LATTICE-ORDERED INJECTIVE HULLS

BY

STUART A. STEINBERG

ABSTRACT. It is well known that the injective hull of a lattice-ordered group (l-group) M can be given a lattice order in a unique way so that it becomes an l-group extension of M. This is not the case for an arbitrary f-module over a partially ordered ring (po-ring). The fact that it is the case for any l-group is used extensively to get deep theorems in the theory of l-groups. For instance, it is used in the proof of the Hahn-embedding theorem and in the characterization of \aleph_{σ} -injective l-groups.

In this paper we give a necessary and sufficient condition on the injective hull of a torsion-free f-module M (over a directed essentially positive po-ring) for it to be made into an f-module extension of M (in a unique way). An f-module is called an i-f-module if its injective hull can be made into an f-module extension. The class of torsion-free i-f-modules is closed under the formation of products, sums, and Hahn products of strict f-modules. Also, an l-submodule and a torsion-free homomorphic image of a torsion-free i-f-module are i-f-modules.

Let R be an f-ring with zero right singular ideal whose Boolean algebra of polars is atomic. We show that R is a qf-ring (i.e., R_R is an i-f-module) if and only if each torsion-free R-f-module is an i-f-module. There are no injectives in the category of torsion-free R-f-modules, but there are \aleph_{α} -injectives. These may be characterized as the f-modules that are injective R-modules and \aleph_{α} -injective l-groups. In addition, each torsion-free f-module over f can be embedded in a Hahn product of f-simple f-f-modules. We note, too, that a totally ordered domain has an f-f-module if and only if it is a right Ore domain.

1. Introduction. Our methods and characterization of torsion-free i-/-modules are modelled after Anderson's work on the maximal right quotient ring of an f-ring [1]. Throughout this paper \mathbb{Z} and \mathbb{Q} will denote the totally ordered rings of integers and rational numbers, respectively. If R is a po-ring, then R_* will denote the po-ring obtained by freely adjoining \mathbb{Z} to R.

We begin by recalling the requisite module theory. All modules will be right modules. An R-module E is injective if for every pair of R-homomorphisms $f\colon K\to E$ and $g\colon K\to L$, where g is monic, there exists an R-homomorphism $h\colon L\to E$ such that hg=f. A submodule N of the R-module M is an essential submodule (and M is an essential extension of N) if $N\cap K\neq 0$ for every nonzero submodule K of M. Every module M has a maximal essential extension $E=E(M_R)$ which is unique up to an isomorphism over M. E(M) is the smallest injective module containing M, and is called the injective bull of M. If F is an essential extension of M and

Presented to the Society, February 11, 1971; received by the editors February 10, 1971. AMS 1970 subject classifications. Primary 06A70; Secondary 16A52, 06A60.

Key words and phrases. f-module, lattice-ordered injective hull, relative injectives, torsion-free f-module, Hahn embedding theorem.

it is injective, then F = E(M) ([9] and [10]).

Let M^{∇} be the set of essential submodules of M. Then M^{∇} is a dual ideal in the lattice of submodules of M. If N is a submodule of M and T is a subset of M, then $(N:T) = \{r \in R: Tr \subseteq N\}$ is a right ideal of R. If $N \in M^{\nabla}$ and $x \in M$, then $(N:x) \in R^{\nabla}$. For a subset T of M we will sometimes write r(T) for (0:T). In [17] Johnson has defined the singular submodule of M by $Z(M) = \{x \in M: r(x) \in R^{\nabla}\}$. M is called a torsion-free R-module if Z(M) = 0. Note that when R is a commutative integral domain, Z(M) is just the torsion submodule of M.

More generally, if N is a submodule of M, then the closure of N in M is defined by $\operatorname{Cl}_M N = \{x \in M \colon xD \subseteq N \text{ for some } D \in R^{\triangledown}\}$. When no confusion is likely we will write $\operatorname{Cl} N$ for $\operatorname{Cl}_M N$. $\operatorname{Cl} N$ is, of course, a submodule of M containing N. In fact, $\operatorname{Cl} N/N = Z(M/N)$. N is said to be closed in M if $\operatorname{Cl} N = N$. In general, $\operatorname{Cl} \operatorname{Cl} N$ is the smallest closed submodule of M containing N [13]. The intersection of a family of closed submodules of M is clearly closed. Thus $C_r(M)$, the set of closed submodules of M, is a complete lattice with greatest lower bound being intersection.

If Z(M)=0, then $Cl\ N$ is the largest essential extension of N contained in M. In particular, when Z(M)=0, every submodule of M has a unique injective hull contained in E(M). If K is any essential extension of M (and Z(M)=0), then the map $C_r(K) \to C_r(M)$, given by $N \to N \cap M$, is a lattice isomorphism. The inverse map sends N to its closure in K. For proof of these facts see [10].

An f-module over the po-ring R is a lattice-ordered R-module (l-module) that is embeddable in a product of a family of totally ordered R-modules. For the basic properties of f-modules see [20].

This paper is based on a portion of the author's dissertation written at the University of Illinois at Urbana-Champaign under the direction of Professor Elliot Weinberg.

- 2. Torsion-free f-modules. A po-ring R is called (right) essentially positive if $D \in R^{\nabla}$ implies $D^{\dagger}R_* \in R^{\nabla}$. Since $D^{\dagger}R_* = D^{\dagger} D^{\dagger} + (D^{\dagger} D^{\dagger})R$ is the right ideal of R generated by D^{\dagger} , a directed po-ring is essentially positive if and only if each of its essential right ideals contains a directed essential right ideal. In order to characterize the torsion-free i-f-modules over R it will be necessary to assume that R is directed and essentially positive. Some examples of essentially positive po-rings are
 - (1) any totally ordered ring;
- (2) any right quotient ring of a torsion-free essentially positive po-ring, in its canonical order;
- (3) the *n*-by-*n* matrix ring over a totally ordered right Ore domain, ordered coordinatewise.

A word about (2) is in order. If R is a ring with $Z(R_R) = 0$, then a ring S is

a right quotient ring of R if S_R is an essential extension of R_R . It is known that $E(R_R)$ can be made into a ring extension of R, so $Q(R) = E(R_R)$ is the maximal right quotient ring of R ([17], [22]). Now suppose that R is an essentially positive po-ring, and let S be a right quotient ring of R. Then

$$S^+ = \{ s \in S : sD^+ \subset R^+ \text{ for some } D \in R^{\nabla} \}$$

is a partial order of the ring S (Lemma 3.1 implies that S_R is a po-module extension of R_R ; but if $a,b\in S^+$, $aD^+\subseteq R^+$, and $C=\{r\in R\colon br\in D\}$, then $abC^+\subseteq aD^+\subseteq R^+$; also see [1, Theorem 2.3]), called the canonical order of S. Note that $S^+\cap R$ can contain R^+ properly, and, in fact, (S,S^+) is a po-ring extension of (R,R^+) if and only if R is essentially semiclosed, i.e. $rD^+\subseteq R^+$ for $D\in R^\vee$ implies $r\in R^+$. Let D be an essential right ideal of S. Then D_R is essential in S_R . (Suppose that $D\cap X=0$ for some $X_R\subseteq S_R$. If $0\neq d\in XS$, $d=\sum_{i=1}^n x_i s_i$ with $x_is_i\neq 0$, then there is an element $t\in R$ such that $dt\neq 0$ and $s_it\in R$. Thus $0\neq dt\in D\cap X=0$; so $D\cap XS=0$ and X=0.) Since $D\cap R\in R^\vee$, $(D\cap R)^+R_*\in R^\vee$. But then $(D\cap R)^+R_*S_*\in S^\vee$, and since $D^+S_*\supseteq (D\cap R)^+R_*S_*$, $D^+S_*\in S^\vee$. Thus S is essentially positive.

Note, by Proposition 3.2, that a torsion-free right f-ring R (i.e., R_R is an f-module) is essentially semiclosed. Note also that any torsion-free f-ring is essentially positive [1, Lemma 2.1]. That (3) is true follows easily from (2). For if D is a totally ordered right Ore domain, then (R, R^+) is an essentially positive right f-ring with $Z(R_R) = 0$ and right quotient ring (D_n, D_n^+) , where $R = \{[a_{ij}] \in D_n: a_{ij} = 0 \text{ for } j > 1\}, R^+ = \{[a_{ij}]: a_{ij} \geq 0\}, \text{ and } D_n^+ = \{[a_{ij}] \in D_n: a_{ij} \geq 0\}.$ That (D_n, D_n^+) is essentially positive is actually useless for our purposes, since it has no nontrivial f-modules [20].

An *l*-module M is called *distributive* if the map induced on M by each $r \in R^+$ is a lattice homomorphism. If M_R is distributive, and $x \in M$ and xR = 0 implies x = 0, then M is an l-module [20].

Lemma 2.1. Let K be a po-module over the essentially positive po-ring R, and let M be an essential submodule of K.

- (a) If N is a convex submodule of M, then $Cl_K N$ is a convex submodule of K.
- (b) If M is a distributive l-module and N is an l-submodule of M, then $\operatorname{Cl}_M N$ is an l-submodule of M.
- (c) Suppose that K is a distributive l-module, and M is an l-submodule of K. If N is a prime submodule of M, then $\operatorname{Cl}_K N$ is a prime submodule of K.
- (d) If M is archimedean and x and y are elements of K such that $nx \leq y$ for all $n \in \mathbb{Z}$, then $x \in Z(K)$. Thus K is archimedean if M is torsion-free and archimedean.

Proof. Suppose that N is a convex submodule of M and $0 \le x \le y$ where $x \in K$

and $y \in \operatorname{Cl}_K N$. Then there exists $D \in R^{\nabla}$ such that $yD \subseteq N$ and $xD \subseteq M$. If $d \in D^+$, then $0 \le xd \le yd$; so $xD^+ \subseteq N$. Thus $x \in \operatorname{Cl}_K N$, and we have (a).

For (b), suppose $x \in \operatorname{Cl}_M N$ and $D \in R^{\nabla}$ such that $xD \subseteq N$. Then $x^+d = (xd)^+$ $\in N$ for all $d \in D^+$. Thus $x^+D^+ \subseteq N$, so $x^+ \in \operatorname{Cl}_M N$.

