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ABSTRACT. Let  (ibea nonnegative measure, and let m   be a measure having

values in a real or complex vector space   V.  This paper presents   a comprehensive

treatment of the question: When is  m   the indefinite integral with respect to  p. of

a   V valued function  /?   Previous results are generalized, and two new types of

Radon-Nikodym derivative,   the "type p"   function and the "strongly T  integrable"

function, are introduced.  A derivative of type  p may be obtained in every previous

Radon-Nikodym  theorem known to the author, and a preliminary result is presented

which gives necessary and sufficient conditions for the measure  m  to be the in-

definite integral of a type  p function.   The treatment is elementary throughout,

and in particular will include the first elementary proof of the Radon-Nikodym

theorem of Phillips.

1.   Introduction.  Let ^ bea nonnegative countably additive measure, and let

m be a set function which in some sense is countably additive, and which assumes

values in a real or complex vector space   V.  We shall present a comprehensive

treatment of the question: When is  m the indefinite integral with respect to  it of

a   V valued function / which in some sense is ¿¿-integrable?

The exposition will be organized as follows: In 92 we establish notation and

basic terminology.   In 9 3 we develop    technical machinery which will permit an

automatic generalization of subsequent Radon-Nikodym theorems from the case

where p is finite to a wide variety of measures   it,  including regular Borel mea-

sures on locally compact Hausdorff spaces.  In Theorem 4.9 of 94 we present very

general conditions which are sufficient for the measure  m to be an indefinite in-

tegral. These entail the relative compactness (in certain topologies) of sets of

ratios of the form m(E)/p(E), where  E  is a measurable set such that  0 < p(E) <

oo.   A number of previous theorems have required this sort of hypothesis, and all

turn out to be special cases of Theorem 4-9- The aim of 95 is to present, in spe -

cial cases,   conditions which are necessary as well as sufficient for m  to be an

indefinite integral.   Three types of Radon-Nikodym derivative are considered.

So-called "type  p" functions possess a certain compatibility with a lifting p.

So-called "strongly  T integrable" functions are a little less than Bochner
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integrable and a little more than "weakly" integrable.   The third type is the stan-

dard (locally) measurable function having values in a normed linear space.   For

this we shall also mention previous results  ([14], [17], [23], [24]), each  given

the slight generalization implied by the material of §3-   Finally, §>6 will round

out the presentation with some examples and open problems.

2.   Notation and basic terminology.   By a measure space we shall mean a

triple  (X, S, p.), where  X  is a set, 5  is a cr-ring of subsets of X, and  p is a

countably additive set function on 5 which assumes nonnegative or possibly in-

finite values.   If we say that  (X, S, p) (or fj)  is finite or totally p-finite, we shall

imply that X £ S.

Let F  and F be sets. We shall write F © F in place of E u F when E

and F  are disjoint.   By Ec we shall denote the complement of E, by E — F we

shall denote the relative complement  F O Fc, and by   y£ we shall denote the

characteristic (or indicator) function of the set  F.  The symbol 0  will denote the

empty set.   If E, F £ 5, we shall say that  E ^    F if E  is  /¿-equivalent to  F, i.e.

if ~xE = xF almost everywhere.  We shall employ the standard abbreviation "a.e."

for "almost everywhere".

A set will be called measurable if it lies in  5, and locally measurable if its

intersection with any measurable set is measurable.   A /j-null or null set is a mea-

surable set of measure  0, and a locally null set is a locally measurable set which

intersects every measurable set in a null set.  A function / on X  having values

in a normed linear space will be called strongly measurable, or just measurable,

if it is the  a.e. pointwise limit of a sequence of simple measurable functions, i.e.

functions of the form ¿j . _, v .y ^  , where  E ■ is measurable.  We shall call  / lo-i -1    i a E i i '

cally measurable if ¡Xp  1S measurable for every  E   in 5.   If / is locally measur-

able, and if E £ S, then  erp(/) will denote the essential range of  F  on E

[24, Definition 1.2, p.469].

All vector spaces we consider will be either real or complex.   The term

"scalar" will refer indifferently to a real or complex number according as the

space in question is real or complex.   Let  V be a vector space, and let  T be a

space of linear functionals on  V.  The net  \v   | C V will converge to the point

v £ V in the  T topology on  V  if  (p(v ) —> cp(v)  for every  0 £ T-  The function /:

X—» V will be called (locally) T measurable if 0/(= 0 of) is (locally) measurable for

every 0 £ T.  In the original spirit of Pettis [20, Definition 2.1, p. 2801 we shall say that /

is  T integrable on  the set E £ S  if  0/ is (Lebesgue) integrable on E  for all  0 £

T, and if there exists an element  vp  of  V  such that   0(fE) = JEchfdß for all 0 e

T.  We shall write  fFfdp in place of v   , and refer to  fFfdp as the  V integral of /

on E.   Unless the  T topology is Hausdorff, or, equivalently, unless  V is total (i.e.

v = 0 if and only if 0(iA = 0 for all 0 £ T), the V integral   fp f dfi will not be
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uniquely defined. However, when we write  fFfdp, we shall imply an arbitrary se-

lection among the suitable elements of  V, and when we assert that v = fpfdp

we shall imply that  v  is suitable and that we have chosen  fPfdfi to equal v.  If

M C S, we shall say that / is V integrable on M if / is T integrable on every

set  E  in M.  The set function  m defined by  m (E) = fpfdp for all sets  E  on

which / is  T integrable will be called the indefinite integral of / (with respect

to fi).

Let m be a set function defined on a subset of S and having values in a

normed linear space.   Then m  is (norm) countably additive if, whenever    E =

©°° = ]E.,and  m is defined for E  and for each  E-, then the series ¿"l    m(E .)

is (unconditionally) convergent to  m(E).  By   \m\   we shall denote the total vari-

ation of m [4, pp.32 ff.1.   If m assumes values in the arbitrary space   V, we shall

say that m is V countably additive if cpm ( = çS om)  is countably additive for

every <p £ V.  We shall say that  m is it-continuous if ¡i(E) = 0  implies that m(E)

is defined and equal to  0.

Assume now that  V  is a normed linear space.   By   V    we shall denote the

dual space of  V.  We shall occasionally refer to the   V     topology on   V as the

"weak" topology.

Finally, the end of a proof will be signalled by the standard symbol».

3.   Decomposable measure spaces.  The purpose of this section is to introduce

machinery which will permit automatic generalization of our Radon-Nikodym

theorems from finite to decomposable measure spaces, this latter comprising a

wide variety of measure spaces which includes regular Borel measures on locally

compact Hausdorff spaces [14]. We shall illustrate how the generalization proceeds

with the classical Radon-Nikodym theorem, and then assume finiteness of the mea-

sure   it in the proofs of the next sections.

