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COMPLEX STRUCTURES ON RIEMANN SURFACES

BY

G ARO KIREMIDJIAN

ABSTRACT. Let  X be a Riemann surface (compact or noncompact) with the

property that the length of every closed geodesic is bounded away from zero.

Then we show that sufficiently small complex structures on   X can be described

without making use of Schwarzian derivatives or the theory of quasiconformal

mappings.   Instead, we use methods developed in Kuranishi's work on the exis-

tence of locally complete families of deformations of compact complex manifolds.

We introduce norms   |   |,   (k a positive integer) on the space of  C     (0, p)-

forms with values in the tangent bundle on  X, which are similar to the usual

Sobolev   ¡I   ||, -norms,   (in the compact case   |   |.   is equivalent to   ||   ||,.)  Then we

prove that certain properties of   ||   ||,, crucial for Kuranishi's approach, are also

satisfied by   |   |,.

0.  Introduction.   The idea of deformation of a Riemann surface was initiated

by Riemann who computed the number of parameters on which the deformation

depends. In more recent years O. Teichmu'ller based the study of the space of com-

plex structures of a compact Riemann surface on the theory of quasiconformal map-

pings.

The most remarkable progress in this direction was made by L. Ahlfors and

L. Bers who rigorously developed the ideas initiated by Teichmu'ller and showed

that the space of classes of equivalent Riemann surfaces has a complex structure

(see [l], [4]).   Moreover, their work extended the theory to the case of open

Riemann surfaces where it was established that the space of classes of equivalent

complex structures on an arbitrary Riemann surface is isomorphic to a bounded

domain in a complex Banach space ([2], [5])-

In 1957 K. Kodaira and D. Spencer [6] made the first steps toward developing

a systematic theory of deformations of compact higher dimensional manifolds.

They defined the notion of a universal family of deformations of a compact complex

manifold and gave examples of manifolds for which such families exist.   The gen-

eral problem of existence of universal families was solved by M. Kuranishi ([7],

[8]).

The purpose of this paper is to describe sufficiently small complex structures

on Riemann surfaces without making use of quasiconformal mappings and Schwarzian
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derivatives.   At the same time it is illustrated how Kuranishi's methods can be

extended to certain noncompact manifolds.

In § 1 we list certain differential operators on complex manifolds and give

their explicit expressions for Riemann surfaces.  We also give a proof of the simple

but important fact that the tangent bundle of every nonexceptional Riemann surface

is   »/0,0-elliptic (see also [3]).

§2 deals with standard facts about almost complex and complex structures

which are taken from [9].

In §3 we proceed toward proving the main theorem (Theorem 3.10).  First, on

the space of (0, 0) and (0, 1) C    forms with values in the tangent bundle of the

Riemann surface X  we introduce the norm  |  |, . One of the important properties of

this norm (and also a crucial fact in our argument) is given by Proposition 3-4:

|GaS|, +   < c, |<£|,   for sections (f> of the tangent bundle.  This is Friedrichs' in-

equality with respect to  |   |, .  We also need a Sobolev inequality with respect to

|,   (Proposition 3-5.1 and Corollary 3.5.2).   In order to obtain it, we impose a

certain geometric condition on  X. More specifically, we require that there exists

a number t > 0  such that the length of every closed geodesic is greater than or

equal to  t. We note that this property holds for compact Riemann surfaces and

also for a large class of noncompact Riemann surfaces. We should point out that

this condition is imposed by the approach we are taking.  As it was said before,

the result we are after is known for arbitrary Riemann surfaces using the theory

of quasiconformal mappings and Schwarzian derivatives.

Now we have the tools to apply the implicit function theory for Banach

spaces in order to solve differential equation 8 (tu is) ° fs) = 0 for diffeomorphisms

/   : X—► X. This enables us to complete the proof of our

Main Theorem.  The universal family for complex structures, represented by

(0, 1) C    forms with finite  |   |,-7207772 is the set B,  of C     (0, 1) forms u> of the

form w = X~   i/z, with |cl>|, < 00 and sup„|<u| < 1, where X is the complete Poin-

caré metric on X and if/ is a holomorphic quadratic differential.

I would like to extend my gratitude to Professors Lipman Bers and Masatake

Kuranishi for their valuable advice during the preparation of this paper.

1. Preliminaries.   Let X be a complex manifold and let E i X be a holomor-

phic vector bundle over X with fiber Cm. Let   ll = \U .\.  .  be a coordinate cover-

ing of X such that E/U . is isomorphic to  U . x Cm.  Let e ..: U . D U . —» GL (722, C)
0 z r z 2;      2        j

be the holomorphic cocycle defined by the conditions that $>.(z, £.) = $ .(z, e . .tf.)

where 5>. are the isomorphisms  U. x Cm —► E and £.   ate the fiber coordinates
! r 2 ^2

over U.. The dual bundle E* —► X is defined on the same covering ll by 'e~.   .

For example, the tangent bundle 6 will be defined in terms of a choice of

local coordinates (z .,■■■, zn.) on  U . by the cocycle / .. = d (z )/d (z .).



1972] COMPLEX STRUCTURES ON RIEMANN SURFACES 319

1. 1. Definition.   A C°° form of type   (p, q) with values in   £ is a   C°° section

of the bundle   E   ® 0*p  ®   6*q, where   d*p = Ap6* and  D* denotes the complex

conjugate of 6*.

Thus, locally on   U., such a form will be given by a column vector

h

9i

such that, on   U., cp1. are   C°° forms  of type   (p, a) and, on   U. C\ U., cp. = e. .cp..

The vector space of  C°° forms of type   (p, q) with values in   Aj  will be denoted by

Cp'q(X, E).

Next, we introduce a hermitian metric  ds    = 22g  "adz   dzp on   X and a

hermitian metric on the fibers of  E.   The latter will be given by a hermitian scalar

product  Mzz, v),  u, v £ 77~  (z), which depends differentiably (i.e. C°°) on the base

point z.  Locally on   U^, if  cf. and  r¡ ■ ate the fiber coordinates of  u and  v,

h(u, v) =   27.i cf., where  h. is a positive definite hermitian matrix in particular, a

hermitian metric on the fibers of the holomorphic tangent bundle   6 will be the

datum on  X of the hermitian metric  ds .

1. 2. Definition.  We introduce the following operators on the space   C =

©  Cp-q(X,E):

(1.2.1) d: Cp-q(X, E) ->Cp'q*Hx, E),

the exterior differentiation with respect to the complex conjugates of the local

holomorphic coordinates-.   It has the following property:   00 = 0.