For (c), suppose that N is a prime submodule of M. By (a) and (b), $\operatorname{Cl}_K N$ is a convex l-submodule of K. Suppose that x and y are disjoint elements of K, and $x \notin \operatorname{Cl}_K N$. There exists $D \in R^{\triangledown}$ such that $xD \subseteq M$ and $yD \subseteq M$. Since $x \notin \operatorname{Cl}_K N$, there exists $d \in D^+$ such that $xd \notin N$. If $e \in D^+$, then $xd \land ye = 0$; so $ye \in N$ since N is prime. Thus $yD^+ \subseteq N$, i.e. $y \in \operatorname{Cl}_K N$.

Finally, if $D = (M: x) \cap (M: y)$ where $nx \le y$ for all $n \in \mathbb{Z}$, then $nxd \le yd$ for all $d \in D^+$. Since M is archimedean, xd = 0. Therefore, $xD^+ = 0$, and $x \in Z(K)$.

Corollary 2.2. Let M be a distributive l-module over an essentially positive po-ring. Then the closed convex l-submodules of M form a complete sublattice of $C_{-}(M)$.

Proof. If $\{N_{\alpha}: \alpha \in A\}$ is a family of closed convex *l*-submodules of M, then clearly $\bigcap \{N_{\alpha}: \alpha \in A\}$ is a closed convex *l*-submodule. By 2.1, so is ClCl $\sum N_{\alpha}$.

If M is an l-module over a directed po-ring, then whether or not M is an l-module depends only on P(M), the Boolean algebra of polars of M [20]. In light of this fact, the following proposition is not surprising. X^{\perp} (or $X^{\perp M}$) will denote the polar of a subset X of M.

Proposition 2.3. An f-module M over an essentially positive directed po-ring R is torsion-free if and only if each of its (principal) polars is a closed submodule.

Proof. Suppose that M is torsion-free, and let N be a polar of M. If $xD \subseteq N$ for some $D \in R^{\nabla}$, then $|xd| \wedge |y| = 0$ for all $d \in D^+$ and for all $y \in N^{\perp}$. So $(|x| \wedge |y|)D^+ = 0$, and hence $x \in N^{\perp \perp} = N$.

The converse is obvious.

Because of 2.2 and 2.3 one might suspect that P(M) is a sublattice of $C_r(M)$ when M is torsion-free. However, if $R=\mathbb{Q}$, then each submodule of an l-module is closed, but the sum of two polars need not be a polar.

An f-module whose Boolean algebra of polars is atomic will be called *irredundant*. An irredundant f-module M over a directed po-ring is an irredundant subdirect product of totally ordered modules, i.e. $M \subseteq \Pi M_{\alpha}$, where each M_{α} is totally ordered, $M \cap M_{\alpha} \neq 0$, and the set $\{M_{\alpha}\}$ consists of those homomorphic images of M whose kernels are the maximal polars of M ([14, p. 40] and [20]).

Corollary 2.4. An irredundant f-module over an essentially positive directed po-ring is torsion-free if and only if it is a subdirect product of totally ordered torsion-free modules.

Without the irredundancy hypothesis, 2.4 is false (see 2.7). By an essential *l-submodule* of an *l-*module we shall mean an *l-*submodule which is also an essential *R-*submodule.

Proposition 2.5. Let K be a torsion-free f-module over the essentially positive directed po-ring R, and suppose that M is an essential l-submodule of K.

- (a) If N is a convex l-submodule of M, then $\operatorname{Cl}_{K}(N^{\perp M}) = [\operatorname{Cl}_{K}(N)]^{\perp K}$.
- (b) If N is a convex l-submodule of K, then $N^{\perp K} \cap M = (N \cap M)^{\perp M}$.

Proof. (a) Let $K_1 = \operatorname{Cl}_K(N^{\perp M})$ and $K_2 = \operatorname{Cl}_K N$. Recall that N is an essential submodule of K_2 , since M is torsion-free. Thus $K_1 \cap K_2 = 0$ since $N \cap N^{\perp M} = 0$. By 2.1, K_1 and K_2 are convex l-submodules of K. Hence $K_1 \subseteq K_2^{\perp K}$. Let $x \in K_2^{\perp K}$ and let D = (M: x). Then $xD \subseteq N^{\perp M} \subseteq K_1$. Thus, since D is an essential right ideal and K_1 is closed in K, $x \in K_1$. So $K_1 = K_2^{\perp K}$.

(b) It is clear that $N^{\perp K} \cap M \subseteq (N \cap M)^{\perp M}$. Let x be a positive element of $(N \cap M)^{\perp M}$, and let y be a positive element of N. Since N is an essential extension of $N \cap M$, $yD \subseteq N \cap M$ for some essential right ideal D. If $d \in D^+$, then $x \cap yd = 0$, so $(x \cap y)D^+ = 0$. Since M is torsion-free, $x \in N^{\perp K}$. Thus $N^{\perp K} \cap M = (N \cap M)^{\perp M}$.

Corollary 2.6. Let K be a torsion-free f-module over the essentially positive directed po-ring R, and suppose that M is an essential l-submodule of K. Then the map $N \to \operatorname{Cl}_K N$ is an isomorphism between the Boolean algebras of polars of M and K. Its inverse is the map $N \to N \cap M$.

Proof. We already know that these correspondences are one-to-one between $C_r(M)$ and $C_r(K)$. By 2.5 they take polars to polars. In fact, if $N \in P(K)$, then $N = \operatorname{Cl}_K(N \cap M) = \operatorname{Cl}_K(N^{\perp K \perp K} \cap M) = \operatorname{Cl}_K[(N^{\perp K} \cap M)^{\perp M}]$. Thus the map $N \to \operatorname{Cl}_K N$ between P(M) and P(K) is an order isomorphism that is onto. Hence it is an isomorphism of Boolean algebras.

A qf-ring is an f-ring R whose maximal right quotient ring Q is an f-ring extension [1]. If R is a qf-ring with Z(R) = 0, then $Q = E(R_R)$ is a (strongly) regular self-injective ring.

Proposition 2.7. Let R be a semiprime (right) q{-ring with maximal right quotient ring Q. The following are equivalent:

- (a) R_R is a subdirect product of totally ordered torsion-free modules.
- (b) Q_R is a subdirect product of totally ordered torsion-free modules.
- (c) Q_Q is a subdirect product of totally ordered torsion-free modules.
- (d) The Boolean algebra of polars of Q is atomic.
- (e) The Boolean algebra of polars of R is atomic.
- (f) Q is the direct product of a family of totally ordered division rings.

Proof. (a) implies (b). Let $\{N_\alpha\colon \alpha\in A\}$ be a collection of closed prime submodules of R_R whose intersection is zero, and let $E_\alpha=E((N_\alpha)_R)\subseteq Q$. By 2.1 each E_α is a closed prime submodule of Q_R . Since $C_r(R)$ and $C_r(Q)$ are isomorphic via the correspondence $N\to E(N_R)$, $\bigcap \{E_\alpha\colon \alpha\in A\}=0$.

That (b) implies (c) follows from the fact that every closed submodule of \mathcal{Q}_R is a right ideal of \mathcal{Q} [10, p. 70].

(c) implies (d). Let $\{E_\alpha\colon \alpha\in A\}$ be a collection of closed prime submodules of Q_Q whose intersection is zero. Since Q_Q is injective, $Q=E_\alpha\oplus F_\alpha$ as Q-modules. Since Q is a regular f-ring, each right ideal is an l-ideal, so the direct sum is a sum of f-rings. Thus each F_α is a totally ordered division ring. The projections onto the F_α induce an isomorphism of Q into the product of the F_α whose image contains the direct sum. Thus P(Q) is atomic.

Finally, (d) and (e) are equivalent by 2.6, (e) implies (a) by 2.4, and (d) is equivalent to (f) by [10, p. 117].

It is, of course, not always the case that P(R) is atomic. For instance, it is known that C([0, 1]), the f-ring of real-valued continuous functions defined on the unit interval, has no maximal polars. We do, however, have the following positive results:

Proposition 2.8. Let R be a directed po-ring which has the property that a right ideal is essential if and only if it contains a positive regular element. If M is a torsion-free f-module over R, then every minimal prime submodule of M is closed. Thus M is a subdirect product of totally ordered torsion-free f-modules.

Proof. First note that R is essentially positive. Suppose that N is a minimal prime submodule of M. By 2.1, Cl N is a convex l-submodule of M. If $N \subseteq Cl N$, there exists a positive element $x \in (Cl N) \setminus N$. By hypothesis (N:x) contains a positive regular element d. Since N is a minimal prime subgroup [20], there exists $y \in M^+ \setminus N$ such that $y \land xd = 0$ [16]. Therefore $(y \land x)d = yd \land xd = 0$. Since M is torsion-free and dR is an essential right ideal of R, $x \land y = 0$. Thus $x \in N$, since N is prime.

A semiprime right Goldie ring can be characterized as a ring R that has a classical right quotient ring which is semisimple and artinian ([12] and [10]). R satisfies and, in fact, is characterized by the following condition: A right ideal I of R is essential if and only if it contains a regular element. If R is also an I-ring, then, since it has no nilpotent elements, it is of the following form: There is a family of totally ordered right Ore domains I is I is I with totally ordered quotient division rings I is I is I is I is (isomorphic to) an I-subring of I is I containing I is I in I containing I is I is I in I in I is I in I in I in I is I in I in I in I in I in I is I in I

The ring R of 2.8 is a semiprime right Goldie ring. It need not be an f-ring, however, but, for example, need only be directed and have the property that the

square of every element is positive. We suspect that R cannot have any nilpotent elements.

A module M over the semiprime ring R is called I-torsion-free [18] if NJ=0 for $0 \neq N_R \subseteq M$ and some ideal J of R implies JK=0 for some nonzero ideal K. Note that if M is torsion-free, then it is I-torsion-free. For if NJ=0, then J_R essential in R implies J=0, while $J\cap K=0$ for $0 \neq K_R \subseteq R$ implies $KJ\subseteq J$ $\cap K=0$, and hence JK=0.

