W-ellipticity implies the existence of the Green’s operator. More precisely, follow-

ing {3], we have

Theorem 1.4. If the vector bundle E is WP+9-elliptic, then, for any o €
£2-9(X, E), the equation Ox = a has one and only one weak solution
x € W2»4(X, E), i.e. for any u € W0»4X, E) one has (Ix, du) + (8x, du) = (a, u).

Moreover, if we denote x by Ga, then there exists a constant €y > 0 such that

1Ga)l? + 9Ga|? + [18Gal|® < c4llal)?.

Proof. Since E is W?:%-elliptic, the form m(g, ¥) = (¢, dp) + (8¢, S¢)
defines a norm m(g) = m(p, $)” on WP+4(X, E), which is equivalent to the norm
N(¢). Moreover, (¢, ) gives W?*9(X, E) the structure of a Hilbert space. Let
a € £2+9(X, E). Then u — (u, @) is a bounded linear functional on W2+4(X, E)
with respect to 7{¢), because |(a, )| < |lof |l < ¢*|al|m(x) = Mm(x). By the Riesz
representation theorem, there exists a unique x € W?»4(X, E) such that m(x, u) =
(a, u) for all u € WP+4(X, E). Moreover, we have that m(x) = ||H||, where [|H|| is
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the norm of the linear functional H(u) = (%, a). Thus m(x) < c*|a]|. Since m(¢)

is equivalent to the norm N(x), there is a constant €y > 0 such that

N2 = %)% + f10x)® + 1817 < egllall?

i.e. the linear map G: £2:9(X, E) — W?*(X, E), x = Ga, is continuous. Q.E.D.

Remark 1.5. Since O represents a strongly elliptic system, it follows from
the regularization theorem (see [3]) that if a € £2:9(X, E) N C?+9(X, E) then x €
C?»4(X, E) and one has Ox = a in the classical sense.

For the remaining part of this section we assume that X is a nonexceptional
Riemann surface, i.e. X = A/T", where A is the unit discin C and T is a
Fuchsian group. On X there is a complete hermitian metric ds? =A2dzdZ of
constant negative curvature which is induced by the noneuclidean metric on the
unit disc, i.e. 2|dz|/1 - |z|%. We now write the operators introduced in Definition
1.2 for the holomorphic tangent bundle @ of X. In this case, we note that if ¢ =
hdz? N dz9/9z € CP+9(X, 6) then b can be thought of as a C™ function on A
such that A(y(z))(y ')? ~1(z)§' (2)9 = b(2) for all y €. Here 0 < p<1,0<qg<l.
The volume element with respect to the metric ds? is dX = (i/2)A\%dz N dz. If
f is any differentiable function, then by [y 5 /z;, etc., we denote the derivatives

0f/0z, df/ 9z, %f/9z0zZ, etc.

@) 0 = (- )Ph_dz? A dz'* 3/9z,

(3) s = (- 1)PiA2/2! ~P=9hdz' ~A A dz! ~2 §/9z,

4) #h = (- 1)?9\2hd2? A dz?)dz,

(this notation indicates that #¢ is a C™ form of type (g, p) with values in 6%)
) 8¢ = (- NPT (PH=IN2C2-0-0)p) G20 A Gza-1 3/,

Of course, the above formulas are to be understood with convention that a
form containing dz° or dZ7, with s,r> 1, or s <0, is zero.

©6) Il12 = [ 22491 A2@=0=a)| |2 gz p 7.

Proposition 1.6. The tangent bundle 0 is WO’O-elliptic with respect to the
metric ds? =\2dzdz.

Proof. Let ¢ = h9/dz € D9:9(x, ). Then, using the formulas (2)-(5) we
obtain the following expressions:

O¢ = 53¢ = — 2074 (\2b.)_9/0%,

*loxg = -0\~ 2(%)_1_9/9z.
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Then
O¢ -+l o+ = 2272207 1A _—2072) A )b /0.
Since the metric ds? = A2dzd% has curvature — 1,
= 4llogN)_z = 407TA__ —AT2A ).

So O — « !0xp = ¢. Since 4! is the adjoint of % and 8 is the adjoint of 9
with respect to the L ,-scalar product, we get that

($,¢)=@p,d) - (+"'oxgp, @)
— (506, B) — (35 * , * P) = (b, Ip) — (5+ b, &+ ).

So ¢l = 196)1% - 18461, or [I8ll” < 9% Q.E.D.