(1.2.2) *   :  C*'«(X. E) -» C"-«- —HX. E)        (« = dimcX),

locally defined by

*cp = cdet(gaJ^sgn(KcK)sgn(LcL)cplcKCdzKA dIL.

We explain the notation.   First of all,  cp = Icp.jdz   A dz'   where   A = (z   , • • • ,

/ = Uf ■■■ > /,)»  ¿, < • • • < ip, /,<•••< /_,  I < ia<n,  1 < jß< n, and  dz' =

dz,lA   ...A   dzlp,  dz1 =dz11 A... Adzlq.  Further, Kc is the increasingly

ordered a-tuple consisting of the subset of  11, • • - , «! complementary to   AC; and

similarly for  Lc, cpL   K    = g(L   K   KU)cp-, where, if  A  and   A are /^-tuples and

B and  / are g-tuples,

gUJ)(AB)=   Xsgn(r)sgn(a)gíiar(I)...g'í,fl^»g7,^(1' .../»*"<»>
r, cr

where  T and  a run over all permutations of the sets   [l  ,••• , p\ and  {l, • •• , q\

respectively.  Finally, c is a constant, chosen so that  **c/> = ( - l)p*qcp.

'#>•

(1.2.3) #: Cp-q(X, E) -» Cq-p(X, E*
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which is defined locally, on   U., by

itt<p)l='h-<pr

We note that  # commutes with the operator *.

(1.2.4) g. cp;nx, F) ->Cp'q-l(X. E),
defined by

S = - #"'  * d * #.

We call  8 the formal adjoint of  d.

If  <f>, if/ £ Cp'q(X, E) l(p A # * 0" is a scalar  (22, ?2)-form which we denote by

Aid), if/)dX,  dX being the volume element in the considered metric on   X.  In the

space  Lp'qiX, E) = \<j> £ Cp'qiX, E)\ fxA(<f>, cf>) dX < ooj, the scalar product (<p, if/) =

fxA(ch, if/)dX is defined and gives  Lp,q(X, E) the structure of a complex prehil-

bert space.   If suppcb Dsuppi/z   is compact then  (dtp, ifr) = (cf>, z5t/r), for

d> £ Cp'q(X, E), if/ £ Cp'q + 1(X, E).  This follows easily by Stokes' theorem.

Let Tp'q(X, E) be the space of  C°° forms of type   (p, q) with values in   F

with compact support.   Let itp'q(X, E) be the completion of Tp'q(X, E) with

respect to the norm   ||<p|| = (d>, d,)'4; Wp<q(X, F), the completion of Tp'q(X, E) with

respect to the norm  N(<h) = [(d), (h) + (dd), dcf>) + (8cp, 8(h)] \  Wp,q is canonically

regarded as a vector subspace of jLp,q.

1.3. Definition (see [3]). We say that the vector bundle F is Wp'«-elliptic if there

exists a constant c> 0 such that, for every d> £ Tp'q(X, E), \\d>\ 2 < d\\d(f>\\ 2 + \\8cf>\\2)

with respect to some hermitian metric on X and a hermitian metric on the fibers of E.

Let a = 5z3 + 8d: Cp'q(X, E) — Cp'q(X, E) be the Laplace-Beltrami operator.

W-ellipticity implies the existence of the Green's operator. More precisely, follow-

ing [3], we have

Theorem 1.4.   // the vector bundle  E  is  Wp'q-elliptic, then, for any a £

^p'q(X, E), the equation  Dx = a has one and only one weak solution

x £ Wp'q(X, E), i.e. for any u £ Wp>q(X, E) one has idx, du) + i8x, 8u) = (a, u).

Moreover, if we denote x by  Go,, then there exists a constant  c„ > 0 such that

||Ga||2 + ||,9f7a||2+||SGa||2< c0||a||2.

Proof.   Since   F is   Wp'«-elliptic,  the form  mi(h, if,) = (5(f>, dif/) + (z5cp, 8ifr)

defines a norm  mich) = midi, qS)'1 on   Wp'qiX, E), which is equivalent to the norm

Ni(f>).  Moreover, (0, ifr) gives   Wp'qiX, E) the structure of a Hilbert space.  Let

ae^'^X, E).  Then  u -. (zz, a) is a bounded linear functional on  ^-"(X, F)

with respect to 722(cS), because   |(a, zz)| < ||a||||zz|| < c^||a||727(zz) = Mmiu).  By the Riesz

representation theorem, there exists a unique  x £ Wp'qiX, E) such that  mix, u) =

(a, zz) for all  u £ Wp'qiX, E).  Moreover, we have that  72z(x) = |||/7|||, where   |||//|||   is
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the norm of the linear functional   AA(zz) = (zz, a).   Thus   m(x) < c/2 \\a\\.  Since   m(cp)

is equivalent to the norm  ZV(x), there is a constant  cQ > 0 such that

N2(x)=||x||2 + ||äx||2 + ||(5x||2<  c0||a||2,

i.e. the linear map  G: §,p'q(X, E) —> Wp,q(X, E), x = Go., is continuous.    Q.E.D.

Remark 1.5. Since   □ represents a strongly elliptic system, it follows from

the regularization theorem (see [3]) that if a £$Cp'q(X, E) P\Cp'q(X, E) then x e

Cp,q(X, E) and one has Ox = a in the classical sense.

For the remaining part of this section we assume that  X is a nonexceptional

Riemann surface, i.e. X = A./Y, where A is the unit disc in  C and T is a

Fuchsian group.  On  X there is a complete hermitian metric   ds    = A   dz dz of

constant negative curvature which is induced by the noneuclidean  metric on the

unit disc, i.e. 2|zfe|/l - |z|   .  We now write the operators introduced in Definition

1.2 for the holomorphic tangent bundle   6 of  X.   In this case, we note that if cp =

hdzp A   dzqd/dz £ Cp,q(X, 6) then  h can be thought of as a   C°° function on  A

such that h(y(z))(y')p-1(z)y'(z)q = h(z) fot all y £ Y.  Here  0 < p < 1,  0 < a < 1.

The volume element with respect to the metric ds    is dX = (i/2)X   dz A dz.  If

/ is any differentiable function, then by  / , /-, /  -, etc., we denote the derivatives

df/dz, df/dz, d2f/dzdz, etc.