Theorem 2.9. Let R be a torsion-free right qf-ring. Then every torsion-free f-module over R is a subdirect product of totally ordered torsion-free modules if and only if the Boolean algebra of polars of R is atomic.

Proof. Suppose that P(R) is atomic. By 2.7, $Q(R) = \prod D_{\alpha}$, where D_{α} ($\alpha \in A$) is a totally ordered division ring. Let $R_{\alpha} = \operatorname{image}(R \to D_{\alpha})$. Then R is an irredundant subdirect product of the R_{α} : $R \subseteq \prod R_{\alpha} \subseteq \prod D_{\alpha}$. Since $Q(\prod R_{\alpha}) = \prod D_{\alpha}$, $D_{\alpha} = Q(R_{\alpha})$ [22, 2.2]. But then R_{α} is a right Ore domain [1, 5.2].

Let M be a torsion-free f-module over R, let $N_{\alpha} = \{x \in M: x(R \cap R_{\alpha}) = 0\}$, and let $P_{\alpha} = \text{kernel}(R \to R_{\alpha})$. By [18, 3.7], $MP_{\alpha} \subseteq N_{\alpha}$, $M_{\alpha} = M/N_{\alpha}$ is an I-torsion-free R-module (R_{α} -module), and M is a subdirect product of the M_{α} (as R-modules). It is easily seen that N_{α} is a convex I-submodule of M, so the subdirect product is one of I-modules. Clearly, M_{α} is an I-module over I-module over I-modules.

Let E_{α} be the R_{α} -injective hull of M_{α} . Then E_{α} is the R-injective hull of M_{α} and $E(M_R) = E = \prod E_{\alpha}[18, 4.1]$. Thus each E_{α} is a torsion-free R-module. But $R_{\alpha} = R/P_{\alpha}$ and $M_{\alpha}P_{\alpha} = 0$, so M_{α} is a torsion-free R_{α} -module [13, Lemma 3.4].

Let N_{α} be a minimal prime R-submodule of M_{α} . Then N_{α} is a minimal prime R_{α} -submodule of M_{α} , and so, by 2.8, is a closed R_{α} -submodule. Suppose that $xT \subseteq N_{\alpha}$ for some $x \in M_{\alpha}$ and some essential right ideal T of R. If $T \subseteq P_{\alpha}$, then $P_{\alpha} \in R^{\nabla}$. This contradicts the fact that R_{α} is a torsion-free R-module (2.4). Thus $T \subseteq P_{\alpha}$, and, since every nonzero right ideal of R_{α} is essential, $x \in N_{\alpha}$. So N_{α} is a closed R-module. Therefore M_{α} , and hence M, is a subdirect product of totally ordered torsion-free R-modules.

The converse is given by the equivalence of (a) and (e) of 2.7.

Proposition 2.10. Let M be an essential l-submodule of the f-module K_R . If R is directed, or if it is essentially positive and M is torsion-free, then any weak order unit of M is a weak order unit of K. Thus, K is totally ordered if and only if M is.

Proof. Suppose that $x \in K$ with $x^{\perp} \neq 0$. If R is directed, then x^{\perp} is a submodule of K, so $x^{\perp} \cap M \neq 0$. Suppose M is torsion-free and R is essentially positive, and let $0 \neq y \in x^{\perp}$. There exists $d \in (M:y)^{+}$ such that $yd \neq 0$. So $yd \in x^{\perp} \cap M$. Thus, in either case, $x^{\perp} \cap M \neq 0$, and a weak order unit of M is a weak

order unit of K. If M is totally ordered and x is a nonzero element of K, then any positive nonzero element of $x^{\perp} \cap M$ is a weak order unit of M. So $x^{\perp} \cap M = 0$. If R is directed this says that $x^{\perp} = 0$, since x^{\perp} is a submodule of K. If R is essentially positive, M is torsion-free, and $0 \neq y \in x^{\perp}$, then $0 \neq yd \in x^{\perp} \cap M$ for some $d \in (M:y)^{\perp}$. Thus $x^{\perp} = 0$. So K is totally ordered in both cases.

An element g in the f-module M (over the directed po-ring R) is called basic [4] if $C_R(g)$, the convex l-submodule generated by g, is totally ordered. This is equivalent to saying that $C(g) (= C_Z(g))$ is totally ordered. A subset X of M is a basis of M if X is a maximal set of disjoint elements and each element of X is basic.

Proposition 2.11. Let R be a directed po-ring, and let M be an essential l-submodule of the f-module K_R . Then M has a basis of cardinality u if and only if K has a basis of cardinality u.

Proof. If x and y are two elements of K such that $0 \neq x \in y^{\perp}$, and if $r \in R_*$ is such that $0 \neq xr \in M$, then $xr \in y^{\perp}$, since every polar of K is a submodule. Let $X = \{x_{\alpha} : \alpha \in A\}$ be a maximal set of disjoint elements of K. There is a subset $\{r_{\alpha} : \alpha \in A\}$ of R_* such that $Y = \{|x_{\alpha}r_{\alpha}| : \alpha \in A\}$ is a set of disjoint elements of K. If K is now a basis of K, then, clearly, each element of K is basic. Suppose that K is a nonzero element of K such that K is a be an element in K such that K is a basic. So K is a basis of K.

On the other hand, if $Y = \{y_\alpha : \alpha \in A\}$ is a maximal set of disjoint elements of M, and if $0 \neq x \in K$ is such that $x \land y_\alpha = 0$ for all $\alpha \in A$, then $Y \cup \{|xr|\}$ is a disjoint set in M for some $r \in R_*$. Thus x does not exist. So Y is a maximal set of disjoint elements of K. Since the convex l-submodule of K generated by an element of M is totally ordered exactly when the convex l-submodule of M generated by it is totally ordered, Y is a basis of M if and only if it is a basis of K.

For an f-module M_R , $\Gamma_R(M)$ will denote the rooted po-set of R-values of M [20]. It is known [7] that an f-module M has a finite basis with n elements if and only if $\Gamma_Z(M)$ has exactly n roots. Since there is a one-to-one correspondence between the roots of Γ_R and the minimal prime submodules of M, and since the sets of minimal prime subgroups and submodules coincide, M has a basis containing n elements exactly when Γ_R has n roots. This fact gives the following corollary.

Corollary 2.12. Let M be an i-f-module over the directed po-ring R. Then $\Gamma_R(M)$ has exactly n roots if and only if $\Gamma_R(E)$ has exactly n roots.

Let M be an l-group, and let d(M) be its \mathbb{Z} -injective hull. There is a lattice isomorphism between the lattice of convex l-subgroups of M, $\mathfrak{L}(M)$, and the lattice of convex l-subgroups of d(M) given by: $N \in \mathfrak{L}(M)$ corresponds to the convex

l-subgroup of d(M) generated by N, and $N \in \mathfrak{L}(d(M))$ corresponds to $N \cap M$. With respect to this correspondence, the value sets of M and d(M) are isomorphic. That the R-value sets of M and $E(M_R)$ are not always isomorphic for an (totally ordered torsion-free) i-f-module M_R is shown by the following example.

Example 2.13. Let $R = \mathbb{Q}[[x]]$ be the formal power series ring with coefficients in \mathbb{Q} and exponents in \mathbb{Z}^+ . Order R lexicographically with the constant term dominating. Thus $R = \{\sum_{i=0}^{\infty} a_i x^i \colon a_i \in \mathbb{Q}\}$ and $R^+ = \{\sum_{i=n}^{\infty} a_i x^i \colon a_n > 0\} \cup \{0\}$. The units of R are the elements with nonzero constant term. Every element of R is of the form $x^k u$, u a unit or zero. The quotient field F of R is $\{\sum_{i=-n}^{\infty} a_i x^i \colon n \geq 0, a_i \in \mathbb{Q}\}$. It is a totally ordered field if its positive cone is defined by $F^+ = \{\sum_{i=-n}^{\infty} a_i x^i \colon a_{-n} > 0\}$.

Let $M = R_R$. Then $E(M_R) = F_R$, so M is an i-f-module. The convex l-sub-modules of M are

$$R \supset xR \supset x^2R \supset \cdots$$

and the convex l-submodules of E are

$$F \supset \cdots \supset x^{-2}R \supseteq x^{-1}R \supseteq R \supseteq xR \supset x^2R \supset \cdots$$

Thus $\Gamma_R(M) \cong \mathbb{Z}^+$ and $\Gamma_R(E) \cong \mathbb{Z}$.

3. *i-f*-modules. In this section we show that part of Anderson's characterization of a unital *qf*-ring [1] characterizes the torsion-free *i-f*-modules over an essentially positive directed po-ring. Using this characterization we show that a totally ordered domain has torsion-free *i-f*-modules if and only if it is a right Ore domain. We also show that every torsion-free *f*-module over a torsion-free irredundant *f*-ring R is an *i-f*-module if and only if R is a *qf*-ring. In addition, we examine some properties of the class of torsion-free *i-f*-modules, and we show that the *i-f*-property is a local property over a right noetherean ring.

Let M be a po-module over the po-ring R, and let N be an R-module containing M. Define

$$N^+ = \{x \in N \colon xD^+ \subset M^+ \text{ for some } D \in R^{\nabla}\}.$$

Notice that if R contains an essential right ideal D for which $D^+=0$, then $N^+=N$. When $R=\mathbb{Z}$, N^+ consists of those elements x of N such that $nx\in M^+$ for some positive integer n.

Lemma 3.1.

- (a) $N^+ + N^+ \subset N^+$.
- (b) $N^{+}R^{+} \subseteq N^{+}$.
- (c) If R is essentially positive, then $N^+ \cap -N^+ = Z(N_R)$.
- (d) If R is essentially positive and if M is a distributive l-module, then $M^+ \subseteq N^+ \cap M = \{x \in M: x^- \in Z(M_R)\}.$

Proof. The first statement is an immediate consequence of the fact that R^{∇} is closed under intersection.

For (b), take $x \in N^+$, $a \in R^+$, and $D \in R^-$ such that $xD^+ \subseteq M^+$. Let I = (D:a). Then $I \in R^-$, and $(xa)I^+ = x(aI^+) \subseteq xD^+ \subseteq M^+$. Hence $xa \in N^+$.