3.1. Definition.   Let  (X, S, p) be a measure space.   A subset  / of 5  is called

an ideal if / is a ring, and  if, given E £ S and  F £ I, we have  E  (~\ F £ I.  The

subset  /  is dense (in S) if every set E  in S  of positive measure contains a set

F  in  / of positive measure.   The subset  / will be called a it-zaea/ if  /  is a dense

ideal which contains the it-null sets.

Many vector valued measures (including signed measures) cannot meaningfully

be defined on all of S, and we shall habitually assume that such measures are

defined on it-ideals.  Using an "exhaustion procedure" similar to that in

[23, Lemma 1, p.72l, or using a simple Zorn's lemma argument, we may quickly

establish the following result.

3.2. Proposition.  Let (X, S, p)  be a measure space, and let I be a dense

subset of S.   Then every a-finite set E  in S  is ^-equivalent to a countable



200 JOSEPH KUPKA [July

disjoint union of sets in  I.

3.3. Definition.  Let (X, 5, p)  be a measure space.  We shall say that

(X, 5, ß) (or ß)  is decomposable if u is a-finite, and if there exists a family

ÍXj of disjoint sets of finite positive measure such that p(E) =Liap(E (~\ X ) for

all E eS.

In this definition we follow the terminology of Kelley and Srinivasan [l4l. De-

composable measure spaces have also been called strictly localizable

[12, Definition 8, P-17], and essentially constitute direct sums of finite spaces

[25, Definition 3.1, p.282].   (Cf. also [4, Definition   5, p.179].) Note that the o-

finiteness of ß will ensure that each set  E  in 5  intersects at most countably

many  X    in a nonnull set, and hence that the set X -  ©   X    is locally null.

If we have established the classical Radon-Nikodym theorem for a finite mea-

sure  ß, then, in view of Proposition 3-2, the following generalization is immediate.

3.4. Theorem. Let (X, 5, ß) be a nonnegative, decomposable measure space,

and let m be a real valued measure defined on a ß-ideal M C 5. Then there exists

a real valued locally measurable function f on X such that m(E) = jFfdß for all

E £ M  if and only if m  is ß-continuous.

Decomposability is a convenient criterion for ensuring that a "compatible"

collection of measurable functions, each defined only on a member of a dense

subset of 5, can be pieced together into a suitable globally defined and locally

measurable function.  (This statement is made precise in Proposition 3-5-) Since

we shall need decomposability only for this purpose, and since we shall assume

it in all of the Radon-Nikodym theorems to follow, it is worth pointing out that it

need not be assumed in any specific instance where a piecing together procedure

can be carried out by some other means.   An example occurs when the measure  m,

such as in Theorem 3.4, is carried on a locally measurable set on which ß is de-

composable—in particular, if m  is carried on a <7-finite set.  Another example may

occur when  m  is assumed to be real valued.  It is well known that the conclusion

of Theorem 3-4 is valid for all measures  m, as described there, if and only if the

space (X, 5, ß)  is localizable ([25, Definition 2.6, p.279; Theorem 5.1, p-30l],

[27, Theorem 9.5, P-1S2], [13, Theorem 3, p.9ll, [15, Theorem 2, p.9]; cf. also

[27, Theorem 9.4, p.181]).  While decomposability implies localizability, it is un-

known whether the converse is true (however, cf. [8] and [15, pp.3ff-])-

As we shall be dealing with vector valued measures and functions, it is worth

observing that decomposability is the weakest reasonable condition which can be

imposed in order to ensure an appropriate piecing together of locally defined mea-

surable functions.
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3.5.   Proposition.   Let (X, S, p)  be a measure space containing no atoms of

infinite measure.   Suppose that we are given a Banach space  B, a dense subset

M of S, and, for each set E  in M, a measurable function fE; E—* B such that,

for all E, F £ M, we have fF(x) = fF(x) a.e. on E D F; suppose, moreover, that

these conditions will always imply the existence of a locally measurable function

f: X—► B  such that, for all E £ M, we have f(x) = fE (x)  a.e. on  E.   Then

(X, S, p)  is decomposable.

Proof.  Using Zorn's lemma, we let  IXal      - be a maximal family of sets of

finite positive measure such that  X   C\ X„ is it-null whenever  a^ ß.   Because

p has no atoms of infinite measure, we would quickly contradict the maximality

of \Xa\aeA if we assumed that p (E)?é Zait(E fï Xa) for any E £ S.

We shall now show that there exists a family  \Xa\aeA   such that Xa ~  Xa

for  all    a £ A   and  such  that   X'aC\ X'„ = 0   whenever O-^-ß-  Let M =

ÍF £ S: F C Xa for some  a \.  Then  M  is dense in S.  Let  leaia^ be, for example

an orthonormal subset of a suitably large Hilbert space.  Given  E £ M  such that

p(E) > 0, there is exactly one  a £ A   such that E C X   .  Define f p (x) = e    for all

x e E.  If p(E) = 0, then /„  may be defined arbitrarily.   By hypothesis there ex-

ists a locally measurable function / such that, for all  E £ M, we have f(x) =

fE(x)  a.e. on  E.   Let X^ = |x e Xa: f(x) = e J.  Clearly X'a ~    Xa, and, because

ea^e„ for a.^ß, we have  X^ D XÓ = 0 whenever  a.yiß.

It remains co show that p is a-finite.  Given  E £ S, the function /| _  is

assumed to be measurable, so that, except possibly for a null subset of  E, f\

will be separably valued. This clearly cannot be the case if E O Xa were nonnull

for more than countably many a. ■

4.   Radon-Nikodym theorems: sufficient conditions.  This section will present

(in Theorem 4.9) very general conditions which are sufficient for a vector valued

measure  m to be the indefinite integral of a function / with respect to a nonnega-

tive measure ¡jl.  The following material will be used in the proof of Theorem 4-9.

4.1.   Definition.  Let (X, S, p) be a totally a-finite measure space.  A function

p: S —> S will be called a lifting (for p_) if it satisfies the following conditions:

(4.1.1) p(E)^E.

(4.1.2) E ^    F  implies that  p(E) = p(F).

(4.1.3) p(0) = 0;p(X) = X.
(4.1.4) p(EHF) = p(E) n p(F).

(4.1.5) p(E U F) = p(E) U p(F).

Note that the range of p is a field.

Dieudonné [2, pp.78ff.] was the first to point out that it is often convenient to

construct a Radon-Nikodym derivative / with the aid of a lifting.  A more recent

result of the Ionescu Tulceas  [12, Theorem 2, p.S9l  suggests that when / is not
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(locally) strongly measurable the use of a lifting may be unavoidable.  It is well

known that a lifting always exists when (X, 5, ß)  is complete.   This fact, former-

ly the major stumbling block to an elementary treatment of the present topic, has

recently been given a totally elementary proof by Sion  [261.