(2) do = (- \)ph~ dzpA dz1+q d/dz,
Z

(3) *cp = (- l)pi(\2/2)X ~p-qhdzx -« A dz1 ~pd/dz,

(4) #cp = [(- l)pq\2Idzq A dzp]dz,

(this notation indicates that   ttcp is a   C°° form of type   (a, p) with values in  t? )

(5) Scp = (- l)p+q2X2(p+q-iX\2(2~p-q)h)zdzpAdzq-1 d/dz.

Of course, the above formulas are to be understood with convention that a

form containing dzs or   dzT, with  s, r > 1, or s < 0, is zero.

(6) |l9S||2 = /x^^-IA2(2-^-^|/3|2a'2A^.

Proposition 1.6.   The tangent bundle  0 is  W0,0-elliptic with respect to the

metric ds2 = A2 dz dz.

Proof.   Let  cp = h d/dz £ 3)°-°(X, d).  Then, using the formulas (2)-(5) we

obtain the following expressions:

ncp = 8dcp = - 2A"4(A2¿_)z d/dz,

*'1D*c/, = -2A-2[A-2(A2i) ]_<?/&.
Z   Z
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Then

aá- *-x o *ó = 2X~2(2X~lX ~-2X~2X XAhd/dz.
r ~ ZZ Z    Z

Since the metric  ds    ~ X   dz dz has curvature  - 1,

A2 = 4(logA)zz-=4(A-1Xzz--A-V_).

So  DqS — *~   n*cf> = d).  Since   *""     is the adjoint of  * and  ¿5 is the adjoint of  5

with respect to the   L2-scalar product, we get that

(d),ch) = (n<p,<p)- i*~la*d>, <b)

= iSdcb, d)) - id8 * öS, * <p) m idd), !kp) ~i8*(f),S* cS).

So   ||0i|2 = ||50||2-||z3*0||2,or   ||0||2<P0||2.    Q.E.D.

2. Complex structures. In this section we give the facts we need concerning

almost complex and complex structures on a complex manifold. The proofs can be

found in [°1

Let again   X be a complex manifold of dimension  72 and let  X be the under-

lying  C     manifold of dimension 2t2.   Let  8 be the holomorphic tangent bundle of

X and   T\ the (real) tangent bundle of X.  If  CT\ is the complexification of

TX, then CTX = 8 © 6, where   6 is the complex conjugate of  8.

2.1. Definition.  We say that we have an almost complex structure on  X  if

there is a   C°° vector subbundle    6' of  CTX (over  C) such that   CTX = d'  © d'.

We note that a complex structure   X   on X  determines an almost complex

structure, namely the   C°° vector subbundle   6 , where in this case   8   is the holo-

morphic tangent bundle of  X .   Let  p"(X) be the projection of  CTX onto   8.

2.2. Definition.   Let 8' be an almost complex structure on   X.  We say that it is

of finite distance from the given complex structure   X on  X when  p" (X) induces

an isomorphism from  8     onto  8.

Proposition 2.3.   There is a bijective correspondence between the set of almost

complex structures of finite distance from  X and the set of all C°° differential

forms a> of type (O, l) with values in 8 such that, at each point p  £ X, Zj ocô:

8^ —• 6.    does not have eigenvalue 1.P P b

We explain the last part of the proposition.  Namely, every   C°° form  o of type

(O, 1), with values in   8, o>¿ = Sa aco^z^dzfd/dzr on the z'th coordinate neighbor-

hood, can be thought of as a   C°° homomorphism  oj: 8 —* 8, given by  tu(S <f)ad/dza) =

2a ß<o^<p ad/dz^.  One checks easily that this homomorphism is well defined be-

cause   (a satisfies the right invariance property, a). = /..<y..   At p £ X, we define

5: 6p — 8p by  to(L) = co(L), L £ d~

Remark 2.4.   Let  X be a Riemann surface.   Then  <u = w(z)dzd/dz and, for
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p £ X,  co: d    —* 8     is given by   co(hd/dz) = w(z)h(z) d/dz.   Furthermore,

tü o co(h d/dz) = co(w(z)h(z) d/dz) = |tzz|   h d/dz.  Therefore, the condition supx|izz(z)|

< 1   implies that  co determines an almost complex structure of finite distance

from  X.

The almost complex structure determined by  co will be denoted by  X   .

Theorem 2.5 (Newlander-Nirenberg).   The almost complex structure   X^ is

induced by a complex structure if and only if d co — %[tu, co] = 0.

Here, [co, co] = 2a a     co°~a    dzß A dzy d/dza, where

"ßy = T,((dcoydzr)corß - (dcoaß/dzr)cory).

T

We note that [tu, tu] e C°'2(X, 8).

Remark 2.6. Let again  X be a Riemann surface.  Then cu = w(z)dz d/dz e

C   ' (X, 8) with supx|zzz(z)| < 1   determines a complex structure on  X.

Let  / be a diffeomorphism of X.   Let  8.   and   8-   be almost complex structures

on  X.

2.7. Definition.  We say that / is an isomorphism between   8.   and   82   if its

differential df sends  8.   to  82.

If eu £ C   ' (X, 8) such that  X^ can be defined, then there is a unique almost

complex structure  8    such that / is an isomorphism of  8    onto  X   .  8     is

induced by an element iff £ C  '  (X, 8) when   8'   is of finite distance from  X.  We

set i¡J = co a f. ifi is called the transform of  cu by  /.   co o f can be defined if / is

sufficiently close to the identity map of  X in  C'-topology.

Let  z = (z  , • ■ • , z") be a chart of  X with domain   U.   Let   U    be an open

subset of   U.  Assuming that f(U j) Ç U and that  co o f = if/ can be defined in this

case we have the following

Proposition 2.8. If f(z) = (/Hz), ••• ,fn(z)), co = 2coß{z)dIad/dzß, iff =

2ifjßa(z)dzad/dzß, then

M^^H^ÇS-^'
We will also need the following fact:

Proposition 2.9.   Let  V be a vector space and let h: V —» C°'°(X, (?)  be an

R-linear map.   Let fs  be a  C°° family of diffeomorphisms of X  such that f°  is

the identity map.  Assume that, for each chart z = (z'',. ■ . , z")  on X,

fsa(z) = za + ha(z, s)    (mod|s|2) (s £V,  \s\ small)

where h(s) = 2aha(z, s)d/dza.   Let co be an element of C°'HX,8) which represents

a complex structure on X,   i.e.   dco - %[cu, cu] = 0.   Then
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új o fs =ùj + alibis) + o o his))    (mod \s\ 2).

