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LATTICE-ORDERED INJECTIVE HULLS

BY

STUART A. STEINBERG

ABSTRACT.  It is well known that the injective hull of a lattice-ordered

group (/-group) M can be given a lattice order in a unique way so that it be-

comes an /-group extension of M.   This is not the case for an arbitrary /-module

over a partially ordered ring (po-ring).  The fact that it is the case for any Z-group

is used extensively to get deep theorems in the theory of /-groups.   For instance,

it is used in the proof of the Hahn^embedding theorem and in the characterization

of X-injective /-groups.

In this paper we give a necessary and sufficient condition on the injective

hull of a torsion-free /-module  M  (over a directed essentially positive po-ring)

for it to be made into an /-module extension of M  (in a unique way).   An /-module

is called an ¿-/-module if its injective hull can be made into an /-module extension.

The class of torsion-free ¿-/-modules is closed under the formation of products,

sums, and Hahn products of strict /-modules.   Also, an /-submodule and a torsion-

free homomorphic image of a torsion-free ¿-/-module are ¿-/-modules.

Let  R  be an /-ring with zero right singular ideal whose Boolean algebra of

polars is atomic.  We show that  A?  is a zj/-ring (i.e., RR   is an ¿-/-module) if and

only if each torsion-free A?-/-module is an ¿-/-module.   There are no injectives in

the category of torsion-free A?-/-modules, but there are  X-injectives.   These may

be characterized as the /-modules that are injective R-modules and  S-injective

/-groups.   In addition, each torsion-free /-module over  R  can be embedded in a

Hahn product of /-simple Ç(A?)-/-modules.  We note, too, that a totally ordered

domain has an ¿-/-module if and only if it is a right Ore  domain.

1.  Introduction.   Our methods and characterization of torsion-free ¿-/-modules

are modelled after Anderson's work on the maximal right quotient ring of an /-ring

[l].  Throughout this paper Z  and Q will denote the totally ordered rings of in-

tegers and rational numbers, respectively.  If  R  is a po-ring, then  R^ will denote

the po-ring obtained by  freely adjoining  Z to  R.

We begin by recalling the requisite module theory.  All modules will be right

modules. An R-module E is injective if for every pair of R-homomorphisms f: K—> E and

g: K —» L, where  g is monic, there exists an R-homomorphism  h: L—►£ such that

hg = /.  A submodule  N of the R-module  M is an essential submodule (and M is an

essential extension of N) if N n K / 0 for every nonzero submodule  K of M.

Every module  M has a maximal essential extension  E = E(MR) which  is unique

up to an isomorphism over  M.   E(M) is the smallest injective module containing

Al, and is called the injective hull of M.  If E is an essential extension of M and
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it is injective, then F = E(M) ([9] and [lO]).

Let  M7  be the set of essential submodules of M.  Then  Al7   is a dual ideal in

the lattice of submodules of M.   If /V  is a submodule of M  and   T is a subset of

M, then (N : T) = \r £ R: Tr Ç N\ is a right ideal of R.  If N £ M7 and x £ M, then

(N : x) £ R7.  For a subset  T of M we will sometimes write r(T) for (0: T).  In

[17] Johnson has defined the singular submodule of M by  Z(M) = \x £ M: r(x) e R7S.

M is called a torsion-free R-module if  Z(M) = 0.  Note that   when  R  is a commuta-

tive integral domain, Z(M) is just the torsion submodule of M.

More generally, if N is a submodule of M, then the closure of N in  M is  de-

fined by C1M /V = \x £ M: xD C N fot some   D e R7i.  When no confusion is likely

we will write Cl N fot Cl„ N.  Cl N is, of course, a submodule of  M containing  N.

In fact, Cl N/N = ZÍM/N).   N is said to be closed in M if Cl N = /V.   In general,

Cl Cl /V is the smallest closed submodule of M containing  N [l3].   The intersection

of a family of closed submodules of M is clearly closed.  Thus   C (M), the set of

closed submodules of  M, is a complete lattice with greatest lower bound being

intersection.

If Z(M) = 0, then Cl N is the largest essential extension of N contained in

M.  In particular, when  Z(M) = 0, every submodule of M has a unique injective

hull contained in  E(M).   If  K is any essential extension of M (and  Z'M) = 0),

then the map  C(\K) —> C (M), given by  N —> N O M, is a lattice isomorphism.   The

inverse map sends N to its closure in  K.  For proof of these facts see [10].

An f-module over the po-ring  R  is a lattice-ordered R-module (/-module) that

is embeddable in a product of a family of totally ordered R-modules.   For the basic

properties of /-modules see [20].