We may extend p to i    (ß), the space of scalar valued, essentially bounded,

measurable functions on X, by defining

\!=1 / 7=1
)'

and then defining p(f)(x) - lim p(f ) (x), where  {/  !°° = ,   is any sequence of

simple measurable functions converging uniformly a.e. to /.   It is straightforward

to verify that  p(f)  is well defined and independent of the choice of the /     an¿

as the occasion demands we shall use certain obvious properties of this extension

without comment.

4.2.   Lemma.   Let (X, 5, u)  be a finite, complete measure space, let p be a

lifting for ß, and let H be a family of bounded, real valued, measurable functions

on X such that  p(h) = h for all h £ H.  Let f(x) = sup\b(x): h £ H\.   Then f is

measurable, and for any measurable function g such that g > h a.e. for all h £ H,

we have g > / a.e.

Proof.  Let H'  denote the set of functions of the form h' =¿,¿ =i h .-yF  , where

h. £ H and  p(F¿) = F¿ for  i = 1, ••• , n, and where  X =  ©" = 1F;.   It is readily

deduced that  p(h') «■*'   for all h'   £ hi' , that f(x) = suple'(x): tí  £ H'\ for all

x e X, and that  H    is directed for the relation <.  The result now essentially

follows from [4, Proposition 4, p.209]  if it is observed that whenever fxp ls

integrable, it will be the  Lj   supremum of the family  \h'yE: tí £ H' \. ■

4.3-   Lemma.   Let (X, 5, ß) be a measure space, let  B  be a Banach space,

let f be a  B  valued, Bochner integrable junction on X, let  X , be the (a-finite)

support of f, and let p be a lifting [or ß restricted to the measurable subsets of

X.. Consider the collection Î1 of partitions  n = \F .,•••, F  \ such that X,=

0" = 1F¿, and such that p(F f) = F ^ (¿for i = 1, • • • , n.   Define

f    v m(Fi}

'•"ano*,) y,v
where m(E) - fFfdp for all E £ 5, and where  m(E)/ß(E) = 0 when  ß(E)  is in-

finite.   Then II  is directed under refinement (cf. [10, Example (5), p. 31]).  More-

over, the net \f   \ is uniformly Cauchy and converges to f a.e. on X, if and only

if f{X,- N)  is relatively compact in  B ¡or some ß-null set  N.
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Proof. In view of [7, Theorem 15, p.22] and of the (generalized) mean value

theorem [24, Proposition 1.9, p.470], this result is essentially a straightforward

generalization of a Dunford-Schwartz lemma [7, Lemma 3, p.500l. ■

We have avoided the language of essential ranges [24, Definition 1.2, p.469];

however, the statement that f(X , — N)  is  relatively compact for some null set  N

is equivalent to the statement that er„  (/)  is compact.   It follows from Egoroff's

theorem and from [7, Theorem 15, P-22] (cf. [24, Proposition 1.1, p.4691)   that if

/ is an arbitrary Bochner integrable function, then the collection of measurable

sets  E  such that erE(f)  is compact constitutes a ¿t-ideal in S.  We therefore ob-

tain from Proposition 3-2 that /= lim   /    a.e. in any event, although in general

the net [/   ! need not be uniformly Cauchy.  Note that if / is scalar valued and

essentially bounded, then  p(f)(x) = lim   /   (x)  for all x £ X.

4.4.   Lemma.   Let (X, S, p)  be a measure space, let  B  be a Banach space,

and let f be a  B  valued, Bochner integrable function on  X.   Then the set

\f ¡dp: E £ S\ is relatively compact in  B.

Proof.  The result is evident for simple functions, and, in view of [7, Theorem

15, P-221, is easily obtained for arbitrary / through approximation by simple

functions. ■

4.5-   Definition. Let  V be a normed linear space.  A subspace Y of  V*  will

be called norming if ||v|| = sup! |f (f)| : v    £ Y; ||t<  || < lj for all v £ V.

Norming subspaces have also been called determining [ll, Definition 2.8.2,

p.34l, and are clearly total.  In fact the subspace  T is total if and only if  it is

V dense in   V    (i.e. dense in the   V topology on  V*), whereas  T is norming if

and only if its intersection with the unit ball of  V    is   V dense in the unit ball.

(The proof of the latter statement is similar to that of Theorem 5 in [7, p.4241.)

4.6. Lemma.   Let  V be a normed linear space, let Y be a   norming subspace

of V*, and let  m be a  V valued, Y countably additive measure  on an arbitrary

measure space.   Then the total variation  \m\   is countably additive.

Proof.   The standard arguments for the case where  m  is norm countably addi-

tive  [4, pp.34—361 carry over to this setting with little change. ■

4.7. Lemma.   Let (X, S, p)  be a measure space, let  V  be a normed linear

space, let Y be a norming subspace of V , and let f be a locally  Y measurable

function on X having values in a separable subspace of V.   Then f is locally

(strongly) measurable.   Moreover, if f is  Y measurable, then f is meaurable.

Proof. This generalizes slightly the classical result of Pettis [20, Theorem

1.1, p.2781, and no essentially new ideas are involved in the proof. ■
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4.8. Lemma.   Lei V be a normed linear space, and let W be a subspace oj V.  Then

W is norm closed if and only if W is V    closed.

Proof.   This follows readily from [7, Corollary 13, p.64], and is an easy spec-

ial case of a well-known deeper result [7, Corollary 14, p.ll4].B

4.9.   Theorem.   Let (X, 5, u)  be a complete, decomposable measure space,

let  V be a vector space, let  Y be a space of linear functionals on  V, and let  m

be a  V valued, Y countably additive, ß-continuous measure defined on a ß-ideal

MCS.  Assume that for each set E  in a dense subset of M the set

AE(m) = \m{F)/ß{F): F e 5; F CE; 0 < p(F) < °°}

is relatively compact in the  Y topology on  V.   Then

(4.9.1) There exists a  V valued function f on X such that f is Y integrable

on  M, and such that m{E) = fFfdß for all E £ M.

(4.9.2) //, moreover, V is a normed linear space, and if Y is a norming sub-

space of V  , then f may be chosen such that   ||/( • )||   is locally measurable,

and such that  \m\ (E) = /g||/(*)|| dß{x) for all E £ M.

(4.9.3) '/■ moreover, V is a Banach space, and we have either that  V  is sep-

arable or that Y = V , then f may be chosen to be locally strongly measurable

and the Y integral fFfdß realized as a Bochner integral for the ß-ideal of sets

E  in  M such that   \m\ (E)  is finite.

Proof.   In accordance with the results of §3, we may assume that (X, 5, ß)

is finite, that  M = 5, and that A y(m) is relatively compact in the  Y topology on

V.  We shall preserve this assumption throughout the entire proof.

Proof of (4.9.1). Given  0 £ Y, the measure  0m ( = 0 o m)  is  ^-continuous.