Here rj^ij = h~r¡ - [&>, 27], where if  27 = 2r)*iz)d/dz a £ C°'°ÍX, 8) then

If Ç=2Çaiz)d/dza, then o; ocf = Zoßj^/dzß.

3. Families of complex structures on Riemann surfaces. Proof of the main

theorem.  Throughout this section we assume that  X is a nonexceptional Riemann

surface satisfying the following condition: the length of every closed geodesic is

bounded from below.

Let  A = \z £ C\\z\ < 11  and Q, C A be a fundamental domain for  X.  Let  k >

0 be an integer.

3.1. Definition.   If  0 = hd/dz £ C°'°(X, 8), let

m*.q=(s /Q(i - m2)2^-2'^!2^1'2.

If co = wdzd/dz £ C°'liX, 8), let

\Mkf „ = (aÇJft(i - H2)2(a-n|DaH2^yY/2.

Hete  Da = da \dzaidz   2,   a= a x + a2-  It is easy to see that |  1^ Q defines

a norm.

Proposition 3-2.   The equivalence class of this norm is independent of Q,.

Proof.  Let 0    be another fundamental domain.  Then  Í2    = y(i2), where  y £

r, X = A/r.  Let d) £ C0,0(X, 8)  and assume   \d)\k   0 < «..  Then   /> o y = h • y' fot

all  y CT.  If  y= ei9(z- ß)/(l -ßz),   \ß\ < 1, then'we claim that

a

Daboy=(y')1-ayicva(l-fc)v-aDvh,

v=0

where the  c        depend only on   a.  The claim is easily verified by induction on

a.  Now  I - \yiz)\2= il-\z\2)\y'iz)\ and  [l - ßz\ > 1 - | z\.  On the other hand, we

have

|ç6|^ n,  =    L /fll(l - \C\2)2{a-2)\DabiO\2d^dr,,
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where  zf = y(z),  z £ 0.  So

fa,(l - \C\2)2la~2y\Dah(0\2'd^dr,

=  -   f   (1 - \y(z)\2)2<a-2)\Dah oy\2\y'(z)\2 dzdz
2     »

< c/   [(1 - |vU)|2)/|y'(z)|]2<a-2> Ë |cv J2(l - \z\2)2^\Dvh\2dxdy

-*/„ ¿K, j2(i-|z|2)2<--2>|D^|2aWy.
«   7^-0 '

But this shows that   |</>|2      , < c 1 (¿) 101f  ,,-   In the same way we can prove |c/>|fe  _

< c Ak)\cp\2  „,.  Here   c.   and  c?2 depend only on  k.  Also, following the above

method, we prove that there exist constants   c'(k) and   c'(k) such that   |cu|,     ,  <

c[(k)\co\k^, \<o\kM<c^k)\a\ka,.    Q.E.D.

Remark 3.2.1.  From now on we will write   \cp\,   and   |tu|,   instead of   \cp\,   „

and  \co\k a.   Let  C° = \cf> £ C°-°(X, 8)\ \<p\k < <x>! and   C^1 = jeu e C°-l(X,8)\ \co\k

< <*>!.  By H? and H,   we denote the Banach spaces, obtained by completing  C?

and C., resp., with respect to   |   |,.

Remark 3.2.2.  The proof of Proposition 3-2 shows that, if A C fl ¡s a measur-

able set and  A' = y(A) C(l',   \cp\k A, < c^.k)\cp\k A,   \cp\k A < c2(k)\cp\k A,, where

Ife, A
Y,JA(l-\z\2)2ia-2)\Dah\2dxdy.
a<k

Of course, the same thing holds for  cu, too.

We now prove the continuity of certain operators with respect to the   |   |,-norm.

Proposition 3.3.   There exists a constant  c  (k) (depending only on k) such

that if co £ Cx then  \8co\, _. < cAk)\co\k.

Proof.   By (5) of §1 with p = 0, q = 1,  Stu = - 2 \~4(\2w)z d/dz, co = wdzd/dz.

Put h = -2\-\d/dz)(\2w).  On A,

A = 2/(1- M2),

h --XU* \z\2)2wz~z(l - |z|2)^,

D% =   Í>    flD% - |2|2)2]Da^+^ +  £ <    D%(1 - |z|2)]Da-^,

po    'P ß=0     '

where  d     a,d     „ ate some constants.  Now
CX, /J '        CL, ß
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Ü-N2)a ifj8 = 0,

(1-      |2)a-2|D^[(l-     r|2)2]| j< 2(l-|z|2)-l [(ß = l,

< const. (1 - |z|2)a-2 if /3 > 2;

< const. (1 - Izl2)*-1- if ß = 0,

< const. (1 - |z|2)a-2 if/3>l.

(l-|Z|2)a-2|D^[?(l-|2|2)]|

Then

\a-2\r.a.
'2 (k)(1 - \z\V-2\Dah\ < C'2ik)    il - \z\2)a\Danw\ -, (1 - \z\2)°-l\Daw\

+   Z d-N2)a-2|Da-^+1H
1/31=2

+ ¿(1- |2|2)a-2|Da-^|    .

» J
On the other hand, a- 2 > a- /3 if ß>2 anda-2>a-/3-l  if /3 > 1. So

(since  1 - H2 < 1)

(< (1- |^|2)a-^ if/8>2, and

{<il-\z\2)a~^-1     if y8 >   1.

Hence

a + l
(1 -|Z|2)a-2|Da¿|< c3j'Wjd-kl^'lAi,

which shows that  \8a>\k_ x < c Ak)\a>\k.    Q.E.D.

Proposition 3.4.   If d) £ CAX, 8), then there is a constant  c, , depending only

on k, such that   |G<tS|,     _ < c, \4>\,.

Proof.   By Theorem 1.4,   |Gz/>|2 + |5Gcj|2 < const. |ß>L.  Take a point  pQ £ X

and let pip) = dipQ, p) where   dipQ, p) is the geodesic distance from  p0 to  p.