2. Complex structures. In this section we give the facts we need concerning
almost complex and complex structures on a complex manifold. The proofs can be
found in [9).

Let again X be a complex manifold of dimension 7 and let X be the under-
lying C* manifold of dimension 2n. Let 0 be the holomorphic tangent bundle of
X and TX the (real) tangent bundle of X. If CTX is the complexification of
TX, then CTX = 0 ® 0, where 0 is the complex conjugate of 6.

2.1. Definition. We say that we have an almost complex structure on X if
there is a C*® vector subbundle 6’ of CT X (over C) such that CTX=6"' & §'.
We note that a complex structure X' on X determines an almost complex
structure, namely the C* vector subbundle €', where in this case 6’ is the holo-

morphic tangent bundle of X'. Let p”(X) be the projection of CTX onto .

2.2. Definition. Let 6 be an almost complex structure on X. We say that it is
of finite distance from the given complex structure X on X when p"(X) induces
an isomorphism from 8’ onto 8.

Proposition 2.3. There is a bijective correspondence between the set of almost
complex structures of finite distance from X and the set of all C™ differential
forms w of type (0, 1) with values in @ such that, at each point p € X, @ o w:

517 i (.9-[’ does not have eigenvalue 1.

We explain the last part of the proposition. Namely, every C* form w of type
(0, 1), with values in 6, W, = za’ﬁwg(zi)dffa/az? on the ith coordinate neighbor-
hood, can be thought of as a C* homomorphism w: § — 6, given by oAZ $°0/0z %) =
Ea ’Bwﬁg %9/3z”. One checks easily that this homomorphism is well defined be-
cause « satisfies the rlght invariance property, w; =], ror At p € X, we define
0 — 5 by @(L) = (L), L e@
Remark 2.4. Let X be a Rlemann surface. Then w = w(z)dZd/dz and, for
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p X, @ 5p - ép is given by @(59/9%) = w(z)h(z) 3/9%. Furthermore,
@ o @b 9/0%) = w(w(z)h(z) 3/9Z) = |w| 26 9/ 9Z. Therefore, the condition sup y|w(2)|
<1 implies that w determines an almost complex structure of finite distance
from X.

The almost complex structure determined by w will be denoted by X

Theorem 2.5 (Newlander-Nirenberg). The almost complex structure X is

induced by a complex structure if and only if dw - Y% lw, w] =0

Here, [0, 0] =X “’Z)-y dzP A dzY 9/ 9z%, where

a, B,y
w;,y = Z((aw;/az')wtg - (awg/az')mfy).

We note that [0, w] € C(X, 6).

Remark 2.6. Let again X be a Riemann surface. Then o = w(z)dZd/0z €
C% XX, 6) with sup|w(z)| <1 determines a complex structure on X.

Let [ be a diffeomorphism of X. Let 6 and 6, be almost complex structures
on X.

2.7. Definition. We say that { is an isomorphism between 6] and 0, if its
differential df sends 0{ to 05.

If w € CO (X, ) such that X, can be defined, then there is a unique almost
complex structure 6’ such that f is an isomorphism of 6’ onto X, 0'is
induced by an element ¢ € C% (X, 6) when 6' is of finite distance from X. We
set Y= wo f. Y is called the transform of @ by f. o [ can be defined if  is
sufficiently close to the identity map of X in C'-topology.

Let z = (zl, «++, z") be a chart of X with domain U. Let U1 be an open
subset of U. Assuming that /(U,) C U and that w o f = ¢ can be defined in this
case we have the following

Proposition 2.8, If {(2) = (f!(2), .-,/ ™2)), 0 = LwA2)dz 28/325, =
El/lf(z)a'fa‘a/azﬁ, then

Zw%("’ Z}: o+ 07 (/(z )))

We will also need the following fact:

Z ‘9’ A

Proposition 2.9. Let V be a vector space and let h: V — c%%x, 6) be an
R-linear map. Let f* be a C* [amily of diffeomorphisms of X such that [° is
the identity map. Assume that, for each chart z = (z',..., 2" on X,

f5(z) =z% + bz, s) (mod Is|?) (s €V, |s|small)

where b(s) = zaba(z, 5)0/0z% Let w be an element of CO’I(X,B) which represents
a complex structure on X, i.e. Ju - Ylw, wl = 0. Then
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wof =w+d,bs)+woh(s) (mod]s|?).