Thus, by the Radon-Nikodym theorem, there is a scalar valued function / .   on  X

such that  (ßm(E) = fEf,dp for all E £ 5.

Choose a lifting p for p, and, in the manner of Lemma 4.3, let  II denote the

associated family of partitions of X.   If  n = \F .,•••, F   \ £ Ü, we define  /   =

Since Ax(m)  is relatively compact in the  Y topology, the set A „(0m) =

<p{Ax(m)) will be relatively compact, and hence bounded.  Therefore, by the mean

value theorem, / ,   is essentially bounded, so that p(f¿)  is defined.  We may

assume that / , = p(fj/>, and so may conclude from Lemma 4.3 that f¿(x) =

lim   0/  (x) for all x £ X.

For each fixed x £ X, the net \f  (x)\ lies in AAm).  There will therefore be

a subnet converging in the  Y topology to some point /(x) £ V (not necessarily

uniquely defined).  Since  0/   (x)  already converges to fj.(x), it is clear that

0/(x) = / , (x) for all x e X.   Therefore / is as desired.
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Proof of (4.9.2).   Because    Y   is norming,  we have  that   |/(x)|| =

sup\\v* ¡(x)\: v*£ Y; \\v*\\ < lj   for all x e X.  We recall that p(v* j) = v* ¡ in the

construction above, and it is readily deduced from this that  p(\v   ¡( • )|) =

\v* f( • )|.  The measurability of   ||/( • )||   now follows from Lemma 4.2.  Since the

sets  E  in S on which   ||/( • )||   is integrable constitute a ¿i-ideal, we shall lose

no generality by assuming in addition that  ||/( • )||   is integrable.

Our goal now is to show that |wz|(E) = fp || /(x)|| dp(x) for all E £ S. Evident-

ly \\m(E)\\ < fE \\f(x)\\dp(x) for all E £ S, so that we have \m\(E) < fE \\f(x)\\dp(x)

for all E £ S [4, p.35l-

We shall now obtain the reverse inequality.   By Lemma 4.6 the total variation

\m\  is countably additive.  It is also ^t-continuous and finite.  Therefore, by the

Radon-Nikodym theorem, there is a (nonnegative) function  h  such that   |m|(E) =

f   h dp for all  E £ S.  Let v     eY have norm < 1.  If we can show that  \v /( • )| <

h a.e., then an application of Lemma 4.2 will establish that  ||/( • )|| < h a.e., and

the proof will be complete.   By  [7, Theorem 20, p. 1141, we have   \v*m\(E) =

fE\v*f(x)\dp(x)  for all  E eS.  Fix  E £ S and   e> 0.   Partition  E=  ®" = [E. in

such a way that

n n

f \v*f (x)\dp(x) < £ \v*m(E.)\ + e < £ \\m(E)\\ + (< \m\(E) + (=jEhdp + (.

E !=1 ¿=1

Since E and e were arbitrary, we may conclude that  \v*f( • )| < h a.e.

We remark that in order to extend this special case to the general setting,

Lemma 4.6 is required in addition to Proposition 3-2.

Proof of (4.9.3). In view of (4.9.2), and because  V*  itself is always norming

[7, Corollary 15, p.65], it will suffice to show that / is strongly measurable.   The

condition  |m|(E) = fE \\f(x)\\d p(x)  for all E £ S will then imply that / is Bochner

integrable on every set E  such that   |m|(E)  is finite.   That the Bochner integral

fEfdp will coincide with the F integral is obvious.  We shall preserve the assump-

tion that  ||/( • )||   is integrable.

When  V is separable, strong measurability follows from Lemma  4.7.   Thus

(4.9-3) has been completely established when   V  is separable, and we shall use

this fact in what follows.

It remains to show that / is strongly measurable for general  V when  Y = V .

To this end it will suffice to  show that the set  \m(E): E £ S\ is relatively (norm)

compact.   Then Ay(m), and hence the closed subspace  W generated by Ax(m),

will be separable.  By Lemma 4.8, W will also be  V*  closed, and so will contain

f(X). Lemma 4.7 will then give strong measurability of /.

Compactness is equivalent to sequential compactness for metric topologies,

and so it will suffice to show that a sequence \m(E )}°°_. has a convergent sub-

sequence. To this end let   Y =   (J^^E   , let  T be the cr-alegbra on   Y generated
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by the  E   , let v be  ß restricted to   T, let n be  m restricted to  T, and let  B  be

the closed subspace of  V generated by elements of the form  m(F), where  F  is

the finite intersection of some of the  E   .   The elements  m(F) will be countable,

and so  B   is separable.

We shall show first that n assumes values in B. Let R = \E £ 5: m (E) £ BÎ.

Then we have

(4.9.4) E, F e R  and E n F = 0 implies that E <& F £ R.

(4.9.5) E, F e P  and E C F implies that F - E e P.

(4.9.6) If |F   I™,    is an increasing sequence of sets in P, then (J°°    F    £ R.

Note that (4.9.6) will hold because, as before, the subspace B  will be   V*

closed as well as norm closed. Since P contains a generating set for T which

is closed under finite intersections, we may conclude that RDT [18, Example

1.4.5, p-19].

The hypotheses of (4.9.3) are clearly satisfied by the  B  valued measure n

with respect to v.   Because   3   is separable, and because we have   |«|(V) <

|m|(X) < oo, we have seen that we may obtain a Bochner integrable function g  such

that   n(E) = jEgdv for all   E eT.    Therefore,  by Lemma  4.4,  the   set

\$Egdv: E £ T\ = |m(E): E £ T\ is relatively compact in  B.  It contains the orig-

inal sequence  |m(E  )!00_., which therefore has a convergent subsequence. ■

Discussion of theorem.    The hypothesis that  A F(m)  be relatively  Y compact

is a convenient (and traditional) type of assumption to make. We note, however,

that it is far stronger than what was actually needed in the proof of (4.9.1) (cf.

Theorem 5.3).

The generality of Lemma 4.3 implies that we may replace the scalar field by

an arbitrary Banach space  D  and replace  Y by a space of linear functions from

V  to  D.  The generalization is spurious, however, for by composing elements of

I"1 with linear functionals in D    we obtain in fact a special case of Theorem 4.9-

If T is not assumed to be norming in (4.9.2), we may define, for all  v £ V,

a seminorm  ||f||     = supj|^*(v)|: v* £ Y; \\v   \\ < l!, we may compute the total vari-

ation, \m\     of m with respect to this seminorm, and we may conclude, by the

arguments in the proof of (4.9.2), that  \m\ p(E) = /E||/(x)||   dp(x) for all E £M.  Since

each point f(x)  is not uniquely defined in general, there may be sufficient latitude

in choosing f(x)  that we may obtain   ||/(*)||r = ||/(*)||   a.e.  Such was the case in

the classical (and first) proof of a special case of (4.9.1) given by Dunford and

Pettis [6, Theorem 2.1.0, p.339].