Then, in terms of local coordinates, p is a locally Lipschitz function on  X, and,

whenever  dp/dz exists, we have   |A_  iz)dp/dz\ = 14,  X\dz\  being the complete

Riemannian metric on  X (cf. [3, p. 90]).  This is easily verified on  Í2.  For, if z„

£ ß is such that  77(zQ) = pQ, then
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p(z) = log

1 + |(2- zQ)/(l - z0z)\

.)/(! - z„z)|
-o"Vi        0

Let o(z) = (z- z0)/(l - z0z). Then   |pj = |a'(z)|/(l - |crU)|2) = l/(l - |z|2)  and

Let v(x)   be a   C°° real valued function of the real variable  x such that

v(x) ¡1,       *<1,

JO,    x>2,
and  0 < v <  1.

Then the function p (p) = v(p/n)  is a locally Lipschitz function  X such that

a    = 1   on the geodesic ball  B    with center  />„ and radius  « and tt    s 0 outsiden72 b 72 " 0 '72

the geodesic ball  B.   .° 272 _

Let  G0= cft9/c9z. Now <f(A2 <f)^az is a   C°° (l, 0)-form on  X. Then

pn çf(A   ¿;)zdz is a Lipschitz (l, 0)-form on X with compact support and, by

Stokes' theorem, [x d(¡i   cf(A   f)   dz) = 0, or, taking a fundamental domain fl,

f„ ¿[f/^UfU - |z|2)-2)z¿z] = 0, where

aU,u2cf(4cf(l - |z|2)-2)z¿z) = - [-,2cf(4cf(l - |z|2)-2)z]-¿zA^.

Differentiating the above expression and using the fact that, for any two

functions  / and  g, f\ fg\ < Vi \\ f\ + Vi f\g\, we obtain the following equality:

fQp2n\tz\2(l-\z\2)-2dxdy

< CS[/alf|2U - ^r'dxdy + f^-lHl - \z\2Y2dxdy+ jfí\tz-\2dxdy]

fot some constant  C ..  Since

(*) -Vi(l - |z|2)2zfz--z(l - |z|2)<f- = A,       (cp = hd/dz)

we see that there is a constant  c     such that   | G0| ^ < cQ \cp\ Q.

We now proceed by induction:  Assume that there is a constant ck_i such that

|G<^|,      < c, _   \cf>\, _ ..  Because of (*), we can estimate

J>-N2)
2\2fe

5Ze + 2
t

dx dy

in terms of

f (i _ |z|2)2<a-2>|DaAj|2«Wy    (a < k),

f  (1 - Izl2)2^-2^^!2^^    (/3< ze+1).

Here  r + o = k + 2, r > 0, a > 0.  Now, using
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f d\p2(x2)k+1ix-2ix-2..AX-2t) ...))

k+l

■ (À-2(A-2...(À-2^)-...)-)-z/z-Uo,
Z   Z 2   Z

k+l

21

+ 2

fad)p2nx2H,x-2ix-2-.Ax-2^)z--V

.+1

(A-^-^-^A-2^)^^^^^ °

T7~i k + 2      '

we can estímate

in terms of

J0Ü - H2)
2fc ^+2f

<?zyfe + 2
dx dy

f  (1  _  |z|2)2fcl_i     ¿xdy>     f   (1 _  |z|2)2<.ß-2'|D^|2^y, ß <  k + 1.

Similarly, using

f z/bíA2)*-1 (A- 2(A- 2 • . . (A-2(A2a?)- • • •)-)-J¡¡    y 72 ____i>^^_^ z z z z

' fc /e+ 1

■ (à-2(à-2 • • ■ (X-Ha2£)\•_• h^i- o.

¿ + 1

fz/L2(A2)^2(A-2(A-2...(A-2(A2ä-)-•/fi    Y " - z 2

z z z

777

we can obtain an estimate on J"„(l - |z| 2) 2  |<9fe +2¿j /dzk +2| 2 z/x z/y   so there is

a constant   c,   suchthat   |G<7j|,       < c, |ei>| ,.     Q.E.D.

Lemma 3-5.   Fez  z* = inf ilength (a): ct  closed geod.\.   Let 0 < s < z"/2.   For

z eíl, /e¿  B(z, s)  be a geodesic disc of radius s  and center z, i.e.

Siz,s) = {t£A\Piz,Q,logl + ]iz-m-Cz)    <S,
i - |U - 0/d - £0|
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Let y., • • • y    £ Y be such that  B .= B(z, s) C\ y (ft) / 0   (here ° stands for in-

terior), 1 <j<p.   Then y 7 Kß .) f~> y 7 l(B .) = 0 for i / j.

Proof.   Assume not.  Then there exists  ¿ £ ft such that C = y7  (z.) = y~  (z.).-=> ^'/77/22

First of all  z./z. because  y .(ft) r~>y .(ft) = 0.  Also z. = y.y7 \z.), z., z. £ B. Thus
z 7 ' z 7 7      ';'i        i       f    i

z. and  z. determine the same point on   X.  Moreover, the noneuclidean straight

line connecting z. and z. corresponds to a closed geodesic on   X whose length

is strictly less than   Z, because   z., z. £ B.   But this is a contradiction.     Q.E.D.

Proposition 3.5.1.   There exists a constant  c ,(k) such that, for all z eft

and all cp = h d/dz £ C°,   \h(z)\ < c4U)(l - |z| 2)\4>\k, for k>2.

Proof.   First we make the following observation:  Let  u be a   C -function

with compact support on  A.  Let  z £ A.  Consider the function  cfj(r) =

(l/2n) f 27Tu(z + rel)d8.  Then  (A(0) = u(z) and  iff, as a function of one real vari-

able, is also a   C -function with compact support.   By integration by parts we

obtain that  u(z) = -   f^rijj" (r) dr.   Now

*-w-¿-ir(277/ d2u     21

0 l^Fe + 2
c92zz    a2zz

a¿a£ + d~C
■ 2,e

dd\
W=z+Telt

So

u(z) =
2v

/oo Ç277

n  J n

(7)
d2u

K2

(C- z)2 + 2 ^- (£ - z) (cf- z) + ^-(C-z)2
d&C H2

u(z)
1

4n Í.
I

(8)
'<92a

K
(C 2)2 + 2Í_ü_{C. *)(£-*> +

dCdC

d¿u

di2

(C z)2 dÇd£.