Here 5(‘,7] = Jn - [w, 7], where if 7 =27%2)d/dz %€ Cc%9%X, 6) then

B
Z 8’8 aa)a a
[ b ]= 77 7 d_a
Y 7<3z7 ©a 57 My 928

If £=3&6%2)9/9Z°% then w o &= ngtfaa/azﬁ.

3. Families of complex structures on Riemann surfaces. Proof of the main
theorem. Throughout this section we assume that X is a nonexceptional Riemann
surface satisfying the following condition: the length of every closed geodesic is
bounded from below.

Let A ={z €C||z| <1} and @ C A be a fundamental domain for X. Let &>
0 be an integer.

3.1. Definition. If ¢ = 53/dz € CO%X, 6), let

1/2
Blp 0 = (Kz; fﬂ (1- lz]z)z(a‘2)|Dab|2dxdy) ,

If w=wdzd/dz € COUX, 6), let
1/2
2\2(a~1)pa,, 12
!("‘k’ “=<0§;e,fﬁ(l_lz‘ ) lD lUI dxdy) .

a
A]a= 2
Here D% =9%|9z"19z 5 a=a + a,. Itis easy to see that | Ik q defines
a norm.

Proposition 3.2. The equivalence class of this norm is independent of .

Proof. Let Q' be another fundamental domain. Then Q' = {(Q), where y €
[, X=A/T. Let ¢ € C»%X, ) and assume lqﬁlk g <. Then hoy=h- y' for
all y el If y= ez - B) /(1 - Bz) |B| <1, then we claim that

a
D%h oy = (y')l—a ch, a.(l - BZ)V-aDvb,

v=0

where the ). a depend only on a. The claim is easily verified by induction on
a. Now 1 - |y(z)|2 (1-12|9ly"(2)| and |1~ Bz| >1 - |z On the other hand, we

have

1912, gr = 2 J (1= D220 de
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where {=(z), z €Q. So

S0t - 102Dy 2 dean
= > [ @ = @YD oy 2y ()| d= iz

< e f, 1= DY @D 3 e, 120 - 122~ D|0%| dxdy

—cf, 2 Z ley, |20 = [2192=D| D7 |2 4y,
V=
But this shows that |¢~|§ ot S cl(k)|¢lz o In the same way we can prove |<;S|,ff’ﬂ

<c (k)quIZ q- Here ¢, and c, depend only on k. Also, following the above
method, we prove that there exist constants ¢, (k) and c, (k) such that |(o|k o <
ci®lwly g, o], g <c;@lwl, o Q.E.D.

Remark 3.2.1. From now on we will write |$|, and |w|, instead of |¢>|k Q
and |wl, q- Let C° {6 € c%0x, 0)| |#], < o} and cl-{wec®l(x,0) |(o|k
< oo}, By }(0 and }( ! we denote the Banach spaces, obtained by completing C
and C;, resp., with respect w | |,.

Remark 3.2.2. The proof of Proposition 3.2 shows that, if A CQ is a measur-
able set and A’ = y(4) C Q', |¢’lk,A' < cl(k)[¢|k’A, l‘/J’lk,A < Cz(k)|¢lk,A” where

8I2 , = ;k [ = 21922 | D%)2 dx dy.
Q-

Of course, the same thing holds for w, too.
We now prove the continuity of certain operators with respect to the | | p-norm.

Proposition 3.3. There exists a constant c (k) (depending only on k) such
that if w € C; then |dw|, _; < c,(k)|wl,.

Proof. By (5) of §1 with p=0,g=1, b0 =- 2)\'4(A2w)z 9/0z, ® = wdzd/ dz.
Put b =-2A"%9/9z) \?w). On A,

A=2/1 - |z|%),
b= %= 2D, - 20 - |22,

D% = ,BZda' sDPla - 12| D210 A w 4 2:6 d; gDPLz(1 - 2| )1D% Puw,
:0 =

1
where d d are some constants. Now
a' ﬁ’ a’ ﬁ
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=(1-1z]H)° if B=0,
(1 - 121D72pAl - 12)%]) { < 21 - ||?)*~! if B=1,
< const. (1 - |z]|2)*=2  jf B>2;

< const.(1 — |z|2)°”'I if B=0,
(1 - 2] 2|pAz(1 - |2| )]

< const.(1 — |z|2)*"2 if B> 1.
Then

(1 -12))%"2|p%]| < C,(B) | (1 - 12|D%D* M w| + (1 - |z|2)*~1 | D%|

o .
+ Z (1 _ |z|2)a-2'Da-,B+lw|
[B1=2

B=1

+ Z(l - 'le)a—lea-ﬁw'].