If V is only assumed to be a normed linear space in (4.9.3), we may pass to

the completion V, we may apply the arguments in the proof of (4.9.3), and we may

conclude that / is locally measurable in V and Bochner integrable in V on every

set  E  such that   |m|(E)  is finite.  Of course the Bochner integral fEfdp will also
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lie in  V.

Because the function / in (4.9.3) is strongly (locally) measurable, it is not

necessary to use the lifting theorem in order to derive it.  Under the assumption

that p is finite, we may transfer both p and m to the Stone space of (X, S, p)

[10, Example (15), p. 170; Example (7), p.223], in which the closed-open subsets

constitute the range of a natural lifting.   The strongly measurable Radon-Nikodym

derivative for m with respect to p on the Stone space may then be transferred

back to X.

Discussion of previous results.  With the exception of certain Radon-Nikodym

theorems for the Bochner integral, which will be summarized as part of Theorem

5.6, all previous theorems of this type which are known to us require, either ex-

plicitly or implicitly, an assumption about the relative compactness of sets of

ratios of the form m(E)/p(E).  Each of these theorems constitutes a special case

of Theorem 4.9-  In addition to the Dunford-Pettis theorem mentioned earlier,

various special cases of (4.9.1) have been proved by Dieudonné [3, Theorem 1,

p.132], Bourbaki [l, Corollary 3, P-46], Dubins [5, Theorem 5, p.29l], Métivier

([16, Theorem 6.6, p.334],   [17, Theorem 7, p.199]), Dunford and Schwartz [7,

Theorem 2, p.499], Dinculeanu [4, Theorem 5, p.269], the Ionescu Tulceas [12,

Theorem 1, p.86], and Pellaumail [19, Theorem B2, p.36l].  Some of these theorems,

as well as some of the theorems cited in the next paragraph, require rewording in

order to assume explicitly the form of a Radon-Nikodym theorem.  A typical exam-

ple is the Dunford-Schwartz theorem, a suitable rewording of which is given in

[24, Theorem 51, p.481].  We remark that Dubins constructed only a "generalized

random variable" [5, Definition 1, p.273] as a Radon-Nikodym derivative, and did

not prove that it could always be taken to be an ordinary function.  Dinculeanu

gave the only other proof of (4.9.2) that we have seen.   In the special case which

he considered we have   V = x(E,  F), where  E  and  F  are Banach spaces, and

where  =l(E, F)  denotes the space of bounded linear operators from  E  to  F.  The

space  T is not explicitly mentioned, and we note that it would comprise the sub-

space of Jl(E, F)*  generated by pairs of the form (e, z), where  e £ E  and z £ Z,

a norming subspace of F*.   The pair   (e, z)   will map an operator  U e£(E, F)  into

the scalar z(il(e)).

Aside from the automatic generalization implied by the discussion in §3,

(4.9.3) is a known result. It was first established by Phillips [21, Theorem   5-1,  pp.

130 ff.], who gave two separate proofs.   The second of these also appears in

Grothendieck [9, Theorem 3, p.426] and in Bourbaki [l, Example 24, p.95]- The

crux of the difficulty is to obtain strong measurability, and additional proofs of

essentially this result have been given by Métivier [17, Theorem 11, p.203] and the

Ionescu Tulceas [12, Propostion 1, p.91].   All four proofs depend upon results which
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are both specialized and deep.  The present proof, by contrast, exploits only the

most basic feature of the weak topology which crucially distinguishes it from the

other  r topologies: namely, that the weakly closed and the norm closed subspaces

of a Banach space coincide.  We remark that Rao [22, Theorem 3-3, p.114] has

given a generalization of Phillips' theorem for the  case where both m  and ß

assume values in (possibly different) Banach spaces.

Discussion of techniques of proof.  Our technique of using partitions consist-

ing of sets in the range of a lifting was employed independently by Pellaumail

[191-  In his first proof of (4-9.3) Phillips (erroneously) derived the function / in

a similar fashion, using partitions consisting of sets of strictly positive finite

measure.   These, however, are not directed under refinement, so that, given x £

X, the set  \f  (x)\ does not constitute a net.

Our argument in the proof of (4.9.2) that the function ||/( • )||   was locally

measurable was adapted from ideas in Dinculeanu   [4, Proposition 5, p.2131-   How-

ever, his proof (when   V = £(E, F)) that  |m|(E) = fE\\f(x)\\dß(x)  for all  E £ M  re-

lies upon special properties of the Y topology which he considers, and does not

readily extend to the more general setting.

5.   Radon-Nikodym theorems: necessary and sufficient conditions.  In each of

the three cases of Theorem 4.9 the Radon-Nikodym derivative possessed a "com-

patibility" with the lifting p used to construct it.   In this section we shall pre-

sent necessary and sufficient conditions for the vector valued measure  m to be

the indefinite integral of a function of this type, with respect to the nonnegative

measure  p.  Since the definition (of a "type  p" function) relies crucially upon

the arbitrary selection of a lifting  p, we have felt it desirable to lay stress upon

special cases (such as Theorem 4.9 itself) which may require the involvement of a

lifting in the proof, but which do not require it in the statement.  Theorem 5-3 it-

self is more preliminary in nature.

In preparation   for Definition 5-1, we shall extend the notion of a lifting to

decomposable measure spaces.  Let (X, 5, ß) be a complete, decomposable mea-

sure space, and let  IXaS be a family of disjoint sets of positive finite measure

such that ß(E) =  YjaP^EC\ X )  for all E £S (cf. Definition 3-3)-   For each  a, let

pa be a lifting for ß on  Xa, and then, given  E £ S, define p(E) = ©a pa(E n X ).

We obtain a function  p: S —>5  which satisfies (4.1.1)—(4.1.5), except that p(X)

is not defined.  We shall call  p   a lifting for ß in this setting, and we observe

that a complete, a-finite measure space is decomposable if and only if it admits a

lifting of this sort.  (The "if" argument involves a disjointization procedure, as

in the proof of Propositiom 3-5.) Note that if h  is a scalar valued, essentially

bounded, measurable function on  X, then  p(h) may be defined in the manner de-

scribed after Definition 4.1.
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5.1, Definition.   Let (X, S, p)  be a cr-finite measure space, let  p be a lift-

ing for p, let   V be a vector space, let T be a space of linear functionals on  V,

and let / be a  V valued, locally  Y measurable function on  X.  We shall say that

/ is of type p (with respect to  Y) if there exists a dense subset of S such that for

each set  E  in this dense subset we have  p(cpf^p) = <pfxp  f°r all  <f> e T, except

possibly for a null set which is independent of the choice of (p.

The motivation for the "null set which is independent of the choice of  <p"

is to allow any function which is a.e. equal to a type p   function to be of type  p

as well.  We shall now formally label the type of function derived in (4.9.2).