Take  r < t/4, where   Z is as in Lemma 3.5.  Let

l + |(z-zf)/Ü-£)
p(0 = log

1 - |(* - ¿Mi - £0|

and let  v  be the function appearing in Proposition 3.4.   Then   p(Ç) = zXp(zf)A) is

identically 1   on  ß(z, 2r) and identically equal to  0 outside   B(z, 2r).  The func-

tion  ph is   C°° and with compact support in  A and  p(z)h(z) = Aj(z).  Now, D  (ph)

= pD2h + 2D1pD1h + hD2p.  By a direct calculation one verifies that   \D1p\ <
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c^(l - |£|2)-1;  \D2p\ < c'4il - |£|2)-2, where the constant  c'4   depends on  r, too.

Formula (8), applied to the function  ph, gives that

|«*)| <   Const./fi(2>2r)(|D2¿|  +  |D1¿|(1  _K|2)-1  +  j¿|(l  _   |C|2r2

(9) ^const(fB(z.2^y

ft

-\l/2

)

Hxi 2r)(\D2h\2 + \dH\2h _ \c\2)-2 + |¿|2(i _ i<ri2)-<W¿.

(10)
/ rf¿¿£ =  f   (1 - \z\2)2\l+zw\-4dwdw,
•> ti(z , 2r) J ár

¿ -Z
«« = --    and    A   = \z £ à/\z\ < ieir - l)/ie4r + l)\.

Let  fl j, 02, - - . , ñ     be fundamental domains such that  B . = Í2. O Biz, 2r)yi

0, a. = y.(ü), y. eT.  Then
7     ';

f i\D2h\2 + ID^I^I - Id2)"2 + |¿|2(1 - ICI2)-4)^^
./ ß(z, 2r)

= ¿ J"ß (\D2b\2 + |DlA|2(l - Kl2)"2 + H2(l - Kl2)-4)«^-

7=1 '

As in the proof of Proposition 3.2 we see that

i f (|d2/.|2 + idi/7|2(i-ki2)-2 + i/>i2(i-|z:i2)-4)z/z:z/<:

2   jBj

<   Lc'f i\D2h\2+\Dlh\2il-\C\2)-2 +\h\2il-\C\2)-A)dCdC.
2     AJy-1(Bj)

By Lemma 3.5.,

£   ¿/(|D2¿|2+|01¿,2(i_|^|2)-2     + |/,] 2(l _ |¿'| 2)-4)zC ¿T

(H)     '=1   2

< 1 fai\D2h\2 + id^i^i - ic i2)-2 + i¿i2ü - IC i2)-4v¿:'^'.

(9), (10), and (11) imply that  |Mz)| < c 4(2)(l - iz|2)|0l2-    Q.E.D.

Corollary 3.5.2.   There exists a constant c (k) such that if cS = hd/dz e C°

and Co = wdzd/dz £ C\  then  \Dah(z)\ < c¿k)il - H2)1" a\<p\k  and  |Da^(2)| <

c5(/0(l - |z|2)- a\(o\k, where k > a+ 2.

Proof.   Repeat the proof of Proposition 3.5.1 for the functions   (l - \z\   )a Dah

and (1 - |z|2)a+1Daw.      Q.E.D.

Remark 3.5.3.  The above inequalities are independent of Q.  Using the relation
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7    (y')M-i ¿t> i-jfc

appearing in Proposition 3.2, we see that

(1 - |y(z)|2)a-1|Da«oy| <  ¿ |cv; J(l - \z\2Y~x\Dvh\ < c'(A)|^|fc.

Of course, the same thing holds for  cu = wdzd/dz £ C,.

Let  cp £ C,   and  p £ X.  We draw a geodesic  g(t) starting from the point  p in

the direction of  cp(p).  Let  f(p) = g(l).  Thus we obtain a differentiable mapping

f: X -*X.

Lemma 3.6.   If \cp\,   is sufficiently small, f is a diffeomorphism.

Proof.   In local coordinates the geodesic equation is

d2g(z,ù 2 W2' t)]  (dg(z, t) V

j,2 A(g(z, t))    \    dt
at " \

= h(z),       cp = h-^-
f=0 dz

with the initial conditions

t      n\                    ^z'  t)
g(z, 0) = z,        —-

dt

Then it is easy to see that / is of the form f(z) = z + r)(z), where

r,(z) = h(z) + £ Pn(z);        Pn(z) = A""1 (z)   £    ^ „(*)** («£ v(z).

ri>_2 p+v = n

Here   e        are bounded functions of  z and  z.   By Proposition 3.5.1 and Corollary

3.5.2 it is clear that we can find a constant  c6(k) such that   |A(z)r;(z)| < c((k)\cp\k\

iD^z)! < cAk)\cp\, , if   \cp\k is sufficiently small.  The Jacobian of / is   |/J    -

|/_|    = |1 + r¡  | — 177-1 > 1 — 2cAk)\cp\, , which is strictly positive if   \<p\,   is suf-

ficiently small.  So / is locally a diffeomorphism, which means that the image of

/ is open.  Let  p .,-••, p   , ■ • ■  be points in the image and suppose that

lim ö    = p.  Let q,,•■-, q , • • •   be such that  f(q .) = p ..  Now the sequence
72 — 00^72       r- Ji? ?  in' J    1 j c j 1

\q   ! cannot be discrete because the length of the geodesic joining  p    and  a    is

|A(a )h(q )|  and   |A(z)Mz)| < c6\cp\,.  So there is   a such that limav   = a.  Thus

/(a) = lim   ^^/(fl,, ) = Iimv_00Py   = P-  Hence the image is also closed and  / is

onto.  We prove now that  / is one-to-one.   Let  p., p2 £ X, p. / p2.  Let  t be as

in Lemma 3.5 and assume  cf> is such that   \cp\k < t/8c&(k).  Then f(p{) / f(p-¡) if

d(p., pA > t/4, where  d(p., pA is the geodesic distance between  p.  and  p 2.

This is so because   d(p v f(pA) = \X(p Ah(p J\,  d(p2, f(p2)) = \\(p2)h(p2)\, and if

f(pA = f(p2)  then

d(pv p) < d(pv f(p)) + d(f(p2), p) < 2c6\cp\k = t/4.
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But this is a contradiction.  So we consider the case when  dip., pA < t/4.  Let  B

= \p £ X = dip v p) < t/2] and let  77: A —» X.  Then  7r: 77"" Hß) —»ß  is one-to-one.

We consider the map  7T-    o f o n which we denote again by  /.  Now assume that

fiz.) = fizA where  z. corresponds to  p..  Then  z^ + rjizA = z   + t]izA and

\zl - z2\ =  l^zl) - ^z2^ - ^l7/^2*)! +  \V^Z*">\^\Z1 - z2\ $ 2c6^l^lfel2l - Z2^

but this is impossible if 2c6(/j)|c/>|jfe < 1. So f(p^) ¿ f(p2).    Q.E.D.