On the other hand, a~2>a~B if B>2 and a-2>a-B -1 if B>1. So
(since 1 - |z|2<1)
<1-1z/)*#  if B>2 and
(1 _ lle)a-z
< (- |z|D%A1 i B> 1.
Hence
a+
(1 - 212" 2|D%]| < c;’(k);(l _ ]z|2)'3"1|D'Bw|,
=0

which shows that 80|, _; < c,(k)|w|,. Q.E.D.

Proposition 3.4. If ¢ € Cg(X, 0), then there is a constant ¢y, depending only
on k, such that |G|, 425 cplobl,

Proof. By Theorem 1.4, IG¢|% + lanSI(z) < const. |¢| . Take a point p, € X
and let p(p) = d(p, p) where d(p, p) is the geodesic distance from p to p.
Then, in terms of local coordinates, p is a locally Lipschitz function on X, and,
whenever dp/dz exists, we have |A~(z)3dp/dz| = %, A|dz| being the complete
Riemannian metric on X (cf. [3, p. 90]). This is easily verified on Q. For, if z,
€ Q is such that n(z,) = p, then
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1+ |(z = 21 - 2y2)|

(z) =1 .
pret= o 1 - |(z — 2)/(1 - 72)|

Let 0(2) = (z - z)/(1 - Z2). Then |p,| = |0'(2)|/(1 - lo(2)]D) =1/(1 - |2]?) and
(1- |7 2)|pz|= 1.
Let v(x) be a C™ real valued function of the real variable x such that

1, x<1,
v(x) = and 0 < v < 1.
0, x>2,

Then the function Il,,(P) =v(p/n) is a locally Lipschitz function X such that
t, =1 on the geodesic ball B with center p, and radius » and p =0 outside
the geodesic ball B,

Let Go = ga/az Now f()\zf) dz is a C” (1, 0)-form on X. Then
f()tz £),dz is a Lipschitz (1, 0)-form on X with compact support and, by
Stokes theorem, [y d(#’zz E\? rf)z dz) = 0, or, taking a fundamental domain Q,
fa d[przlz(ti &1 - |2 2)'2)zdz] = 0, where

d(W2E 40 ~ |219)77), d2) = - [REEQ - 2|7, ) dz A dz.

Differentiating the above expression and using the fact that, for any two
functions [ and g, [|/gl <% [|f| + % [|g|, we obtain the following equality:

[ 216170~ 22 dxdy
< calf, 1820 - 1= ey LI - 11D sy + [ e, ]
for some constant C '6 Since

* B - 2% 20 - 12D = b (p=hd/92)
we see that there is a constant c(; such that |Ge|, < c(; |l o

We now proceed by induction: Assume that there is a constant ¢, _,; such that
]G¢|k+l < cp_yl¢l,_ - Because of (¥, we can estimate

kt2
R el

dx dy

in terms of

fﬂ(l - |z|2)2(a'2)|Dab|2dxdy (a < k),
[ - 1= 2P dxdy (B < kD).

Here r+o0=%k+2,7>0, 0> 0. Now, using
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J QRO ATZOE AR ),
% k+1
N Z(A—z Cen ()\- 26;); s ););df =0,

. ———
———

k+1 k+2
f nd;@x“(r R
A k k+1
. 2()“-2 . (A—2(A2£)z); RN ););dz§= 0,
k+1 k+2
we can estimate
' k+2g |2
f (1 - |z|%)%* 3__5 dx dy
Q .321‘ +

in terms of

k¥2¢& 12

dxdy, [, (|2 DIDPE Pdxdy,  B< kL.

d
f (1 - |z| )2k
2 9z"9z%

Similarly, using

fgdguf,(x“)k-‘ P Ly I R T

k k+1
A2 20 ), .)Edziz 0,
k+v1 k+2
[ dguz()\z)k"z(h’z()\'z L WT2O2B) ),
Q) ——————
k k+1

—~

k k+2
k+2l

A0 0T, dzi -0,

we can obtain an estimate on [o(1 - || 2)2k| gk +2£ / 37 2dxdy so there is

a constant ¢, such that |Gq5|k+2 < Ck|¢'|kf Q.E.D.

Lemma 3.5. Let t = inf {length (¢): 0 closed geod.}. Let 0 <s<t/2. For

z €Q, let B(z, s) be a geodesic disc of radius s and center z, i.e.