This paper is based on a portion of the author's dissertation written at the

University of Illinois at Urbana-Champaign under the direction of Professor Elliot

Weinberg.

2.  Torsion-free /-modules.   A po-ring R  is called (right) essentially positive

if D e Rv   implies D*R^ g R*.  Since  £>+R*= D + - D++ (D+- D+)R is the right ideal

of  R generated by  D  , a directed po-ring is essentially positive if and only if

each of its essential right ideals contains a directed essential right ideal.   In

order to characterize the torsion-free ¿-/-modules over  R  it will be necessary  to

assume that  R  is directed and essentially positive.  Some examples of essentially

positive po-rings are

(1) any totally ordered ring;

(2) any right quotient ring of a torsion-free essentially positive po-ring, in its

canonical order;

(3) the 72-by-72 matrix ring over a totally ordered right Ore domain, ordered coor-

dinatewise.

A   word about (2) is in order.   If  R  is a ring with  Z'R   ) = 0, then a ring  S is
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a right quotient ring of  R  if SR  is an essential extension of  RR.  It is known

that  E(RR) can be made into a ring extension of R, so  Q(R) = E(RR) is the maxi-

mal right quotient ring of R ([17], [22]).  Now suppose that R is an essentially

positive po-ring, and let S be a right quotient ring of R.  Then

S+ = !s £ S: sD+ C PA for some  D £ Rvi

is a partial order of the ring S (Lemma 3.1 implies that SR  is a po-module exten-

sion of RR; but if a, b £ S  ,   aD   C R  , and  C = ir £ R: 2>r £ D\, then  a/?C   C

aD   C R  ; also see [l, Theorem 2.3]), called the canonical order of S.  Note that

S   H R can contain R    properly, and, in fact, (S, S ) is a po-ring extension of

(R, R  ) if and only if  R  is essentially semiclosed, i.e. rD    C R     tot D £ Rv  im-

plies r £ R  .  Let  D be an essential right ideal of S.  Then DR  is essential in

SR.   (Suppose that  D n X = 0 for some  XR Ç SR.  If  0 7^ d £ XS, d = If^^.s.

with  x .s. / 0, then there is an  element  Z £ R  such that dt / 0 and  s .Z e R.   Thus

0 / dt £ D n X = 0; so  D H X5 = 0 and X = 0.) Since  D n R £ R», (D n R)+R+ £

Rv.  But then  (D O R)+R+5^ £ S*, and since D.tSj, 3 (A3 n R)+R^S^, D+S^ £ 5'.

Thus  S is essentially positive.

Note,  by Proposition 3.2, that a torsion-free right /-ring  R(i.e., RR  is an /-

module) is essentially  semiclosed.  Note also  that any torsion-free /-ring is

essentially positive [l, Lemma 2.1].   That (3) is true follows easily from (2).  For

if D is a totally ordered right Ore domain, then  (R, R   ) is an essentially positive

right   /-ring   with   Z(RR)  =   0   and   right   quotient   ring   (D  , A9+), where   R   =

{[a..] £ Dn: a..= 0 for /> l!,  R + = \[a..]: a..> o!, and D + = \[a..] £ Dn: a..> o!.

That  (D  , D) is essentially positive is actually useless for our purposes, since

it has no nontrivial /-modules [20].

An /-module M is called distributive if the map induced on M by each r £

R is a lattice homomorphism. If MR is distributive, and x £ M and xR = 0 im-

plies x = 0, then M is an /-module [20].

Lemma 2.1.   Let  K be a po-module over the essentially positive po-ring  R,

and let M  be an essential submodule of K.

(a) If N is a convex submodule of M, then Cl„ N  is a convex submodule of K.

(b) If M is a distributive l-module and N is an l-submodule of M, then Cl„ N

is an l-submodule of M.

(c) Suppose that  K is a distributive l-module, and M is an l-submodule of K.

If N  is a prime submodule of Al, then Cl^ZV  is a prime submodule of AC.

(d) If M is archimedean and x and y are elements of K such that nx < y

for all n £ Z, then x £ Z(K). Thus K is archimedean if M is torsion-free and

archimedean.

Proof.   Suppose that ZV is a convex submodule of M and  0 < x < y where x £ K
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and y £ ClKN.  Then there exists  D £ R?   such that yD C N and xD Ç M.  If  d e

D  , then 0 < xd < yzf; so  xD    C A/.   Thus  x e C1K N, and we have (a).

For (b), suppose x e C1M N and flfr?   such that xD Ç N.  Then x+d = ixd) +

£ N tot all d £ D+.  Thus x+D+C N, so x+ e C1M N.