If $x \in Z(N)$, then xD = 0 for some $D \in R^{\nabla}$; so, clearly, $x, -x \in N^{+}$. Conversely, if $x, -x \in N^{+}$, then $xD^{+}, -xF^{+} \subseteq M^{+}$ for some $D, F \in R^{\nabla}$. Therefore, $x(D \cap F)^{+} \subset M^{+} \cap -M^{+} = 0$, $x \in Z(N)$, and $N^{+} \cap -N^{+} = Z(N)$.

Finally, if $x \in M$ with $x^- \in Z(M)$, then $xD^+ = (x^+ - x^-)D^+ = x^+D^+ \subseteq M^+$ for some $D \in R^{\nabla}$. Thus $x \in N^+ \cap M$. On the other hand, if $x \in N^+ \cap M$ and $xD^+ \subseteq M^+$ for some $D \in R^{\nabla}$, then $x^-d = (xd)^- = 0$ for all $d \in D^+$. So $x^- \in Z(M)$.

Proposition 3.2. Let M be a distributive l-module over the essentially positive po-ring R, and let N be a torsion-free R-module containing M. Then $N^+ = \{x \in N : xD^+ \subseteq M^+ \text{ for some } D \in R^{\triangledown}\}$ is a partial order on N, and (N, N^+) is a pomodule extension of (M, M^+) . If N is an essential extension of M, then

- (a) N is semiclosed.
- (b) The greatest lower bound (least upper bound) of two elements of M is also their greatest lower bound (least upper bound) in N.
- (c) N^+ is the largest partial order P of N for which (N, P) is a po-module extension of (M, M^+) .
 - (d) $N^+ = \{x \in N : x(N : x)^+ \subset M^+\}.$

Proof. By 3.1, (N, N^+) is a po-module extension of (M, M^+) . Suppose that N is an essential extension of M. Let $x \in M$ and $y \in N$ with $y \ge x$, 0. Since N is an essential extension of M, $(M:y) \in R^{\blacktriangledown}$. If $d \in (M:y)^+$, then $yd \ge (xd)^+ = x^+d$. Therefore, $(y-x^+)(M:y)^+ \subseteq M^+$, so $y-x^+ \in N^+$. Thus x^+ is the least upper bound of x and 0 in N, and we have (b). A similar argument gives (a).

Suppose that P is a partial order on N for which $P \cap M = M^+$ and $PR^+ \subseteq P$. If $y \in P$, then $y(M:y)^+ \subseteq PR^+ \cap M \subseteq P \cap M = M^+$. Thus $y \in N^+$ and $P \subseteq N^+$. Therefore (c) is true.

The last statement is obvious.

Proposition 3.3. Let M be a distributive torsion-free l-module over the essentially positive po-ring R, and let N_R be an essential extension of M_R . If (N, P) is a distributive l-module extension of (M, M^+) , then $P = N^+$.

Proof. By 3.2(c) we only have to show that $N^+ \subseteq P$. Take $x \in N^+$ and let $D = (M : x) \cap (M : x^+)$. (All lattice operations are with respect to P.) If $x \notin P$, then $x^- \neq 0$, and $(xd)^- = x^-d \neq 0$ for some $d \in D^+$, i.e. $xd \in M \cap N^+ = M^+$ and $(xd)^- \neq 0$. Thus $x \in P$, and $N^+ \subseteq P$.

Notice that 3.3 says that N^+ is the only partial order P of N for which (N, P) can be a distributive l-module extension of (M, M^+) .

Theorem 3.4. Let M be a torsion-free right f-module over the essentially positive directed po-ring R. Then the injective hull E of M is an f-module extension of M if and only if for all $x \in E$ and, for all $d_1, d_2 \in R^+$ for which $xd_i \in M$.

$$(xd_1)^+ \wedge (xd_2)^- = 0.$$

When this is the case the lattice order of E is uniquely determined by that of M.

Proof. First note that this condition is equivalent to: If ϕ is a homomorphism of M onto a totally ordered R-module and $x \in E$, then $\phi(x(M:x)^+) \subseteq \phi(M)^+$ or $-\phi(x(M:x)^+) \subseteq \phi(M)^+$. For if this latter condition is satisfied and $d_1, d_2 \in (M:x)^+$, then

$$\phi[(xd_1)^+ \wedge (xd_2)^-] = \phi(xd_1)^+ \wedge \phi(xd_2)^- = 0,$$

for arbitrary ϕ . Therefore, $(xd_1)^+ \wedge (xd_2)^- = 0$, since M is a subdirect product of totally ordered R-modules. Conversely, suppose that the condition in the theorem is satisfied and $\phi(xd_1) > 0$, $\phi(xd_2) < 0$. Then $\phi[(xd_1)^+ \wedge (xd_2)^-] = \phi(xd_1)^+ \wedge (xd_2)^- + \phi(xd_2)^- = \phi(xd_1)^+ \wedge (xd_2)^- = 0$.

If E is an f-module extension of M, then clearly $(xd_1)^+ \wedge (xd_2)^- = x^+d_1 \wedge x^-d_2 = 0$. Conversely, suppose that the condition holds. By 3.2, (E, E^+) is a pomodule extension of (M, M^+) . Let $x \in E$, and consider the correspondence b: $(M:x)^+R \to E$ given by $\sum_{i=1}^n d_i r_i \to \sum_{i=1}^n (xd_i)^+ r_i$. Suppose that $\sum d_i r_i = 0$. Let $\phi: M \to \phi(M)$ be any homomorphism onto a totally ordered R-module. If $\phi(x(M:r)^+) \subseteq \phi(M)^+$, then

$$0 = \phi \left(\sum x d_i r_i \right) = \sum \phi (x d_i)^+ r_i = \phi \left[\sum (x d_i)^+ r_i \right],$$

and similarly, if $-\phi(x(M:x)^+) \subseteq \phi(M)^+$, then

$$\phi \left[\sum (xd_i)^{\dagger} r_i \right] = \sum \phi (xd_i)^{\dagger} r_i = 0.$$

Since M is a subdirect product of totally ordered R-modules, $\sum (xd_i)^+r_i=0$, and thus h is a well-defined function. Clearly, it is an R-homomorphism. Since E is an injective R-module, h can be extended to an R-homomorphism g defined on R_* .

Let y = g(1). Then b(dr) = g(dr) = ydr for all $d \in (M:x)^+$ and $r \in R$, so $ydr = (xd)^+r$. Since Z(E) = 0, $yd = (xd)^+$ for all $d \in (M:x)^+$. We claim that $y = x^+$. Since $y(M:x)^+ \subseteq M^+$, y is in E^+ . Also, $(y-x)d = (xd)^+ - xd \ge 0$ for all $d \in (M:x)^+$, so $y-x \in E^+$. Suppose that $z \in E$ with $z \ge \{0, x\}$. If $0 \le d \in (M:x) \cap (M:z)$, then $zd \ge (xd)^+ = yd$, so $z-y \in E^+$. Therefore $y = x^+$, and E is an l-module. Note that $x^+d = (xd)^+$ for all $d \in (M:x)^+$.

All that remains is to show that E is an f-module. Take $x \in E$, $a \in R^+$, and let $C = \{b \in R : ab \in (M : x)\}$. Then $C \in R^{\nabla}$, and if $b \in C^+$, $(x^+a)b = (xab)^+ = (xa)^+b$. Thus $[x^+a - (xa)^+]C^+ = 0$, and hence $x^+a = (xa)^+$. Therefore E is a distributive l-module, and, hence it is an f-module.

Note that without the assumption that R is directed, Theorem 3.4 becomes

E is a distributive l-module extension of M if and only if $(xd_1)^+ \wedge (xd_2)^- = 0$ for all $x \in E$ and for all $d_1, d_2 \in R^+$ such that $xd_1 \in M$.

Corollary 3.5. Let M be a torsion-free f-module over the po-ring R. Then M is an i-f-module if either

- (a) R is commutative, essentially positive, and directed, or
- (b) R is an f-ring and a semiprime right Goldie ring.

Proof. (a) If
$$x \in E(M)$$
 and $d_1, d_2, d \in (M : x)^+$, then
$$[(xd_1)^+ \wedge (xd_2)^-]d = (xd_1d)^+ \wedge (xd_2d)^- = (xd)^+d_1 \wedge (xd)^-d_2 = 0.$$

Thus $[(xd_1)^+ \wedge (xd_2)^-](M:x)^+ = 0$, so $(xd_1)^+ \wedge (xd_2)^- = 0$.

(b) Let $x \in E(M)$, d_1 , $d_2 \in (M:x)^+$, and $d \in (M:x)^+$ with d regular. There are elements a, b, c, $e \in R^+$, with a and c regular, such that $d_1da = db$ and $d_2dc = de$. Therefore,

$$(xd_1da)^+ \wedge (xd_2dc)^- = (xdb)^+ \wedge (xde)^- = (xd)^+b \wedge (xd)^-e = 0;$$

so $(xd_1)^+da \wedge (xd_2)^-dc = 0$. Let s and t be positive regular elements of R such that as = ct. Then

$$[(xd_1)^+ \wedge (xd_2)^-]das = (xd_1)^+ das \wedge (xd_2)^- dct = 0.$$

But das is regular. Therefore das R is an essential right ideal of R, and $(xd_1)^+ \wedge (xd_2)^- = 0$.

Note that any commutative, semiprime, directed po-ring, in which the square of every element is positive, is an example of a po-ring satisfying the conditions of 3.5(a). An archimedean semiprime f-ring is, of course, such a po-ring.

The equivalence of (1) and (2) in the next corollary is a generalization of the fact that a semiprime f-ring R with the maximum condition on polars (i.e., P(R) is finite) is a right q-ring if and only if it is a right Goldie ring [1, Theorem 6.1].

Corollary 3.6. The following statements are equivalent for an irredundant torsion-free f-ring R.

- (1) R is a qf-ring.
- (2) Each component of the irredundant representation of R is a totally ordered right Ore domain.
 - (3) Every torsion-free f-module over R is an i-f-module.