1+ )z -0/Q - &) %

B(z, s) =4{ € Alp(z, ) = log 1-|(z -0/ - &) =
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Let yys -y, €I be sucb that B ;= B(z, s) n y Q) £ B (bere © stands for in-
terior), 1 < j < p. Then y -i(B )ﬂy"l(B )=0 for itj.

Proof. Assume not. Then there exists { € Q such that ¢ = Y7 l(z].) =y; 1(zl.).
First of all z, £ z; because ?/i(Q) ﬁ?/j(Q) = @. Also z;= y].ylf' l(zi), z,%; € B. Thus
z; and z; determine the same point on X. Moreover, the noneuclidean straight
line connecting z; and z; corresponds to a closed geodesic on X whose length

is strictly less than ¢, because z, z; € B. But this is a contradiction. Q.E.D.

Proposition 3.5.1. There exists a constant c4(k) such that, for all z € Q
and all ¢ =h3/dz € Cz, |h(2)] < e (k)1 - Izlz){g’)lk, for k> 2.

Proof. First we make the following observation: Let u be a C*-function
with compact support on A. Let z € A. Consider the function ¥(r) =
(I/Zﬂ)f "z + rei®)d6. Then ¥(0) = u(z) and ¢, as a function of one real vari-
able, is also a Ck-function with compact support. By integration by parts we
obtain that u(z)=- | 0r¢" (r) dr. Now

l/I”(r)= % 2ﬂ<a u 219 +22== a u a u -2i9>d0

a2 eard g=z+rel?
So
1 oo (2T r
u(z): ; 0 fo ———-—‘C_ z|2
(7) 2 (:)2 — _
B APt (¢ - 2) @-) + LT dr b,
I a¢
or . 1
ulz) = - — [ ————
A1 - 2|?
(8) B )
(&-2)2+ L ¢-2)(¢ 2 (&-2)?|dd.
ac:z agag a2

Take 7 < t/4, where ¢ is as in Lemma 3.5. Let

1+ |(z- )/ - &)
- [z - O/ - &2))

p(&) = log

and let v be the function appearing in Proposition 3.4. Then w({) = 1p({)/1) is
identically 1 on B(z, 2r) and identically equal to 0 outside B(z, 27). Tke func-
tion ph is C™ and with compact support in A and p(z)h(z) = h(z). Now, D?( ub)
= yDzb +2DuD1p + bD?p. By a direct calculation one verifies that IDI#I <
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c,1-1¢ SRR EMES c (1 - |¢12)~ 2, where the constant ¢, depends on 7, too
Formula (8), applied to the function ph, gives that

M) < const. [, (D21 + IDU4IL —11)" + o - g1

9 < const.<fB( , )dCdZ>l/2
'<f3(z, 27)(ID2b|2 + [D1B2(1 — |¢1D2 + b2 - |¢|2)"4>d§dZ.

7 _ L 1.12)2 = 1-4
. j;s(z'zr)dga’équr(l 12|D2|1 + Zw| ™ 4dw dw,

— and A ={z €A/|z| < (e = 1)/(e?" + DI

Let ,,Q,, .-+, Qp be fundamental domains such that B, = Q].ﬁ B(z, 27) #
0, Q= y].(Q), y; €. Then

Lo, 2,121 4 DRI = 11072 + 15120~ DL
- ifa (ID25]2 + [D1h|X(1 - |¢))7 2 + B2 - [¢1P) "D L L.
7=1 ]
As in the proof of Proposition 3.2 we see that

% fB (|D%b|? + |D'B|%(1 - 12172 + b2 - |¢D~DdLd
7
< ; <4 fyj.l(Bj) (ID?5]2 + |D1A|2(1 = |£']D)72 + b2 = ||~ dL L.
By Lemma 3.5.,
Zp T A R T b e R T e U S
a1y i 2

< ‘12' f9(|D2bl2 + |D1b|2(1 Ve l2)—2 + |_}J|2(1 Y lz)—4)dC'dZ’.
(9), (10), and (11) imply that |b(z)| < c4(2)(1 - |z|2)|¢|2. Q.E.D.

Corollary 3.5.2. There exists a constant C5(k) such that if ¢ =h3d/dz € Cg
and o =wdzd/0z € C’: then |D%b(z)| < cs(k)(l - |z|Dt- *el, and |D*w(z)| <
cs(k)(l - |zl2)" °|w|k, where k> a+ 2.