For (c), suppose that  N is a prime submodule of M.  By (a) and (b), Cl„ N is

a convex /-submodule of  K.  Suppose that  x and y are disjoint elements of  K, and

x jzf C1K N.  There exists DeRv  such that xD Ç M and yD C M.  Since x ¿ Cl^N,

there exists  d € D     such that  xd & N.  If  e e D  , then  xd A ye = 0; so ye £ N

since  zV  is prime.   Thus  yD    C A/, i.e. y £ C1K ¿V.

Finally, if D = (M; x) n (zW : y) where 7zx < y for all 72 e Z, then nxri < yzz7 for

all  d £ D  .  Since  M  is archimedean, xd = 0.   Therefore, xD   = 0, and x £ ZÍK).

Corollary 2.2.  Let M be a distributive l-module over an essentially positive

po-ring.   Then the closed convex l-submodules of M form a complete sublattice of

Ct(M).

Proof.   If j/V  : a e Ai  is a family of closed convex /-submodules of M, then

clearly   lli/Va: a e A\ is a closed convex Z-submodule.  By 2.1, so is Cl Cl S ¡V

If M is an /-module over a directed po-ring, then whether or not M is an /-

module depends only on  PiM), the Boolean algebra of polars of M [20].  In light of

this fact, the following proposition is not surprising.   X     (or  X      )  will denote

the polar of a subset X of M.

Proposition 2.3.   A72 f-module  M over an essentially positive directed po-ring

R  is torsion-free if and only if each of its (principal) polars is a closed submodule.

Proof.   Suppose that M is torsion-free, and let N be a polar of M.  If xD C N

fot some  D £ Rv, then   |x¿|A|y| =0 for all  d £ D+ and for all y £ zVJ".  So

(|x|A|y|)D+= 0, and hence x £ NJ-± = It.

The converse is obvious.

Because of 2.2 and 2.3 one might suspect that P(M) is a sublattice of C (M)

when M is torsion-free.  However, if R = Q, then each submodule of an /-module

is closed,   but the sum of two polars need not be a polar.

An /-module whose Boolean algebra of polars is atomic will be called z'rre-

dundant.   An irredundant /-module  M over a directed po-ring is an irredundant sub-

direct product of totally ordered modules, i.e. M CïlM , where each  M    is totally

ordered, M Ci Ma/ 0, and the set \Ma\ consists of those homomorphic images of

M whose kernels are the maximal polars of  M ([14, p. 40] and [20]).

Corollary 2.4.  A?2 irredundant f-module over an essentially positive directed

po-ring is torsion-free if and only if it is a subdirect product of totally ordered

torsion-free modules.
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Without the irredundancy hypothesis, 2.4 is false (see 2.7).  By an essential

l-submodule of an /-module we shall mean  an /-submodule which is also an essen-

tial R-submodule.

Proposition 2.5.   Let K be a torsion-free ¡-module over the essentially positive

directed po-ring R, and suppose that M is an essential l-submodule of AC.

(a) If N  is a convex l-submodule of M, then ClK(N±M) = [C1K (N)]±K.

(b) If N  is a convex l-submodule of K, then N±K D M = (N O M)±M.

Proof,   (a) Let  ACj = ClK(N'LM) and  AC., = Cl^/V.  Recall that N is an essen-

tial submoduie of AC., since M is torsion-free.  Thus  AC, O K2 = 0 since N <~\ N

= 0.   By 2.1, AC.   and  AC  are convex /-submodules of  AC.   Hence  AC, Ç K2    .  Let

x £ K2K and let D = (M: x).  Then xD C N±M Ç Kv  Thus, since D is an essential

right  ideal and   ACj  is closed in   K, x £ AC,.  So  AC, = AC,    .

(b) It is clear that N       C~\ M C (zV n zW)      .  Let x be a positive element of

(N O M)      , and let y be a positive element of ZV.  Since  N  is an  essential exten-

sion of ZV O M, yD C N O M fot some essential right ideal D.  If d £ D , then x A

yd = 0, so  (x A y)D+ = 0.  Since  M is torsion-free, x £ ZVJ"K.  Thus  ZV"LK n M =

(AV PiM)±M.

Corollary 2.6.   Let  K be a torsion-free f-module over the essentially positive

directed po-ring R, and suppose that M is an essential l-submodule of AC.  Then

the map N —► Cl„/V  is an isomorphism between the Boolean algebras of polars of

M and AC.   Its inverse is the map  ZV —► N O M.