5.2. Definition.  Let (X, S, p) be a (cr-finite) measure space, let  V be a

normed linear space, let Y be a norming subspace of  V  , and let /: X—> V be a

function.   Given  E £ S, we shall say that / is strongly Y integrable on E  if / is

r integrable on all measurable subsets of E, if ||/( • )||   is measurable on  E, and

if we have   |«|(F) = f  ||/(x)|| dp(x) for all measurable subsets of  F of E, where

m(F) denotes the T integral f  f dp. If M C S, we shall say that / is strongly  Y

integrable on M  if / is strongly  Y integrable on each set  E  in  M.

We emphasize that the equality   |m|(F) = /P||/(x)|| dp(x) does not imply that

either expression is finite.

If / is strongly  Y integrable on a p-ideal M CS, it is straightforward to

verify that whenever  ||/( ■ )||xp( " )  Is integrable, it will be the  L .  supremum of

the family !|^*/( • )|Xp^ • ) : ^* e T; ||f*|| < ll-  Therefore, if g is  Y integrable

on  M  and has the same indefinite integral as  / does, we may  infer that   ||/(x)|| <

||g(x)||   a.e.  We are unable, however, to ascertain whether this "minimal norm"

property is sufficient to imply the strong  Y integrability of /.

If / is  T integrable on the ^-ideal M C S, and if / is of type  p for some

lifting p for p, then it follows from the arguments in the proof of (4.9.2) that /

is also strongly Y integrable. In particular, let / be locally (strongly) measurable.

Then the collection  M, of sets  E  in  S  such that   ||/( • ÍH^p^ * )  1S integrable,

and hence such that / is Bochner integrable on  E (in the completion, V, of  V),

constitutes a ^-ideal in 5.  It is now evident from Lemma 4.3 and from the remarks

following it that / is of type  p (with respect to   V*) for any lifting p for p, and

hence that / is strongly  V    ( = V ) integrable in  V  on M     Conversely, if the  V

valued function / is of type  p (with respect to   V*) for some lifting p for p, and

if / is (strongly) V     integrable on a ft-ideal MC S, then, as was essentially estab-

lished in the proof of (4.9.3), / will be locally measurable.

We remark that a necessary and sufficient condition for / to be strongly Y

integrable on the ^-ideal M  is that: for each set  E  in a dense subset of M we

have

mq(E)ME\\f(x)Ydp(x)\Uq <^,
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where   1 < q < oo, and where  m    denotes the "g-variation" of m. as described by

Dinculeanu [4, pp.241 ff.]. (When q = oo, an analogous condition can be given.)

Both necessity and sufficiency follow readily from  [4, Proposition 4, p.254].  The

notion of ^-variation occurs at least as early as Phillips' paper [21, pp.133 ff.]

(cf. [4, Propostion l,p.249l), and, in Corollary 5-6 [21, p.134], the above criterion

is noted in connection with a Bochner integrable Radon-Nikodym derivative.  This

corollary thus amounts to a special case of Theorem 5-7 below.

For the next theorem we establish the following notation: If (X, 5, ß) is a

a-finite measure space, if p is a lifting for ß, and if x £ X, we let 5 (x) denote

the "p neighborhoods" of x, i.e.. the set |F £ p(S): x £ F\. Then 5 (x) is non-

void except possibly for a locally null set, and is directed by the standard rela-

tion  F X<F 2 if F,D F 2.

5.3-  Theorem.  Let (X, S, ß), p, V, and Y be as in Definition 5.1, and let

m be a  V valued, Y countably additive measure defined on a ß-ideal M C 5.   Ther.

there exists a  V valued function f of type  p on  X such that  f is Y integrable

on M, and such that m(E) = fF fdp for all E £ M  if and only if

(5.3.1) m is ß-continuous for Y, i.e.  ß(E) = 0  implies that <hm(E) = 0 for all

0eT;

(5.3.2) for each set E  in a dense subset of M, the set A F(m) (as defined in

Theorem 4.9) is  Y bounded, i.e.   cp(A F(m))  is bounded for all ob £ Y;

(5.3.3) for all x not in a fixed locally null set, the net  \m(F)/ß(F)\F

has a subnet which converges in the  Y topology.

Remark.   If  V  is a normed linear space, and if Y is a norming subspace of

V*, then / will be strongly  Y integrable, and it is readily deduced that the state-

ment  "AE(m) • • • is  T bounded" in (5.3.2) may be replaced by the statement

"|m|(E)  is finite".

If we have in addition that V is separable or that Y = V , then / will also

be locally measurable, and the Y integral fEfdß can be computed as a Bochner

integral if  |m|(E)  is finite.

Proof.   It is easy to see that the argument in the proof of (4.9.1) will yield a

type  p Radon-Nikodym derivative / for  m  with respect to pi if m  satisfies the

weaker conditions (5.3.1)—(5.3-3)-  Note that / may be defined arbitrarily on the

locally null set of points x £ X  for which no assumption is made about the net

|m(F)//j(F)iFeS(x) (or for which 5(x)  is void).

Conversely, suppose that m  is the indefinite integral with respect to  ß of a

T integrable function / of type  p.  Then (5.3-1) is immediate.   Let  E £ M  be such

that p(d>fXp) = 0/Xf  a-e- ^or a^  <£ e T, and such that the null set  N where the
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two functions differ is independent of the choice of <p £ Y-  Then, in particular,

the function   (pfxg  ls essentially bounded for all  cß £ Y, so that, by the mean

value theorem, the set Ap(m) is  Y bounded.

To establish (5-3-3), we shall simplify notation by assuming that the set  E

of the last paragraph equals  X.   Let  1/  S  be the net defined in the proof of (4.9.1).

Then, because the function  <pf is essentially bounded, Lemma 4.3 implies that

p(r/>/)(x) = lim   of  (x) for all x £ X.  But for x f. N, the fixed null set defined

above, we have  <f>f(x) = p(<pf)(x)  for all  c6 € Y.  It is then clear from the defini-

tion of   /    that cßf(x) = limFeS(x)cp(m(F)/p(F))  for all  <p £Y, and for each x /È N.

By Proposition 3-2, (5-3.3) is now immediate. ■

We remark that hypotheses (5.3-1) and (5.3.3) alone are sufficient to yield a

Y integrable Radon-Nikodym derivative for m with respect to p; however, we are

unable to characterize conveniently the type of Y integrable functions whose in-

definite integrals satisfy (5.3.1) and (5.3-3) without necessarily being of type p,

i.e. without necessarily satisfying (5.3.2) as well.

Without assuming hypothesis (5.3.3), we may still infer that, for nearly every

x £ X, the net  \<p(m(F)/p(F))\ F€S(   -, converges for all  </> £ Y, and so determines a

linear functional on  Y.  This observation permits the conclusion that Theorem 5.3

will remain essentially valid in the absence of hypothesis (5.3.3) if the function

/ is allowed to assume values in  Y , the space of linear functionals on  T.  We

omit precise details, except for mention of the following distinguished special

case.