Remark 3.6.1.   The diffeomorphism  f: X —» X can be lifted to a diffeomorphism

of A onto itself which we denote by  /, too.  Since   \r¡(z)\ < cAk)(l — \z\   )\cf>\, ,

f\ Sä, = id-

Let  co e C '    If   |tu|,   is sufficiently small then  to o f can be defined, and by

Proposition 2.8

f-+wifiz))j-

CO of (z) = - _     .

fz + wifiz))fz

Denote  co o / by   Rico, cp).

Proposition 3.7.   //  U and W are sufficiently small neighborhoods of 0  222

Cj.   and C?, resp. ik  sufficiently large), then R: U x W —» C}.   is a uniformly

continuous mapping.

Proof.   First we make some general remarks.   If   zz is a   C -function and if  Ds

indicates  differentiation of order  s < k, we denote by   iDsu)n any expression of

the form II"   , dsu/dz    'dz    ', s , . + s. . = s.   If  v is also a   C -function, then
7=1' 1; 2] '

s

(12) Dsiu-v)=yíCkDs~ku-Dkv,       ck being constants.

',^+hn'1.(13) Dsiu/v)=yic. ...r   /vn+l)Dlv ... Dnv.Ds~"u
*-^     l n

whe re   c are some constants and the summation is over  n, r,,■■•, r    such
r\...rn V 72

that  0 < 72 < s and   r, +

(14) DHuiviz))) = y a iDru) iviz)) • (D1*/)'1 - . . iDsv)Ts,

where   a are constants and the summation is over all  r, r,,•••, r    such

that  r, + ••• + r   = r, r, + 2r., + • • • + sr   = s, I < r < s.
1 s I 2 s —    —

These relations can trivially be checked by induction.

Furthermore, let  ch £ C,   with   |c/j|,   sufficiently small and let  f = z + rjiz) be

as in Lemma 3.6.   Then it can be easily verified that

(15) fejd - \z + z-2,12) < 1 - |z|2 < b2il -\z + tV\2)

for some constants   b.   and   b2 and  0 < t < 1.



1972] COMPLEX STRUCTURES ON RIEMANN SURFACES 333

Finally, let cu. £ C}, cp. £ C,, j = 1, 2. Now, using Proposition 3-5.1 and

Corollary 3.5-2 together with (12), (13), (14) and (15), one can show that if cu.

and  cp. are sufficiently small in   |   |,-norm, then

(16) \R(cov cp}. - R(co2, <p2)\k_l < const. (|cu1 - tu2|fe + \cf>l - cß2\k).

We omit the details which can be carried out in a completely straightforward way.

Q.E.D.
Remark 3.7.1.   Propositions 3-3, 3-4 and 3.7 show that the mappings  8: C,

—>C, _   , G: C,  —» C,       and  R: U x W —*C,_.  ate uniformly continuous.  There-

fore we can consider them as continuous mappings between K,   and K, _,, K,

and  K,      ,   U„ x WQ and  H, _.,resp., where   UQ and   WQ are neighborhoods of  0

in  H,   and  K, , resp.

Proposition 3-8.   If ¿7» anzz' W Q are sufficiently small then Ac: t7Q x W    —»

K, _ .   is a C°° mapping.

Proof.  We formally differentiate   A?(tu, cp) with respect to the "variables"

w(f(z)), h, h, h  , h  , h-, h— and denote the respective expressions by

D  R, • • •, D  R.  If  cuQeK¿ and  c^eH^ with   I^qI^ and   l^gl^  sufficiently

small, it can easily be shown (by using Proposition 3.5.1, Corollary 3-5.2, and the

relations in Proposition 3.7) that the linear map  DR(   .,   Q): K,   x H^ —*H,_ .

defined by

DAv(cu0, </)0) (cu, cp) = DjAcGuo, cp0)-w + ■ ■ ■ + D7z?(cu0, cpQ) ■ h-

(w = wdzd/dz, cp = hd/dz) is continuous.  By the same methods one can check

that

|R(cu, cf,) - R(co0, cpQ) - DR(coQ, cßQ) (tu - coQ, cp - cp0)\k_v = o(|cu- coQ\k + \cp-cp0\k)

provided that  cu and  cp ate sufficiently small in the   |   |,-norm.   This shows that

R(co, cp) is a differentiable mapping in the sense of the theory of Banach spaces

with derivative   DR(cu„, cpQ) at the point  (cu„, c/>Q).   In the same way one can

establish the existence of higher order derivatives.   Again, as in Proposition 3.7,

we have omitted most of the  details because they can be filled in without any

difficulties.    Q.E.D.

Let now  Hj_ = [cu e C/|Scu = 0!.   H,   is a Banach subspace of  JO.   Let  B, =

[cu = w(z)dzd/dz £ Hlk|sup|w(z)\ < 1 \.  By Remark 2.6 all cu's in  Bfe determine

complex structures on   X.   It is also obvious that  B,   is an open subset of  AA,.

3.9- Definition.   By a complex analytic family of deformations of  X we will

mean a complex analytic map  tu: S —> C, , where   S is an open subset of a Banach

space, cu(s  ) = 0 for some   s    £ S, and sup|zA>(z, s)| < 1, where  cu(s) =

w(z, s) d¿ d/dz.
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Remark 3.9.1.   If  S is a subset of C", then, for every fixed   z, wiz, s) is a

complex analytic function of s.

Theorem 3.10    (Main Theorem).   Bk  represents a universal family of deforma-

tions of X, i.e. if cü: S —» Cfe  is a complex analytic family of deformations, then

there exists a complex analytic map r: S' —»   B   , where S'  is some neighborhood

of s     in S, and a continuous family of diffeomorphisms fs, depending differentiably

on s, such that As0) = 0,   f    = id  and cois) o/* = As).

Proof.  Let  Pico, <f>) = Rico, <p) - co - dcp.  Then  Pico, <p) is a function of co

and <p of order at least 2 in a sense that it contains terms of the form

wiz i jñfl r2h-h-^h-^hz^hz * where   „0 + ^ + ... + p, > 2;  Uz) =

w(z)dzd/dz, cf)(z)=h(z)d/âz.