Proof. That (1) implies (2) has already been observed in the proof of 2.9, and that (3) implies (1) follows from the fact that Q = E(R) is an f-module extension of R_R if and only if it is an f-ring extension of R.

Let M be a torsion-free f-module over R. Assuming (2), we have (see the proof of 2.9): $R \subseteq \Pi$ R_{α} and $M \subseteq \Pi$ $M_{\alpha} \subseteq \Pi$ $E_{\alpha} = E(M)$, where R_{α} is a totally ordered right Ore domain, and E_{α} is the R_{α} - (R-)f-module f0 by 3.5, each f1 is an f-module extension of f2 (over f3, hence over f3). Thus f4 is an f-module extension of f3, and (2) implies (3).

An interesting example of a torsion-free *i-f*-module may be obtained as follows. Let R be a semiprime right qf-ring with maximal right quotient ring Q. Suppose that I is an I-submodule of Q_R , and let $I' = E(I_R) \subseteq Q$. Then I' = eQ for some idempotent e of Q. Consequently, $S = \operatorname{Hom}_R(I_R, I_R) \cong \{q \in Qe: qI \subseteq I\}$, and $T = \operatorname{Hom}_R(I_R', I_R') \cong eQ$. Thus S and T can be made into f-rings in a natural way. Now S_S is an essential submodule of S_S is an essential submodule. If S_S is essential in S_S then S_S is an S_S is an

There are *i-f*-modules that are not torsion-free. For instance, over a quasi-Frobenius f-ring R each unital module can be made into an f-module. If R is totally ordered, but not a division ring, then it has no torsion-free modules [21, p. 114]. It is not hard to see that if M is any i-f-module over a directed essentially positive po-ring, then $M/Z_2(M)$ is a torsion-free i-f-module, where $Z_2(M) = Cl Cl O$ is the torsion submodule of M.

We now present an example of a totally ordered, archimedean, torsion-free f-module, over a unital essentially positive l-ring, that is not an i-f-module, but whose injective hull is an l-module extension.

Example 3.7. Let $R = \{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a, b, c \in \mathbb{Q} \}$, and let $R^+ = \{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a, b, c \in \mathbb{Q}^+ \}$. Then R is an essentially positive unital l-ring. Let $M = \{ \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix} : a \in \mathbb{Q} \}$, and let $M^+ = \{ \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix} : a \in \mathbb{Q}^+ \}$. Then M_R is a simple R-module and a totally ordered torsion-free f-module. But $E(M_R) = \{ \begin{pmatrix} 0 & 0 \\ a & b \end{pmatrix} : a, b \in \mathbb{Q} \}$ cannot be made into an f-module extension of M (use 3.4).

More generally, if R is any essentially positive sub-po-ring of the canonically ordered matrix ring D_n (n>1, D a totally ordered division ring), such that $Q(R)=D_n$, then 3.12 implies that R has no torsion-free i-f-module $(D_n$ has no nontrivial f-modules). Any l-subring R of D_n with $Q(R)=D_n$ is essentially positive.

Proposition 3.8. Let M be a torsion-free i-f-module over an essentially positive po-ring R.

- (a) Every l-submodule of M is an i-f-module.
- (b) If N is a closed convex l-submodule of M, then M/N is an i-f-module.

Proof. Let $E = E(M_R)$. If N is an l-submodule of M, then $E(N) = \operatorname{Cl}_E N$ is an l-submodule of E by 2.1(b). Thus N is an i-f-module. If N is a closed convex

l-submodule of M, then $E_1 = E(N)$ is a convex l-submodule of E by 2.1, and $N = E_1 \cap M$. Therefore, $M/N \to E/E_1$ is a mononomorphism of f-modules. Since $E = E_1 \oplus E_2$ as R-modules, E/E_1 is an injective R-module. But M/N is an l-submodule of E/E_1 , so M/N is an i-f-module by (a). In fact, $E/E_1 = E(M/N)$.

Using the notation of (b), note that E_2 has two partial orders. One comes from E/E_1 , and one is inherited from E. (E_2 is not uniquely determined by N, though E_1 is.) Let P be the partial order of E_2 coming from E/E_1 . Then $P = \{x \in E_2 : x + E_1 \ge 0\}$ contains $E_2 \cap E^+$. The following example shows that, in general, this containment is proper. Let $R = \mathbb{Z}$, $M = \mathbb{Z} \oplus \mathbb{Z}$, $E = \mathbb{Q} \oplus \mathbb{Q}$, $N = \mathbb{Z} \oplus \mathbb{Q}$ 0, $E_1 = \mathbb{Q} \oplus \mathbb{Q}$, and $E_2 = (1, -1)\mathbb{Q}$. Then $P = (1, -1)\mathbb{Q}^+$ and $E_2 \cap E^+ = \{0\}$. Thus (E_2, P) is not a sublattice of E. If, however, $E = \ker E_1$, i.e. $E = \ker E_2 \cap E^+$. For then, $E = \ker E_1 \cap E_2 \cap E^+$. For then, $E = \ker E_1 \cap E_2 \cap E^+$. For then, $E = \ker E_1 \cap E_2 \cap E^+$. This is the case if $E \in E_1 \cap E_2 \cap E^+$. For then, $E \in E_1 \cap E_2 \cap E^+$. For then, $E \in E_1 \cap E_2 \cap E^+$. For then, $E \in E_1 \cap E_2 \cap E^+$. This is the case if $E \in E_1 \cap E_2 \cap E^+$.

It is easy to see that a finite direct sum of i-/-modules (over any po-ring) is an i-/-module.

Corollary 3.9. Let R be an essentially positive po-ring, and let $\{M_{\alpha}: \alpha \in A\}$ be a collection of torsion-free f-modules. The following are equivalent.

- (a) M_{α} is an i-f-module for each $\alpha \in A$.
- (b) $\prod M_a$ is an i-f-module.
- (c) $\Sigma \bigoplus M_a$ is an i-f-module.

Proof. (b) implies (c) and (c) implies (a) by 3.8(a). Let $E_{\alpha} = E(M_{\alpha})$. Then (a) implies that $\prod E_{\alpha}$ is an *i-f*-module, so $\prod M_{\alpha}$ is an *i-f*-module, again by 3.8(a).

Corollary 3.10. The inverse limit of torsion-free i-f-modules over an essentially positive po-ring is an i-f-module.

Proof. Let $(\{M_\alpha\colon \alpha\in A\}, \{f_{\alpha\beta}\colon \alpha\geq\beta\})$ be an inverse limit system of f-modules. Then $M=\{(m_\alpha)\in\Pi$ $M_\alpha\colon f_{\alpha\beta}m_\alpha=m_\beta$ whenever $\alpha\geq\beta\}$ is the inverse limit of this system, and M is an f-submodule of Π M_α . Thus f is an f-module if each f f is, by 3.9 and 3.8.

Corollary 3.11. Let M be a torsion-free f-module over an essentially positive directed po-ring R. Then M is an i-f-module if and only if every torsion-free homomorphic image of M is an i-f-module.

Proof. This follows immediately from 3.8(b).

Proposition 3.12. Let R be an essentially positive po-ring with Z(R) = 0, and let S be a directed (in its canonical order) right quotient ring of R. Suppose that M is a torsion-free f-module over R. Then M is an i-f-module if and only if it is contained in a torsion-free i-f-module over S. In fact, $E(M_R)$ is an f-module over S and an injective S-module.

Proof. Let $E = E(M_R)$ be an f-module extension of M. By [23, Theorem 3 and Proposition 10], E is a Q-module, where Q is the maximal right quotient ring of R. If $x \wedge y = 0$ in E, $q \in Q^+$, and $D \in R^{\triangledown}$ with $qD \subseteq R$, then $xqD^+ \subseteq E^+$, so $xq \in E^+$. Also, if $d \in D^+$, then $(xq \wedge y)d = xqd \wedge yd = 0$, so $xq \wedge y = 0$. Thus E is a distributive l-module over Q. Since S is directed (and E_S is torsion-free) E_S is an f-module. But any S-essential extension of E is also an R-essential extension of E, so E_S is injective.

Now suppose that M is an R-submodule of a torsion-free injective f-module K_S . Since $E(K_R)$ is an S-module, it is an S-essential extension of K, so K is R-injective. By 3.8, M is an i-f-module.

Theorem 3.13. A totally ordered domain has a nonzero torsion-free i-f-module if and only if it is a right Ore domain.

Proof. Let M be a torsion-free i-f-module over the totally ordered domain R, and let $0 < x \in M$. Then $R \to xR$ is an f-module homomorphism, so $R/r(x) \cong xR$. Since M is torsion-free, r(x) is not an essential right ideal of R. Let $0 \ne J$ be a right ideal such that $J \cap r(x) = 0$, and take $0 < y \in J$. Then yR is isomorphic to an f-submodule of M, so it is an i-f-module. But $yR \cong R$ as f-modules, so R_R is an i-f-module. Therefore, $E(R_R)$ satisfies the condition of Theorem 3.4, and so R is a right Ore domain, by [1, 3.1 and 5.2].

Theorem 3.13 is not true for an arbitrary f-ring with Z(R)=0, i.e. a torsion-free f-ring can have a torsion-free i-f-module without being a qf-ring. In particular, let R be an irredundant semiprime f-ring, and let M be a torsion-free f-module over R. Let $R \subseteq \Pi R_{\alpha}$ and $M \subseteq \Pi M_{\alpha}$ be the decompositions of R and M. Then M is an i-f-module if and only if $M_{\alpha}=0$ for each α for which R_{α} is not a right Ore domain.

Proposition 3.14 (see [4, p. 239]). Let K be a torsion-free f-module over an essentially positive po-ring, and let M be an essential l-submodule of K. Suppose that N is a convex l-submodule of M, and let $K_1 = \operatorname{Cl}_K N$.