Proof.   We already know that these correspondences are one-to-one between

Cr(M) and C^AC).  By 2.5 they take polars to polars.  In fact, if ZV £ P(K), then

ZV = C1K(/V ri/Vl) = ClK(N±K-LK n M) = ClK[(NJ-K n zM)XM].  Thus the map /V—

Cl^ZV between  P(M) and  P(AC) is an order isomorphism that is onto.  Hence it is

an isomorphism of Boolean algebras.

A qf-ring is an /-ring R whose maximal right quotient ring Q is an /-ring ex-

tension [l]. If R is a qf-ting with Z(R) = 0, then Q = E(RR) is a (strongly) regu-

lar self-injective ring.

Proposition 2.7.   Let  R  be a semiprime (right) qf-ring with maximal right quo-

tient ring  Q.   The following are equivalent:

(a) RR   is a subdirect product of totally ordered torsion-free modules.

(b) QR   is a subdirect product of totally ordered torsion-free modules.

(c) Qq  is a subdirect product of totally ordered torsion-free modules.

(d) The Boolean algebra of polars of Q is atomic.

(e) The Boolean algebra of polars of R  is atomic.

(f)Q  is the direct product of a family of totally ordered division  rings.
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Proof,   (a) implies (b).   Let jA/a: a e Ai be a collection of closed prime sub-

modules of  RR  whose intersection is zero, and let  Ea= F((zVa)R) Ç Q.  By 2.1

each  E   is a closed prime submodule of QR.  Since  C;.(R) and  Cf(Q) ate isomor-

phic via the correspondence N —+ E(NR),   DiFa: a e Ai = 0.

That (b) implies (c) follows from the fact that every closed submodule of QR

is a right ideal of Q [10, p. 70].

(c) implies (d). Let !Fa: a e Ai be a collection of closed prime submodules

of  Qq  whose intersection is zero.  Since   Q@  is injective,   Q = Ea© Faas Q-

modules.  Since  Q is a regular /-ring, each right ideal is an /-ideal, so the direct

sum is a sum of /-rings.   Thus each   F    is a totally ordered division ring.   The pro-

jections onto the  Fa induce an isomorphism of Q into the product of the   Fa whose

image contains the direct sum.   Thus  P(Q) is atomic.

Finally, (d) and (e) are equivalent by 2.6, (e) implies (a) by 2.4, and (d) is

equivalent to (f) by [10, p. 117].

It is, of course, not always the case that P(P) is atomic. For instance, it is

known that C([0, l]), the /-ring of real-valued continuous functions defined on the

unit interval, has no maximal polars. We do, however, have the following positive

results:

Proposition 2.8.   Let  R  be a directed po-ring which has the property that a

right ideal is essential if and only if it contains a positive regular element.  If M

is a torsion-free f-module over R, then every minimal prime submodule of M  is

closed.   Thus  M  is a subdirect product of totally ordered torsion-free ¡-modules.

Proof.  First note that R is essentially positive. Suppose that N is a mini-

mal prime submodule of M.  By 2.1, Cl N is a convex Z-submodule of M.  If ¡V   Ç.

Cl/V, there exists a positive element x e (Cl N)\N.   By hypothesis  (N : x) contains

a positive regular element  d.  Since  N is a minimal prime subgroup [20], there

exists y £ M \/V such that y A xd = 0 [16].   Therefore  (y A x)d = yd A xd = 0.

Since M  is torsion-free and  dR is an essential right ideal of  R, x A y = 0.   Thus

x £ N, since  N is prime.

A semiprime right Goldie ring can be characterized as a ring  R  that has a

classical right quotient ring which is semisimple and artinian ([12] and [l0]).   R

satisfies and, in fact, is characterized by the following condition:  A right ideal

/ of R is essential if and only if it contains a regular element.   If  R  is also an

/-ring, then, since it has no nilpotent elements, it is of the following form:  There

is a family of totally ordered right Ore domains  ÍR.: i = 1, • • • , 72S  with totally

ordered quotient division rings  \D.: i = 1, . . . , n\  such that  R  is (isomorphic to)

an /-subring of  £>j © • • • © D'n containing  R^--- ® R     (see [lO] and [l]).

The ring  P  of 2.8 is a semiprime right Goldie ring.  It need not be an /-ring,

however, but, for example, need only  be directed and have the property that the
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square of every  element is positive.  We suspect that  R cannot have any nilpotent

elements.

A module  M over the semiprime ring  R  is called I-torsion-free [18] if  NJ = 0

for  0 / N„ C M and some ideal  J  of  R implies   /AC = 0 for some nonzero ideal   K.