5.4.  Theorem.   Let (X, S, p) be a complete, decomposable measure space, let

Y be a vector space, let  Y    be the space of linear functionals on  Y, and let m  be

a  Y    valued, Y countably additive measure defined on a p-ideal M C S.   Then there

exists a Y    valued function f on  X such that f is of type p for some lifting p

for p, such that f is  Y integrable on M, and such that  m(E) =fpfdp for all E £

M  if and only if m is p-continuous, and, for each set  E  in a dense subset of M,

the set A p(m)  is  Y bounded (as defined in Theorem 5-3)-

We remark that by the Tychonoff theorem a set  K CY    is   Y bounded if and

only if it is relatively  Y compact.

Except for generalization to the decomposable setting, the following two

theorems are essentially known.   With the one exception noted in Theorem 5.6, all

of the additional arguments which are needed to fully establish these theorems

are entirely elementary.

The following theorem includes the familar weak    topologies as distinguished

special cases.
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5.5.   Theorem.   Let (X, S, ß)  be a complete, decomposable measure space,

let  V be a normed linear space, let Y be a norming subspace of V    such that

the unit ball of V is relatively compact in the Y topology, and let  m be a  V

valued, Y countably additive measure defined on a ß-ideal M C 5.   Then there

exists a  V valued function f   on X such that f is strongly Y integrable on M,

and such that m(E) = fpfdp for all E £ M if and only if m  is ß-continuous, and

\m\(E)  is finite for each set E in a dense subset of M.

Proof.   Cf. [3, Theorem 1, p.1321. ■

When the unit ball of  V is not relatively  Y compact, it is always possible to

embed   V in a larger space  W  such that  Y may be regarded as a norming sub-

space of W*, and such that the unit ball of  W  is (relatively) Y compact.   Theorem

5.5 carries over exactly to this setting, provided of course that we allow the func-

tion / to assume values in  W. We may always let  W = Y*  (cf. Theorem 5-4); how-

ever, in specific instances there may arise a more natural choice for the space  W.

For  example, in the theorem of Dinculeanu discussed earlier [4, Theorem 5,

p.269], the space  V = <5l(E, F)  is embedded in the space  W = X(E, Z ) (where we

recall that Z  was a norming subspace of  F*).  Although Dinculeanu does not

mention it explicitly, the space  x(E, Z ) may be seen to have a compact unit

ball for the  Y topology involved.

The following theorem states in particular that the conditions of (4.9.3) are

both necessary and sufficient to obtain a locally measurable Radon-Nikodym de-

rivative.

5.6.  Theorem.   Let (X, S, ß)  be a decomposable measure space, let B  be a

Banach space, and let m  be a  B   valued, (norm) countably additive measure de-

fined on a ß-ideal M C 5.   Then there exists a  B  valued, locally measurable func-

tion f on  X such that f is strongly B*   integrable on  M, and such that m(E) =

fpfdß for all E £ M  if and only if m  is ß-continuous, and any one of the follow-

ing statements is true.

(5.6.1) For each set E  in a dense subset of M, the set AF(m) (as defined in

Theorem 4.9) is relatively  B*  compact.

(5.6.2) For each set E  in a dense subset of M, we have both that  |m|(E)  is

finite, and that there exists a B*  compact set  K C B - \0\ (depending upon E)

such that m(F)  is contained in the cone generated by  K for all measurable sets

F CE.

(5.6.3) Given e > 0, the diameter of A   (m)  is  < e for each set  E  in a dense

subset of M.

(5.6.4) For each set E  in a dense subset of M, the set Ap(m)  is deniable

[23, Definition 1, p. 71].
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*
Remark.  Note that norm countable additivity is equivalent to  B     countable

additivity [20, Theorem 2.4, p.2831-

Proof. (Cf. [24, Main Theorem, p.4661, [17, Theorem 11, p.203], [14], [23,

Theorem 1, p.7l]. ) We remark that the proof in [24, p.479] that (5.6.2) implies

(5.6.1) carries over from the norm compact to the  B     compact setting by using

the deeper Kreih-Smulian theorem [7, Theorem 4, p.4341 in place of the elementary

Mazur theorem [7, Theorem 6, p.416]. ■

With note of the fact that reflexive Banach spaces are precisely those whose

unit balls are (relatively) weakly compact [7, Theorem 7, p.4251, we may combine

Theorems 5-5 and 5.6 to produce the closest analogue of the classical Radon-

Nikodym theorem for measures  m which are not scalar valued.

5.7.   Theorem.   Let  (X, S, p)  be a decomposable measure space, let B  be a

reflexive Banach space, and let m  be a B  valued, countably additive measure

defined on a p-ideal M C S.   Then there exists a  B  valued, locally measurable

function f on X such that f is strongly B     integrable on M, and such that

m(E) = fFfdp for all E £ M  if and only if m  is p-continuous, and  \m\(E)  is finite

for each set E  in a dense subset of M.

6.   Examples and open problems.   The five examples to follow will complement

those given by Rieffel [24, pp.484 ff-1. For each, let X  be the unit interval

[0, 1], let S be the Lebesgue measurable subsets of X, and let p be Lebesgue

measure on S.

Our first example will present a function which has constant norm, and which

is  r integrable, but not strongly  Y integrable.

6.1. Example.  Let |e   1     „ be an orthonormal set in a suitably large Hubert

space  H.  Define the function /: X —*H by f(x) = e     for all x e X.   Then / is

H    ( = H)  integrable on S, and we have fFfdp = 0 for all E £ S.  However,

||/(x)|| = 1   for all x £ X.   If we multiply / by a nonmeasurable scalar valued func-

tion, we obtain a function with badly behaved  norm which is still  H    integrable

on S.

Our next example will illustrate that the assumptions made about the finite-

ness of the total variation in Theorem 5.3, in Theorem 5.5, in (5.6.2), and in

Theorem 5.7 cannot be eliminated.

6.2. Example.   (Cf. [19, Example C5- (b), p.365]-)  Let  S = L (p), where   1 <

p < oo, and define the measure  m; S —> B  by  m(E) = xF l°r all  E £ S.  Then

|to|(E) = 0  if p(E) m 0, and   |m|(£) = oo  if p(E) > 0.   Let  T be a norming subspace

of B   .  Since  B  is separable, any  Y measurable function on  X will be measurable,

and therefore Bochner integrable on some ¿t-ideal  M C S.  Thus  m cannot be the

indefinite integral of any such function.  Since  B   is also reflexive, it may be seen

that the results cited above will each fail if a finiteness  assumption is not made

about  \m\.
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Our next example will illustrate both that Theorem 5.7 fails in the nonreflex-

ive setting, and that two strongly Y integrable functions with the same indefinite

integral need  not coincide at any x  in  X.