- (a) If M = lex N, then $K = lex K_1$.
- (b) If $K = \text{lex } K_1$, then $M = \text{lex Cl}_M N$.
- (c) Suppose that K = E(M) and $K = lex K_1$. If K_2 is any R-complement of K_1 in K, then K_2 is a totally ordered submodule of K, and

$$K^{+} = \{y + z \in K_1 \oplus K_2 : z > 0, \text{ or } z = 0 \text{ and } y \ge 0\}.$$

Proof. (a) Suppose that $y \in K^+ \setminus K_1$ and $x \in K_1$. Then $(y - x)^+ \neq 0$. Assume that $(y - x)^- \neq 0$, also. There exists $0 \leq d \in (M:y) \cap (M:x) = D$ such that $(y - x)^- d \neq 0$. So $(y - x)^+ D^+ \subseteq N$, since N contains all the nonunits of M [5, p. 111]. Therefore $(y - x)^+ \in K_1$. Similarly, $(y - x)^- \in K_1$. Thus $y - x \in K_1$ and $y \in K_1$. So $(y - x)^- = 0$ and $y \geq x$. Since K_1 is prime in K by 2.1(c), $K = lex K_1$.

- (b) If $x \in M^+ \setminus Cl_M N$, then $x \in K^+ \setminus K_1$, since $K_1 \cap M = Cl_M N$. Therefore $x > Cl_M N$. Clearly, $Cl_M N$ is prime in M.
- (c) The remarks following 3.8 show that K_2 is totally ordered. Since $K = \text{lex } K_1$, we clearly have $K^+ = \{y + z \in K_1 \oplus K_2 : z > 0 \text{ or } z = 0 \text{ and } y \ge 0\}$. We show next that the *i-f*-property is a local property.

Theorem 3.15. Suppose that R is a right noetherian, essentially positive, directed po-ring, and let M be a subdirect product of totally ordered torsion-free f-modules. Then M is an i-f-module if and only if $C_R(g)$ is an i-f-module for each $g \in M$.

Proof. Suppose that M is a subdirect product of the family $\{M_\alpha: \alpha \in A\}$ of totally ordered torsion-free f-modules. We may assume that $M_\alpha = M/N_\alpha$ for each $\alpha \in A$. Therefore, if $x + N_\alpha \in M_\alpha$, then $C_R(x + N_\alpha) = (C_R(x) + N_\alpha)/N_\alpha$. If $C_R(x)$ is an i-f-module, then so is $(C_R(x) + N_\alpha)/N_\alpha$, by 3.11. Now suppose that M is an i-f-module locally, i.e. $C_R(g)$ is an i-f-module for each $g \in M$. The preceding remarks show that each M_α is also an i-f-module locally. If each M_α is an i-f-module, then M is an i-f-module by 3.9 and 3.8. So, without loss of generality, we may assume that M is totally ordered.

Let $x \in E(M) = E$ and let $\{N_{\alpha} : \alpha \in A\} = \{C_{R}(xd) : d \in (M : x)^{+}\}$. If $E_{\alpha} = E(N_{\alpha}) \subseteq E$, then E_{α} is an f-module extension of N_{α} by hypothesis. Since M is totally ordered, $\{N_{\alpha} : \alpha \in A\}$ is totally ordered by inclusion, and so is the family $\{E_{\alpha} : \alpha \in A\}$. Thus $N = \bigcup N_{\alpha}$ is a submodule of $E_{1} = \bigcup E_{\alpha}$. Since R is noetherian, and since E_{1} is the direct limit of the E_{α} , E_{1} is an injective R-module ([3, p. 17] and [10, p. 53]). Clearly, E_{1} is an f-module extension of N with positive cone $\bigcup E_{\alpha}^{+}$, and it is the injective hull of N.

Now $x(M:x)^+ \subseteq N \subseteq E_1$; so $x \in E_1$, since E_1 is closed in E. If $d_1, d_2 \in R^+$, then $(xd_1)^+ \wedge (xd_2)^- = x^+d_1 \wedge x^-d_2 = 0$. But then M is an i-f-module, by 3.4. The converse follows from 3.8.

Corollary 3.16. Let R be a right noetherian, essentially positive, directed po-ring, and let M be a subdirect product of totally ordered torsion-free R-modules. If M is a finitely-valued f-module, then M is an i-f-module if and only if $C_R(g)$ is an i-f-module for every special element g of M.

Proof. If $g \in M$, then $C_R(g) = C_R(g_1) \oplus \cdots \oplus C_R(g_n)$, where each g_i is special [20]. Now use 3.14.

Note that the proof of 3.15 is valid if, instead of assuming that R is noetherian, one assumes that M has the maximum condition on convex l-submodules.

We consider next the Hahn product of strict *i-/-*modules. Let Γ be a rooted po-set, and suppose that for each $p \in \Gamma$, M_p is an */-*module over the po-ring R. Suppose further that M_p is totally ordered if p is not a minimal element of Γ .

For $v \in \Pi M_p$ (R-module product) define the support (supp) of $v = \{p \in \Gamma : v(p) \neq 0\}$. It is well known ([7] or [24]) that

 $V(\Gamma, M_p) = \{ \nu \in \Pi M_p : \text{ supp } \nu \text{ has the maximum condition} \}$

is an l-group when provided with the positive cone

 $V^+ = \{v \in V : v(p) > 0 \text{ whenever } p \text{ is a maximal element of supp } v\} \cup \{0\}.$

An f-module M is called strict if it satisfies the following condition: $(x, r) \in M^+ \times R^+$ and xr = 0 implies x = 0 or r = 0. Note that if R has a strict f-module, then R is a po-domain, i.e. $a, b \in R^+$ and ab = 0 implies a = 0 or b = 0.

Proposition 3.17. Suppose that R is directed and each M_p is strict. Then $V = V(\Gamma, M_p)$ is an f-module over R.

Proof. Since (vr)(p) = v(p)r for all $v \in \Pi M_p$, $r \in R$, and $p \in \Gamma$, supp $vr \subseteq$ supp v. Thus V is an R-module. If $v \in V^+$, p is a maximal element of supp v, and $0 \le r \in R^+$, then (vr)(p) = v(p)r > 0, since M_p is strict. So V is an l-module over R. If P is a maximal chain of Γ , then $V_P = \{v \in V : \text{supp } v \subseteq P\} \cong V(P, M_p)$ as l-modules, and V is a subdirect product of the V_P . Thus V is an l-module provided each V_P is an l-module. So we may assume that Γ is totally ordered.

Let $0 \neq v \in V$, $0 \leq r \in R^+$, and let q be the maximal element of supp v. Note that supp v = supp vr, and $v(q) \leq 0$ if and only if $(vr)(q) \leq 0$, since M_q is strict. Therefore, $v^+r = (vr)^+$. So V is a distributive l-module over R. Hence it is an l-module.

Proposition 3.18. Let R be an essentially positive directed po-ring, and let M_p be an i-f-module for each p in the rooted po-set Γ . Suppose further that M_p is totally ordered if p is not a minimal element of Γ . If each $E_p = E(M_p)$ is strict, then $V(\Gamma, E_p) = E(V(\Gamma, E_p))$ and $V(\Gamma, M_p)$ is an i-f-module.

Proof. Since ΠE_p is an injective module, $V(\Gamma, E_p) \subseteq \Pi E_p$ has an injective hull $E(V(\Gamma, E_p)) = E$ contained in ΠE_p . Let $w \in E$ and $0 \neq d \in R^+$ such that $wd \in V(\Gamma, E_p)$. Suppose that $p_1 < p_2 < \cdots$ is a chain in supp w. Since p_i is not a minimal element of Γ for i > 1, $w(p_i) > 0$ or $w(p_i) < 0$. Thus $p_i \in \text{supp } wd$ for i > 1. This is impossible, since supp wd has the maximum condition. So $w \in V(\Gamma, E_p)$ and $E(V(\Gamma, E_p)) = V(\Gamma, E_p)$. Since $V(\Gamma, M_p)$ is an l-submodule of $V(\Gamma, E_p)$, $V(\Gamma, M_p)$ is an l-f-module.

If R is commutative, then E is strict provided M is, but we do not know if this is true for any R. The po-ring R in 3.18 need not be a domain. Diem [8] has given the following example of a commutative l-domain that is not a domain: $R = \mathbb{Q}a \oplus \mathbb{Q}b$ as l-groups and $a^2 = b^2 = ab = ba = a$. We remark that the essential ideals of R are those ideals that contain $\mathbb{Q}a + \mathbb{Z}qb$ for some $0 \neq q \in \mathbb{Q}$. Thus R

is essentially positive. As a ring $R = Qa \oplus Q(a - b)$, so Qa is a strict *i-f*-module over R.

We close this section with a remark about extending homomorphisms.

Proposition 3.19. Let N and K be distributive l-modules over the essentially positive po-ring R, and suppose that M is an essential l-submodule of K. If $f \in \operatorname{Hom}_R(M, N)$ is an l-homomorphism and if N is torsion-free, then any $g \in \operatorname{Hom}_R(K, N)$ extending f is an l-homomorphism, and g is unique.

Proof. Since N is torsion-free and M is essential in K, g is unique. If $x \in K$ and $d \in (M : x)^+$, then

$$[g(x^+)]d = g(x^+d) = g[(xd)^+] = f[(xd)^+] = [f(xd)]^+ = [g(xd)]^+ = [(gx)^+]d.$$
So $g(x^+) = (gx)^+$.

Corollary 3.20. Let R be an essentially positive po-ring, and let M be an i-f-module over R. Then any l-homomorphism from M into a torsion-free injective f-module N has a unique extension to an l-homomorphism from E(M) to N.

4. Relative injective /-modules. Ribenboim [19] has observed that there are no injectives in the category of unital po-modules over a po-domain. Consequently, he defined and studied a certain type of relative injectivity. Let $\mathcal C$ be a category whose objects are sets, and let \aleph_{α} be an infinite cardinal number. An object E of $\mathcal C$ is called \aleph_{α} -injective if whenever C is a subobject of A in $\mathcal C$ and card(A) $< \aleph_{\alpha}$, then every morphism $C \to E$ can be extended to a morphism $A \to E$.

Weinberg [25] has recently given a characterization of the \aleph_{α} -injectives in the category of *l*-groups. In this section we show that his characterization (and his methods) holds in the category of torsion-free *f*-modules over an irredundant semi-prime right qf-ring.