Proof. Repeat the proof of Proposition 3.5.1 for the functions (1 — |2|)* D%p
and (1 - |z|2)**1D%w. Q.E.D.

Remark 3.5.3. The above inequalities are independent of (). Using the relation
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a
D%hoy = —t > D%, y-e Z=B .,
Glel-1 5= 1-Bz

appearing in Proposition 3.2, we see that

a
2ya-1 -
1= DID* D% oy | < D le, Gl = |21 DVB| < cf (B)|b) .
v=0
Of course, the same thing holds for w = wdzd/dz € C;.
Let ¢ € Cg and p € X. We draw a geodesic g(¢) starting from the point p in
the direction of @(p). Let f(p) = g(1). Thus we obtain a differentiable mapping
f: X = X.

Lemma 3.6. If |<7S|,c is sufficiently small, { is a diffeomorphism.

Proof. In local coordinates the geodesic equation is

dzg(z' 1) ., )\z(g(z, t) dg(z, ?) >2
dr? Mg(z, 1) dt

with the initial conditions

d

dg(z, t) — Bz _; 2
L2D b, ko

glz, 0) = z,

t=0

Then it is easy to see that [ is of the form [(2) = z + 7(z), where

W)= hz)+ P P& =ATE) Y e, (B

n>2 ptv=n
Here €,y are bounded functions of z and Z. By Proposition 3.5.1 and Corollary
3.5.2 it is clear that we can find a constant c (k) such that [A(z)y(2)]| < c (k)|P],;
|Dn(2)] < c6(k)|¢|k, if |¢|, is sufficiently small. The Jacobian of f is |/zl2 -
VZ"Z =1+l -In-| 21 - 2¢(k)|@[,, which is strictly positive if |p|, is suf-
ficiently small. So f is locally a diffeomorphism, which means that the image of
{ is open. Let p,, -+-, p ,-:- be points in the image and suppose that
lim,_ p,=p. Let g, -+, ¢q,, -+ be such that [(g) = p Now the sequence
{qn} cannot be discrete because the length of the geodesic joining p, and ¢, is
|A(g,)h(g )| and [M2)b(2)| < c(lhl,. So there is g such that lim 4y, = 4. Thus
f(g) = limn_.oo/(qvn) = limv_.mp,,n = p. Hence the image is also closed and | is
onto. We prove now that [ is one-to-one. Let p,, p, € X, p; # p,. Let ¢ be as
in Lemma 3.5 and assume ¢ is such that ||, < t/8¢c (k). Then f(p,) £ [,) if
d(p,, p,) > t/4, where d(p,, p,) is the geodesic distance between p,; and p,.
This is so because d(pl’ /(pl)) = |Ap )bp ), dp,, /(pz)) = I)\(pz)b(pz)l, and if
/(pl) =/(p,) then

dpy,p,) <dpys (o)) +d([(p), p,) <2¢ b, = t/4.
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But this is a contradiction. So we consider the case when d(pl, pz) <t4. Let B
={peX=dp,,p)<t/2} and let m: A — X. Then m: 7~ Y(B) — B is one-to-one.
We consider the map 7~ ! o f o 7 which we denote again by [. Now assume that
f(z)) = {(z,) where z; corresponds to p.. Then z, + 7(z,) =z, + n(z,) and
2y = 25l = ) = 1) < (U, GO + 115 GOD ey = 2] < 2 DIl e, - 2,1,
but this is impossible if 2C6(k)l¢lk <1. So f(p,) # /(pz). Q.E.D.

Remark 3.6.1. The diffeomorphism f: X — X can be lifted to a diffeomorphism
of A onto itself which we denote by f, too. Since |7(z)| < ¢ (K)1 - |z|2)|¢>|k,
fl 54 =id.

Let w € C,. If |w|, is sufficiently small then ® o[ can be defined, and by

Proposition 2.8

[+ w(f (Z))Zz-

wof(z) = —— .
.+ wlf ],

Denote w o f by R(w, ¢).

Proposition 3.7. If U and W are sufficiently small neighborboods of 0 in
Cli and Clg, resp. (k sufficiently large), then R: U x W — Cé_l is a uniformly

continuous mapping.