Now consider the mapping  T: S'0 x WQ —♦ H°, defined by  T(s, cà) = c6 +

G8co(s) + GSp(cois), cp).  If S'0   and  WQ ate sufficiently small neighborhoods of s°

in S and 0 in Kfe, resp., then Propositions 3.3, 3.4, 3-7 and 3.8 show that  T is

a   C     mapping.   Moreover, the derivative of  T with respect to  cp at  (0, 0) is the

identity and   T(0, 0) = 0.  Therefore, by   the implicit function theorem for Banach

spaces there exists a neighborhood  S' of s° in S and a unique   C00 mapping  s

—*<f)is) of   S' into H° such that çS(s°) = 0 and

Tis, chis)) = d)(s) + GSco(s) + GSPicois), chis)) = 0.

On the other hand,

co(s) + G8co(s) + GÖPicois), chis)) = GiSdcpis) + Scois) + SPicois), chis))).

Then, by Theorem 1.4 and Proposition 1.6, Tis, tp) = 0 if and only if Sdcpis)   +

Scois) + SPicois), d)(s)) = 0.   By Corollary 3.5.2 it follows that  <p(s) is at least   Ca

fot  a< A -2.  So if  k is sufficiently large   (k > 3) then it makes sense to consider

the map fs (see Lemma 3.6) corresponding to cb(s). On the other hand,

8dtp(s) + 8co(s) + SP(co(s), cp(s)) = 8co(s) ofs.

Now 8co(s) ofs = 0 implies dSco(s) o fs = 0, and since it is a strongly elliptic differential

equation it follows that co(s)ofs is  C°°. So if S'  is sufficiently small, co(s)ofs repre-

sents a complex structure on X. Since fs is a complex analytic isomorphism of

Xco(s)ojs   onto  Xo;(s)^see §2), it follows that  Is  is a diffeomorphism.   Put  As)

= co(s) o /s.  Then r(s ) = 0 and fs   = id.   It remains to prove that  r(s) is complex

analytic if S   is sufficiently small. We note first that since   tb(s) is continuously

differentiable in  s so is  As).  Furthermore, without loss of generality we may

assume that  S C C™.  Let  s e S',

T is + u) = Us + u) o f +" = Us + u)ofs+" - Us) o fs +" + «u(s) o fs +u

= iUs + u) o fs - Us) o fs)

+ Us + u) o fs+u - Us + u)0fs + Us) o fs - Us) ofs+u + Us) ofs+u.

A
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Since  co o f = co + dcp + P(co, cp), we find that A = 0(|zz| 2).  Thus, r(s + u) =

(tu(s + u)ofs - Us) o fs) + Us) ofs + u+ 0(\u\ 2). Since

ft + w(fs(z), s + a)£

Us + u)o fs

rz + w(fs(z\ s + u)fsz

we see that, for fixed  s, Us + u) o fs depends complex analytically on  zz if

tu(s + zz) is complex analytic.  Also, by Proposition 2.9 we have

cu(s)o/s+" = Us) + d^Wa + •) + w(Oo0(s + a)) + 0(|zz|2).

Put   y(s + u)   =   </>(s + u) + Us ) o Us + ")•      Here    tu(s) o </>(s + u) =

îzvU, s)zj(z, s + u)d/dz;  Us) = w(z, s)dzd/dz;  t/>(s + u) = h(z, s + u)d/dz.  Then

Us)ofs+u = cu(s) + dX(s + u) - [Us), X(s + «)] + 0 Cl"l2X

where

r  t\     i        w     r^(z' s + u)    t      \     dw(-z>sî  tl           lj-   d
Yco(s), x\s + u)\ =- w(z, s)-cf(z, s + u)\dz-  ;

L       oz dz dz

d
X(s + zz)   = rf (z,  S + u) ——   .

dz

Thus

r(s + u) = Us + u)ofs -Us)ofs + Us) + dX(s + u) - [Us), X'(s + ")1 + 0(\u\2).

Let  c9. = d/dü...  Then applying  d. to both sides of the above equality and evaluat-

ing at  zz = 0 we get  a.r = do x ~ [tu,t7.X]. On the other hand,  8r = 0, so 8do.\ —

8[co, d x] = 0, or  d x = G8[co, <3.y].   On the other hand,  |t9.y|.  <

const. |[tu, d.x]\,_,, and it is very easy to see that |[tu, oW]|,_ . < const. |<t>U)|,i|a.)<;|fc;

so  l^xli. S const. |cu(s)|, |<3x|l• Since    tu(s ) = 0, const. |tu(s)|, < 1  if S' is

sufficiently small.   This means that   I^.yJ^ = 0, so  d-X - 0-  Therefore  c7.r = 0.

Q.E.D.
REFERENCES

1. L. V. Ahlfors, The complex analytic structure of the space of closed Riemann

surfaces, Analytic Functions, Princeton Univ. Press, Princeton, N.J., I960, pp. 45 — 66.

MR 23 #A1798.

2.   -, Lectures in quasiconformal mappings, Van Nostrand Math. Studies, no. 10,

Van Nostrand, Princeton, N. J., 1966.     MR 34 #336.

3. A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equa-

tion on complex manifolds, Inst. Hautes Etudes Sei. Publ. Math. No. 25 (1965), 81 — 130.

MR 30 #5333.

4. L. Bers, Spaces of Riemann surfaces, Proc. Internat. Congress Math. (Edinburgh,

1958), Cambridge Univ. Press, New York, I960, pp. 349-361.    MR 23 #A1796.



336 GARÓ KIREMIDJIAN

5.   -, On moduli of Riemann surfaces, Lecture notes, Eidgenössische Technische

Hochschule, Zürich, 1964.

6. K. Kodaira and D. C. Spencer, On deformations of complex analytic structures.

I, II, Ann. of Math. (2) 67 (1958), 328-466.    MR 22 #3009.

7. M. Kuranishi, On the locally complete families of complex analytic structures, Ann.

of Math. (2) 75 (1962), 536-577.    MR 25 #4450.

8.   -, New proof for the existence of locally complete families of complex

structures, Proc. Conference Complex Analysis (Minneapolis, 1964), Springer, Berlin,

1965, pp. 142-154.    MR 31 #768.

9. ——, Deformations of complex analytic structures on compact manifolds,

Seminar on Global Analysis, Montreal, 1969 (to appear).

DEPARTMENT OF MATHEMATICS, SUNY AT STONY BROOK, STONY BROOK, NEW YORK

11790