Definition 4.1. An *l*-group M is an almost- η_{α} -group if, for each pair of subsets X and Y of M such that $X \leq Y$ and $\operatorname{card}(X \cup Y) \leq \mathbf{X}_{\alpha}$, there exists an a in M such that $X \leq a \leq Y$.

Definition 4.2 (Weinberg [25]). An element y in an l-group M is said to split b from a if $y \ge a^+$, $y \land a^- = 0$, and $(b-y)^+ \land y = 0$. M is self-splitting if each ordered pair of elements of M is split by some element in M.

The cardinal number \mathbf{X}_{α} is called regular provided $\mathbf{U}\{X_i\colon i\in I\}$ has cardinality less than \mathbf{X}_{α} whenever I and each X_i have cardinality less than \mathbf{X}_{α} .

Theorem 4.3 (Weinberg [25]). Let \aleph_{α} be a regular cardinal number, and let M be an l-group. The following are equivalent.

- (a) M is \mathbf{X}_{a} -injective.
- (b) M is a divisible, self-splitting, almost- η_{α} -group in which any two pairwise disjoint subsets of cardinality less than \mathbf{R}_{α} have disjoint upper bounds.

Now let M_R be an f-module. We will show, with not too many restrictions on R, that Weinberg's four conditions are necessary for M to be an \mathbf{X}_{α} -injective f-module. The converse is much harder and we only have it for the case that R is an irredundant semiprime qf-ring.

Lemma 4.4. Let M be a torsion-free i-f-module over the directed po-ring R, let \mathcal{C} be the category of torsion-free f-modules over R. If M is \mathbf{K}_{α} -injective in \mathcal{C} , then so is $E = E(\mathbf{M}_{\mathbf{R}})$.

Proof. Suppose that $N \in \mathcal{C}$ with $\operatorname{card}(N) < \aleph_{\alpha}$. Let N' be an l-submodule of N, and let f be a homomorphism from N' into E. Then $N'' = f^{-1}(M)$ is an essential l-submodule of N'. We have the following diagram:

where g comes from the fact that M is \aleph_{α} -injective. Since $N'' \subseteq \ker(g - f)$, since N'' is essential in N', and since M is torsion-free, $N' \subseteq \ker(g - f)$. Thus $f(N') \subseteq M$, and g is an extension of f.

Corollary 4.5. Let M be a torsion-free i-f-module over the directed po-ring R. If $\mathbf{K}_{\alpha} > \operatorname{card}(R)$ and if M is \mathbf{K}_{α} -injective in the category of torsion-free f-modules over R, then $M = E(M_R)$.

Proof. Take $x \in E$ and let $N_1 = xR_*$. It is known that the sublattice of E generated by N_1 is a subgroup, and is given by

$$L(N_1) = \left\{ \bigvee_{j=1}^{m} \bigwedge_{i=1}^{n} s_{ij} \colon s_{ij} \in N_1 \right\}.$$

If $r \in R^+$, then $L(N_1)r \subseteq L(N_1)$, since E is an f-module. Thus $L(N_1)$ is an l-submodule of E, since R is directed. Clearly, $\operatorname{card}(L(N_1)) < \mathbf{K}_{\alpha}$. In the proof of 4.4, let $N' = N = L(N_1)$, $N'' = L(N_1) \cap M$, and let f be the inclusion map from N' to E. Then $f(L(N_1)) \subseteq M$, so $x \in M$.

Lemma 4.6. Let R be a directed po-domain which has a strict totally ordered module K. Then any f-module M can be embedded in an f-module which contains, for each a in M, an element y that splits b from a for every b in M.

Proof. M can be embedded in a product of a family of totally ordered modules $\{M_i: i \in I\}$. Let $N_i = M \oplus K$ as R-modules with positive cone defined by $N_i^+ = \{(m, k): k > 0, \text{ or } k = 0 \text{ and } m \geq 0\}$. Define $y \in \Pi N_i$ by y(i) = 0 if $a^+(i) = 0$, and

 $y(i) = (0, k_0)$ if $a^+(i) > 0$, where k_0 is a fixed nonzero positive element of K.

Proposition 4.7. Let R be a directed po-domain which has a strict totally ordered module M, and let \mathbf{X}_{α} be a cardinal number greater than $\operatorname{card}(R)$. If M is an \mathbf{X}_{α} -injective f-module, then M is self-splitting and each pair of pairwise disjoint subsets of M of cardinality less than \mathbf{X}_{α} have disjoint upper bounds.

Proof. Let $a, b \in M$, and let A be the l-submodule of M generated by a and b. By 4.6, A is imbeddable in an l-module C containing an element p which splits p from p. Let p be the p-submodule of p generated by p and p. Then p card p into p and the injection of p into p can be extended to a homomorphism p from p into p into p, since p is p injective. Clearly, p splits p from p into p injective. Clearly, p injective p into p into p into p into p injective.

Let A_1 and A_2 be pairwise disjoint subsets of M such that $\operatorname{card}(A_1) + \operatorname{card}(A_2) < \mathbf{K}_{\alpha}$. Embed M in a product of totally ordered R-modules $M \to \prod M_i$. As in the proof of 4.6, let N_i be the lexicographic extension of M_i by K. Define t_j in $N = \prod N_i$, for j = 1, 2, by $t_j(i) = (0, k_0)$ if $\pi_i(A_j) \neq 0$ and $t_j(i) = 0$ if $\pi_i(A_j) = 0$. Then $t_1 \land t_2 = 0$ and $t_j \geq A_j$. Let L be the l-submodule of N generated by $A_1 \cup A_2$, and let P be the l-submodule of N generated by L and $\{t_1, t_2\}$. Then $\operatorname{card}(P) < \mathbf{K}_{\alpha}$, and the injection of L into M can be extended to a homomorphism ϕ from P into M. Thus $\phi(t_1) \land \phi(t_2) = 0$, and $\phi(t_j) \geq A_j$.

A totally ordered set T is said to be *dense* if for all a < b in T there exists $x \in T$ such that a < x < b. If M is a totally ordered module over a po-ring R, then $Q \otimes_Z M$ is a dense totally ordered R-module containing M.

Lemma 4.8. Let M be a totally ordered module over the po-ring R, and suppose that X and Y are subsets of M such that X < Y. Then M can be embedded in a totally ordered module N containing an element a satisfying X < a < Y. Moreover, if R is right noetherian and M is torsion-free, then such an N may be found which is torsion-free.

Proof. By the preceding remark we may assume that M is dense. Suppose that no element of M lies between X and Y. Then either X is nonempty and has no last element or Y is nonempty and has no first element. Suppose, for example, that X is nonempty and has no last element. For $x \in X$, let $A_x = \{z \in X : z > x\}$. Since X has no last element, $\{A_x : x \in X\}$ has the finite intersection property. Therefore, there is an ultrafilter $\{A_x : x \in X\}$ on $\{A_x : x \in X\}$.

For each $h \in M^X$ let $Z(h) = \{x \in X : h(x) = 0\}$. Let $I = \{f \in M^X : Z(f) \in \mathcal{E}\}$. Then I is a prime submodule of M^X . Embed M in M^X/I via the map $m \to (m) + I$, where (m)(x) = m for all $x \in X$. If $e \in M^X$ is the identity on X, i.e. e(x) = x for all $x \in X$, then (X) + I < e < (Y) + I.

Suppose that M is torsion-free and R is right noetherian. Let $f \in M^X$ and $D \in R^{\nabla}$ such that $fd \subseteq I$. Since R is noetherian, $D = d_1 R_* + \cdots + d_n R_*$. Clearly,

 $Z(f) \subseteq \bigcap \{Z(fd_i): i=1,\dots,n\}$. Conversely, if $(fd_i)(x)=0$ for $1 \le i \le n$, then f(x)D=0. Thus f(x)=0, since M is torsion-free. So $Z(f)=\bigcap \{Z(fd_i): i=1,\dots,n\}$. Hence $Z(f) \in \mathcal{E}$ and $f \in I$.

Proposition 4.9. Let M be an \aleph_a -injective f-module over the directed po-ring R, and suppose $\aleph_a > \operatorname{card}(R)$. Then M is an almost- η_a -module.

Proof. Suppose that X and Y are subsets of M, each of which has cardinality less than \mathbf{K}_{α} , and X < Y. Assume M is embedded in the product $\prod M_j$, where each M_j is totally ordered. Let N_j be a totally ordered module containing M_j and an element t_j such that $\pi_j(X) \le t_j \le \pi_j(Y)$. Let $t \in \prod N_j = K$ be defined by $t(j) = t_j$. Finally, let A be the l-submodule of M generated by $X \cup Y$, and let B be the l-submodule of K generated by A and A. Then $Card(B) \le \mathbf{K}_{\alpha}$, and the injection of A into A can be extended to A. Thus the image of A in A lies between A and A.

Suppose that R is right noetherian (and directed), and M is a subdirect product of totally ordered torsion-free R-modules. If M is \aleph_{α} -injective in the category of torsion-free f-modules over R, then M is an almost- η_{α} -module. The proof is the same as that of 4.9. Of course, if M is a torsion-free f-module over an essentially positive po-ring R, then M is \aleph_{α} -injective in the category of R-f-modules if and only if it is \aleph_{α} -injective in the category of torsion-free R-f-modules. For then the torsion submodule, $Cl\ Cl\ A \ 0 = Z\ 2(A)$, of each f-module f is a convex f-submodule; so an f-module homomorphism f-module homomorphism f-module homomorphism f-module homomorphism f-module

For the remainder of this section \aleph_{α} will be a regular cardinal number.

Theorem 4.11. Let R be a totally ordered right Ore domain, and let M be a torsion-free f-module over R. If $\mathbf{X}_{a} > \operatorname{card}(R)$, then M is \mathbf{X}_{a} -injective in the category of torsion-free f-modules over R if and only if it is injective in the category of R-modules and \mathbf{X}_{a} -injective in the category of l-groups.

Proof. If M is \aleph_{α} -injective, then 4.5, 4.7, 4.9, and 4.3 imply that M_R is injective and that M is an \aleph_{α} -injective l-group.