Proof. First we make some general remarks. If = is a Ck-function and if D°
indicates differentiation of order s < k, we denote by (D*u«)” any expression of
the form H7= 0%u/dz" Yoz, syt SZj =s. If v is also a Ck-function, then

(12) DS(u-v) = Zc DS~ *u.D*v, c, being constants.
T r

(13) Ds(u/v) =Z(C’1 o /y"+1)D 11) ...D ™. DS—uu,

n
where ) T are some constants and the summation is over 7, STRERFR M such
hat0<n<sandr+ st =mn

7, T
(14) DS (u(v(2))) = Zarl , (D7u) (u(2)) - (D)1 ... (D%V) 'S,
ceerg
where ar1 ,_ are constants and the summation is over all 7, STEERTE such
ceuTs

that 7+ oo+ 7 =77, + 21+t s7T_=5,1<r<s.
These relations can trivially be checked by induction.
Furthermore, let ¢ € Cg with ||, sufficiently small and let [ =z + 7(z) be

as in Lemma 3.6. Then it can be easily verified that
(15) b, (1 - |z+ mH < 1- 1212 < by(1 - |z + tm)?)

for some constants b, and b, and 0 << 1.
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Finally, let w; € C;, ¢j eC?, i =1, 2. Now, using Proposition 3.5.1 and
Corollary 3.5.2 together with (12), (13), (14) and (15), one can show that if ©;

and ¢, are sufficiently small in | |,-norm, then

(16) |R(w,, ¢,) - Rlw,, ¢, _, <const. (lo; - wzlk +lé, - ¢2‘k)'

We omit the details which can be carried out in a completely straightforward way.
Q.E.D.

Remark 3.7.1. Propositions 3.3, 3.4 and 3.7 show that the mappings 0: C,l
_’Clg-l’ G: Cg — C£+2 and R: U x W _'Cli-l are uniformly continuous. There-

fore we can consider them as continuous mappings between }(,: and }(2_ " }(2

0
and }(k .2’

in }(é and ]‘(2, resp.

Uyx W, and }(;_1, resp., where U, and W, are neighborhoods of 0

” Proposition 3.8. If U, and W are sufficiently small then R: Uy x W, —

g1 i @ C” mapping.

Proof. We formally differentiate R(w, ¢) with respect to the ‘‘variables’’
w(f(2)), b, b, b, 1;2, b, Z; and denote the respective expressions by
DR,---, DR If wy e} and ¢ e H) with |w|, and |¢|, sufficiently
small, it can easily be shown (by using Proposition 3.5.1, Corollary 3.5.2, and the
relations in Proposition 3.7) that the linear map DR( , ): }{; x }(2 -—*H,i
defined by
DR ¢,) (0, ¢) = D R@g, pg)-w + -+ DyR(@wy, pg) -

(w =wdZd/dz, ¢ = h3/0z) is continuous. By the same methods one can check
that

|R(w, ) - R(a)o, ¢0) - DR(COO, 950) (o - @ &b - ¢0)|k——l' = oo - wolk +|¢'—¢Olk)

provided that w and ¢ are sufficiently small in the | lk-HOl’m. This shows that

-1

R(w, ¢) is a differentiable mapping in the sense of the theory of Banach spaces
with derivative DR((oO, qSo) at the point (coo, qSo). In the same way one can
establish the existence of higher order derivatives. Again, as in Proposition 3.7,
we have omitted most of the details because they can be filled in without any
difficulties. Q.E.D.

Let now H; ={we C;I‘O‘w =0l Hi is a Banach subspace of }(;. Let B, =
{o =w(z)dzd/dz € H;lsuplw(z)l <1}. By Remark 2.6 all @’s in B, determine
complex structures on X. It is also obvious that B, is an open subset of H;.

3.9. Definition. By a complex analytic family of deformations of X we will
mean a complex analytic map w: § — C,i, where S is an open subset of a Banach
space, (s%) = 0 for some s® € S, and sup|w(z, s)| < 1, where w(s) =

w(z, s)dz /0.
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Remark 3.9.1. If S is a subset of C7”, then, for every fixed z, w(z, s) is a

complex analytic function of s.

Theorem 3.10 (Main Theorem). B, represents a universal family of deforma-
tions of X, i.e. if w: S — C,i is a complex analytic family of deformations, then
there exists a complex analytic map 1: S' — B, where S' is some neighborhood
of s® in S, and a continuous family of diffeomorphisms [°, depending differentiably
on s, such that r(s°) = 0, fso =id and w(s) o S = 7(s).

Proof. Let P(w, ¢) = R(w, ¢) — @ — d¢. Then P(w, ¢) is a function of
and ¢ of order at least 2 in a sense that it contains terms of the form
w(z + 1) “0pH1 F“zbz—b;%Z—;Hbz;LWz 6 where o+ By + oo+ pg22; o2) =
w(2)dZ0/0z, ¢(2) = h(z)d/9z.