6.3. Example. Now let B = L x(p), and let m be defined as in Example 6.2.

Then   |m|(E) = ß(E) for all  E £ 5.   By using (5.6.3), it is quickly checked that  m

could not be the indefinite integral of a Bochner integrable function, and hence

also not of a T integrable function for any norming subspace Y of B*.

However, by Theorem 5.5, m will be the indefinite integral of a B**  valued

function / on  X which is strongly B     integrable on 5.  We shall now describe

/ explicity.   We recall that B* = Lj,ß) [7, Theorem 5, p.289], and that B** =

ba(ß) [7, Theorem 16, p.296], where ba(ß)  denotes the space of finitely additive,

pt-continuous, scalar valued measures on 5 with finite total variation.  (Then

m(E), regarded as an element of ba(ß), is simply ß restricted to  E.) Let p be a

lifting for ß, and let x e X.  Using the construction in the proof of (4.9-1), we may

easily   establish  that f(x) = px £ ba(ß), where  p (E) = 1   if x £ p(E), and = 0

otherwise , for all  E £ 5.   (Note then that, given  0 £ L   (ß), we have 0/(x) =

f<f>dpx= p(0)(x), so that  <pm(E) = j"£ <hdß = fE p(<h)dß = /£ <hfdß for all E £ 5, and

for all  0 e L   (ß).) It is now clear that two distinct liftings for ß will yield two

B*   integrable Radon-Nikodym derivatives for m with respect to ß which are un-

equal at every point x  in X.

Our next example will present a strongly Y integrable function which is not

of type p for any lifting p, and whose indefinite integral is not the indefinite in-

tegral of any type  p function.

6.4. Example.  We modify Example 6.3 as follows: Replace  ba(ß) by  V, the

space of scalar valued, countably additive measures on 5  under the total varia-

tion norm; replace L   (ß) by Y, the space of scalar valued, bounded measurable functions

on  X under the supremum norm 11011^, = sup||0(x)|: x £ X\.  Then  Y may be regarded

as a norming subspace of  V  , and the measure  m of Example 6.3 may be assumed

to take values in  V.

Given x e X, let g(x) = 8 , where  8    £ V denotes unit mass at the point x.

Then it is readily checked that g  is strongly  Y integrable on 5, and that m  is its

indefinite integral.  Since 0g (x) = f<f>d8x= 0(x)  for all 0 £ Y, it is clear that the

function g  cannot be of type  p for any lifting   p for p.  Moreover, if / were a

type  p Radon-Nikodym derivative for m with respect to  ß, then, by Theorem 5.3,

we would have f(x) = p   (as defined in Example 6.3) for almost all x £ X.  How-

ever, the measure  p    is not countably additive, and is therefore not in  V.

Our final example will illustrate two intuitively obvious truisms:

(1) that a measure m can be a Y indefinite integral of a Bochner integrable

function without being its Bochner indefinite integral; and

(2) that the larger the space   V and the smaller the space  Y, the easier it is
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to find well-behaved Y integrable Radon-Nikodym derivatives.

6.5-  Example.  In Example 6.4, let <pQ = 1, and let Y„ be the one-dimension-

al subspace of Y generated by  cpQ.  Define f(x) = p £ V for all x € X.  Then /

is Bochner integrable, and we have fFf dp - p(E) • p^ m(E) for every nonnull set

E £ S; however, the  YQ integral fpfdp equals  m (E) in the sense that tpm(E) =

fE<pfdp for all E £ S, and for all  (p £ YQ.   Moreover, we have   |m|(E) =

fE\\f(x)\\dp(x) = p(E), for all  E £S.

6.6. Problem.   Characterize the indefinite integrals of arbitrary  Y integrable

functions and of arbitrary strongly  Y integrable functions.

We might first try to characterize the class of "accessible"  Y integrable

functions, i.e. those whose indefinite integrals satisfy precisely (5.3.1) and

(5.3-3), the latter with respect to a lifting  p for p.  If such a function is not also

of type  p, then it will be wild (e.g. unbounded on every nonnull subset of a set

of positive measure), and so we ask

6.7. Problem.   Can hypothesis (5.3-2) be eliminated from Theorem 5.3''

The term "accessible" is intended to imply that the values of the function

can be recovered in the limit from the values of the indefinite integral.  While in

this sense the function of Example 6.1 is highly inaccessible, there does exist

an accessible function (namely, the function identically equal to zero) with the

same indefinite integral.   By contrast, the measure of Example 6.4 does not admit

an accessible Radon-Nikodym derivative in any ordinary sense, and it appears

that a radical departure from the present techniques will be needed to character-

ize such measures.

6.8. Problem.   // the function f is  Y integrable on a p-ideal, where  Y is a

norming subspace of the dual of a normed linear space, then does there exist a

strongly Y integrable ¡unction with the same indefinite integral?

6.9. Problem.   How far can the analogy between "strongly Y integrable"

and "Bochner integrable" be carried?

To the extent that "strongly  Y integrable" can be combined with "type  p",

the answer appears to be: nearly  as far as we like.   For example, let  (X, S, p)  be

a complete, finite measure space, and let  V be the dual of a Banach space  Y.

Fix a lifting p for ft, and consider the collection of functions  /: X—' V which

are  Y measurable, and which are of type  p.  Since  V is a dual space, it is evi-

dent that each such function / is Y integrable (and hence strongly  Y integrable)

on the p-ideal of sets E £ S  such that  ||/( • )\\\F is integrable.

It is readily checked that this collection of functions is closed under algebra-

ic operations and under a.e. pointwise (norm) convergence of sequences, and that

any two such functions with the same indefinite integral will be equal a.e.   In fact

most of the standard results of measure theory (Egoroff's theorem, the Riesz-Weyl
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theorem, the dominated convergence theorem,  etc.) will carry over intact.   The

singular and unavoidable exception is the inability to approximate by sequences of

simple functions.

We may also form an "L ." space comprising equivalence classes of functions

/ such that   ||/|| . =  fv||/M|| dß(x)  is finite.   From Example 6.3, we see that in

general (unless  Y is reflexive) this space will strictly contain the space

L.(X, 5, p, V) of Bochner integrable functions, and, by Theorem 5.5, that it will

be isometrically isomorphic to the Banach space of Y countably additive measures

m  on  5  such that   |m|(X)  is finite.  In particular we obtain concrete representa-

tion for a greater portion of the dual space of  L   (X, 5, ß, Y) (the space of equiv-

alence classes of Y valued, essentially bounded, measurable functions on  X) than

is given by  L.(X, S, ß, V).  Similarly the other  "L   "  spaces may be defined

(for  1 < p < oo), and they constitute the respective dual spaces of the Bochner

spaces   L  (X, 5, ß, Y), where   1 < q < oo,   and where   l/p + \/q = 1.
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