Conversely, if M_R is torsion-free and injective, then M is a vector lattice over D, where D is the totally ordered right quotient division ring of R (see 3.12). Thus we may assume that R = D. Now copy the proof of 4.3 given in [24] for the case that $R = \mathbf{Q}$.

Corollary 4.12. Let R be an irredundant semiprime right qf-ring, and let M be a torsion-free f-module over R. Suppose that $\mathbf{K}_{\alpha} > \operatorname{card}(R)$. Then M is \mathbf{K}_{α} -injective in the category of (torsion-free) f-modules over R if and only if M is an injective R-module and an \mathbf{K}_{α} -injective R-group.

Proof. Let $R \subseteq \Pi R_{\lambda} \subseteq \Pi D_{\lambda} = Q$ be the decomposition of R (see 2.7). If M is either \mathbf{K}_{α} -injective or R-injective, then $M = \Pi E_{\lambda}$, where E_{λ} is an f-module over

 $R(R_{\lambda})$ and an injective R- $(R_{\lambda}$ -)module (3.6, 4.5, and the proof of 2.9). By the usual argument, it is easily seen that M is \mathbf{K}_{α} -injective if and only if each E_{λ} is \mathbf{K}_{α} -injective.

Now E_{λ} is an \mathbf{K}_{α} -injective f-module over R if and only if it is an \mathbf{K}_{α} -injective f-module over R_{λ} . For suppose that E_{λ} is \mathbf{K}_{α} -injective with respect to R. Let A be an f-submodule of the R_{λ} -f-module B (card(B) $< \mathbf{K}_{\alpha}$), and let $f: A \to E$ be a map in the category of R_{λ} -f-modules. Since R_{λ} is a homomorphic image of R, A and B are naturally f-modules over R, and then f is an R-homomorphism. Let $g: B \to E_{\lambda}$ be an R-extension of f. Then g is clearly an R_{λ} -extension of f; so E_{λ} is \mathbf{K}_{α} -injective over R_{λ} .

On the other hand, suppose that E_{λ} is \mathbf{K}_{α} -injective over R_{λ} . Let A be an f-submodule of the torsion-free R-f-module B (card(B) $< \mathbf{K}_{\alpha}$), and let $f: A \longrightarrow E$ be a map in the category of R-f-modules. By 3.20, we may assume that A and B are injective R-modules. Thus A and B (and E_{λ}) are Q-modules (see 3.12), and f is a Q-map. Let $g: B \longrightarrow E_{\lambda}$ be the R_{λ} -extension of f. Then g is, in fact, a Q-extension of f, hence an R-extension. So E_{λ} is \mathbf{K}_{α} -injective over R.

In summary, we have M is R- \mathbf{X}_{α} -injective if and only if $M = \prod E_{\lambda}$, where E_{λ} is R_{λ} - \mathbf{X}_{α} -injective. But E_{λ} is R_{λ} - \mathbf{X}_{α} -injective if and only if it is \mathbf{Z} - \mathbf{X}_{α} -injective, by Theorem 4.11. Thus M is R- \mathbf{X}_{α} -injective exactly when it is an injective R-module and an \mathbf{X}_{α} -injective R-group.

Note that there are no injectives in the category of torsion-free R-f-modules. For any nonzero torsion-free injective R-f-module gives rise to a nonzero torsion-free injective R_{λ} -f-module for some λ , and there are none. There are quasi-injectives, however. In particular, if R is any semiprime qf-ring and f is a homomorphism from the f-submodule f of f into f into f may be extended to f to f by 3.20, and thus it can be extended to f is a summand of f so f is a quasi-injective f-f-module.

The next corollary is an immediate consequence of Weinberg's theorem (Theorem 4.3) and 4.12.

Corollary 4.13. The following statements are equivalent for a torsion-free f-module M over an irredundant semiprime right qf-ring R (card(R) $< \aleph_{\alpha}$).

- (a) M is X_a -injective.
- (b) M is an injective R-module, and a self-splitting almost- η_a -module in which any two pairwise disjoint subsets of cardinality less than \mathbf{R}_a have disjoint upper bounds.

Finally, we remark that there are enough K_{α} -injectives for embedding purposes when R is an irredundant semiprime right q/-ring. The proof is the same as that given by Weinberg in [25] for $R = \mathbb{Z}$. We can reduce to the case where R is a totally ordered division ring. Then the idea is to enlarge the given vector lattice M,

successively, via vector lattices in which every pair of elements of M is split, every pair of disjoint subsets of M of small cardinality have disjoint upper bounds, and in which there is an element between every pair of subsets of M of small cardinality, one of which is smaller than the other. By repeating this procedure inductively one eventually gets a vector lattice having the properties of 4.3(b).

5. Remarks on an Hahn embedding theorem for f-modules. Let M be a torsion-free f-module over the irredundant semiprime right qf-ring R, and let $R \subseteq \Pi$ $R_{\lambda} \subseteq \Pi$ $D_{\lambda} = Q$ and $M \subseteq \Pi$ $M_{\lambda} \subseteq \Pi$ $E_{\lambda} = E$ be the representations of R and M, respectively. Let Γ_{λ} be the D_{λ} -value set of E_{λ} . For each lower submodule $M_{\alpha} \in \Gamma_{\lambda}$, let M^{α} be the convex l-submodule of E_{λ} that covers it. Since the proof of the Hahn embedding theorem for l-groups [7] is valid for a vector lattice over a totally ordered division ring, E_{λ} is D_{λ} -value embedded in the Hahn product $V_{\lambda} = V(\Gamma_{\lambda}, M^{\alpha}/M_{\alpha})$. Thus the f-module M_{R} is embedded in the product of the V_{λ} . Let Γ be the cardinal sum of the Γ_{λ} . Then the map $(v_{\lambda}) \to \overline{v}$, $\overline{v}(\alpha) = v_{\lambda}(\alpha)$ embeds the Q-f-module Π V_{λ} onto the Hahn product $V(\Gamma, M^{\alpha}/M_{\alpha}) = V$. (V is a Hahn product as a Q-f-module, i.e. $V^{\dagger}Q^{\dagger} \subseteq V^{\dagger}$: Suppose $0 < v \in V$ and $0 < q = (q_{\lambda}) \in Q$. Let α be a maximal element in the support of v_{λ} and $v_{\lambda} = v_{\lambda}(\alpha) = v_{\lambda}(\alpha)$.

If M has only a finite number of nonzero components, in particular, if R is a semiprime right Goldie f-ring, then Γ is the Q-value set of E(M), but in general Γ is only contained in the latter. If a component R_{λ} of R is archimedean, in particular, if R is archimedean, then the M^{α}/M_{α} for $\alpha \in \Gamma_{\lambda}$ are D_{λ} -submodules of the reals. In this case Γ_{λ} is isomorphic to the value set of M_{λ} .

REFERENCES

- 1. F. W. Anderson, Lattice-ordered rings of quotients, Canad. J. Math. 17 (1965), 434-448. MR 30 #4801.
- 2. G. Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ci. 28 (1956), 41-69. MR 18, 191.
- 3. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040.
- 4. P. F. Conrad, Some structure theorems for lattice-ordered groups, Trans. Amer. Math. Soc. 99 (1961), 212-240. MR 22 #12143.
- 5. ——, The lattice of all convex l-subgroups of a lattice-ordered group, Czechoslovak Math. J. 15 (90) (1965), 101-123. MR 30 #3926.
- 6. P. F. Conrad and J. E. Diem, The ring of polar preserving endomorphisms of an abelian lattice-ordered group, Illinois J. Math. 15 (1971), 222-240.
- 7. P. F. Conrad, J. Harvey and C. Holland, The Hahn embedding theorem for abelian lattice-ordered groups, Trans. Amer. Math. Soc. 108 (1963), 143-169. MR 27 #1519.
- 8. J. E. Diem, A radical for lattice-ordered rings, Pacific J. Math. 25 (1968), 71-82. MR 37 #2653.
- 9. B. Eckmann and A. Schopf, Über injektive Moduln, Arch. Math. (Hochschild) 4 (1953), 75-78. MR 15, 5.
- 10. C. Faith, Lectures on injective modules and quotient rings, Lecture Notes in Math., no. 49, Springer-Verlag, New York, 1967. MR 37 #2791.

- 11. L. Fuchs, Teilweise geordnete algebraische Strukturen, Vandenhoeck and Ruprecht in Gottingen, 1966. MR 34 #4386.
- 12. A. W. Goldie, Rings with maximum condition, Lecture Notes, Yale University, New Haven, Conn., 1964.
- 13. ———, Torsion-free modules and rings, J. Algebra 1 (1964), 268-287. MR 29 #2282.
- 14. P. Jaffard, Les systèmes d'idéaux, Travaux et Recherches Mathématiques, 4, Dunod, Paris, 1960. MR 22 #5628.
- 15. D. G. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math. 104 (1960), 163-215. MR 23 #A2447.
- 16. D. G. Johnson and J. Kist, *Prime ideals in vector lattices*, Canad. J. Math. 14 (1962), 517-528. MR 25 #2010.
- 17. R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-895. MR 13, 618.
- 18. L. Levy, Unique subdirect sums of prime rings, Trans. Amer. Math. Soc. 106 (1963), 64-76. MR 26 #136.
- 19. P. Ribenboim, On ordered modules, J. Reine Angew. Math. 225 (1967), 120-146. MR 34 #5877.
 - 20. S. A. Steinberg, Finitely-valued f-modules, Pacific J. Math. (to appear).
- 21. ———, Lattice-ordered rings and modules, Dissertation, University of Illinois, Urbana, Ill., 1970.
 - 22. Y. Utumi, On quotient rings, Osaka Math. J. 8 (1956), 1-18. MR 18, 7.
- 23. Diana Yun-dee Wei, On the concept of torsion and divisibility for general rings, Illinois J. Math. 13 (1969), 414-431. MR 9, 280.
- 24. E. C. Weinberg, Lectures on ordered groups and rings, Lecture Notes, University of Illinois, Urbana, Ill., 1968.
- 25. ——, Relative injectives and universals for categories of ordered structures, Trans. Amer. Math. Soc. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, ST. LOUIS, MISSOURI 63121

Current address: Department of Mathematics, University of Toledo, Toledo, Ohio 43606