Now consider the mapping T: S x W, — HO, defined by T(s, ¢) = ¢ +
Gdaw(s) + GBP(w(s), ¢). If S; and W, are sufficiently small neighborhoods of s°
in §$ and 0 in }(2, resp., then Propositions 3.3, 3.4, 3.7 and 3.8 show that T is
a C* mapping. Moreover, the derivative of T with respect to ¢ at (0, 0) is the
identity and T(0, 0) = 0. Therefore, by the implicit function theorem for Banach
spaces there exists a neighborhood S’ of s? in § and a unique C® mapping s
— #(s) of S’ into H? such that ¢(s%) =0 and

T(s, ¢(s)) = (s) + GS w(s) + GSP(w(s), H(s)) = 0.
On the other hand,

o(s) + Gw(s) + GEP(w(s), ¢(s)) = G(5IP(s) + Sw(s) + 8P(aw(s), B(s))).

Then, by Theorem 1.4 and Proposition 1.6, T(s, ¢) = 0 if and only if 8Jp(s) +

da(s) + 8P(w(s), ¢(s)) = 0. By Corollary 3.5.2 it follows that ¢(s) is at least C*
for a<k—2. Soif k is sufficiently large (k> 3) then it makes sense to consider

the map f° (see Lemma 3.6) corresponding to ¢(s). On the other hand,

89¢p(s) + Sw(s) + 8P(aw(s), ¢(s)) = Swls) of .
Now 8es) o/ = 0 implies dawls)o/* =0, and since it is a strongly elliptic differential
equation it follows that w(s)o /% is C*®. So if §' is sufficiently small, als) o f° repre-
sents a complex structure on X. Since [° is a complex analytic isomorphism of
Xw(s)o/S onto Xw(s)(see $2), itofollows that /° is a diffeomorphism. Put 7(s)
= (s) o f°. Then 7(s%) = 0 and f°" =id. It remains to prove that 7(s) is complex
analytic if S’ is sufficiently small. We note first that since &(s) is continuously
differentiable in s so is 7(s). Furthermore, without loss of generality we may

assume that S CC” Let s € §',

s+u)=wls +Woft=wls + w)ofS* - w(s)o [*** + wls)o [5*¥
=(w(s + w)of5 - wls)of?)

(s + oS —wls + w)of* + o(s)of — wls)o S + ws)o [TF.

A
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Since wo[=w + 9 + P(w, ¢), we find that A = O(|z|?). Thus, r(s + u) =
(s + @) o f — w(s) o %) + w(s) o fS*%+ O(||?). Since

/; + w(f°(2), s + u)T;

(0($+ u)ofs =

15+ wlfo@), s + WS

we see that, for fixed s, w(s + u) o f° depends complex analytically on « if
o(s + u) is complex analytic. Also, by Proposition 2.9 we have

o(s)o 5% = w(s) + 50_,(5)((7_‘)(5 + 1) + o(s)o @ls + ) + 0(Jul?).

Put x(_s_+_it) = dls+u)+als)opls +u). Here wl(s)od(s + )=
wz, s)b(z, s + u)0/0z; w(s)=w(z, s)dZd/dz; P(s + u) = b(z, s + u) 9/dz. Then

o(s)o f5+% = w(s) + dx (s + ) — [wls), x(s + )] + 0(|u|?),

where
(2
[w(s), X(S +uw)]= [M w(z, s) - M £z, s + ugldi —cz- H
oz oz 0z
0
X(S+u) —f(z s+ u)— .

0z

Thus

s+ w)=w(s +wof —wls)of* +wls)+ 5)((5 +u) - [w(s), x(s + )] + o(u|?).

Let 3 =d/ au Then applying 5] to both sides of the above equality and evaluat-
ing at u=0 we get 51 = 33)( [w,d; x] On the other hand, &7 = 0, so 563)(—
8w, d Xx1=0, or d. x 68[w d. x] On the other hand, lc?}xl
const. l[co, Il _ 1 and it is very easy to see that |[w, gx]lk | S const. |m(S)|kla Xl
so |0 xlk < const. |a(s)|,|; Xl Since w(s% =0, const. lo(s), <1 if §
suffxcxently small. This means that |J, x|,e =0,s0 0 X = 0. Therefore 3 7=
Q.E.D.
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