Note that if   M   is   torsion-free,  then it is A-torsion-free.   For if N] = 0, then  /R

essential in  R implies / = 0, while / n K = 0 for 0 / KR C R implies   AC/ Ç /

n K = 0, and hence //C = 0.

Theorem 2.9-   LeZ  R  be a torsion-free right qf-ring.   Then every torsion-free /-

module over R  is a subdirect product of totally ordered torsion-free modules if

and only if the Boolean algebra of polars of R   is atomic.

Proof.   Suppose that P(R) is atomic.  By 2.7, Q(R) = IIDa, where  Da (a £ A)

is a totally ordered division ring.   Let  Ra= image(R —> D  ).   Then  R  is an irre-

dundant subdirect product of the  R a:  RCllRa CÜDa.  Since  Q(ïï R a) = Il D a,  D a=

Q(Ra) [22, 2.2].  But then  Rais a right Ore domain [l, 5.2].

Let  M be a torsion-free /-module over  R, let  Na= \x £ M:   x(R n R  ) = O!,

and let  Pa= kernel(R —. R a).   By [18, 3.7], MPa Ç Na, Ma= M//Va is an A-torsion-

free R-module (Ra-module), and  M  is a subdirect product of the  M a(as R-modules).

It is easily seen that  ZV    is a convex /-submodule of M, so the subdirect product

is one of /-modules.  Clearly, M    is an /-module over  R   .

Let Eahe the Ra-injective hull of Ma. Then Eais the R-injective hull of Ma

and E(MR) = E = IlEa[l8, 4.11. Thus each Ea is a torsion-free R-module. But Ra

= R/Pa and MaPa= 0, so  Ma is a torsion-free R -module [13, Lemma 3.4].

Let ZVa be a minimal prime R-submoduIe of Ma. Then ZVa is a minimal prime

Ra-submodule of M , and so, by 2.8, is a closed Ra-submodule. Suppose that xT

Ç ZV for some x £ Ma and some essential right ideal T of R. If T C P , then Pa

£ Rv. This contradicts the fact that Rais a torsion-free R-module (2.4). Thus T

£ Pa, and, since every nonzero right ideal of Ra is essential, x £ ZVa. So ZVa is

a closed R-module. Therefore M , and hence ZM, is a subdirect product of totally

ordered torsion-free R-modules.

The converse is given by the equivalence of (a) and (e) of 2.7.

Proposition 2.10.   Let M be an essential l-submodule of the f-module  K„.   If

R  is directed, or if it is essentially positive and M  is torsion-free, then any weak

order unit of M  is a weak order unit of K.   Thus, AC  is totally ordered if and only

if M  is.

Proof.   Suppose that x £ K with x    / 0.  If R  is directed, then x     is a sub-

module of  AC, so  x    O M / 0.  Suppose  M is torsion-free and  R  is essentially

positive, and let  0 / y £ x   .   There exists  d £ (M : y)    such that yd / 0.  So  yd £

x    O M.  Thus, in either case, x     n M / 0, and a weak order unit of ZM  is a weak
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order unit of  K.  If M is totally ordered and  x is a nonzero element of  K, then any

positive nonzero element of x    C\ M  is a weak order unit of  M.  So  x    D M = 0.   If

P  is directed this says that  x    =0, since  x     is a submodule of  K.   If R  is

essentially positive, M is torsion-free, and 0 / y £ xx, then  0 ^ yd £ x    H M fot

some  d £ (M: y) .   Thus  x    = 0.   So  K is totally ordered in both cases.

An element g in the /-module  M (over the directed po-ring R) is called basic

[4] if CR(g), the convex /-submodule generated by g, is totally ordered.  This is

equivalent to saying that  C(g) (= Cyig)) is totally ordered.  A subset  X of M is a

basis of M if X  is a maximal set of disjoint elements and each element of  X is

basic.

Proposition 2.11. Let R be a directed po-ring, and let M be an essential l-

submodule of the ¡-module KR. Then M has a basis of cardinality u if and only

if K has a basis of cardinality    u.

Proof. If x and y are two elements of K such that 0 /= x £ y , and if r e R^

is such that 0 /= xr £ M, then xr £ y , since every polar of K is a submodule. Let

X = \xa: a £ A\ be a maximal set of disjoint elements of K. There is a subset \ra:

a £ A\ of R+ such that Y = j|x rj: a £ A} is a set of disjoint elements of Al. If X

is now a basis of K, then, clearly, each element of Y is basic. Suppose that y is

a nonzero element of M such that y A \x r^ = 0 for all a £ A. Let a be an element

in A such that y A xa> 0. Then y A *a A \x r | = 0, contradicting the fact that *a

is basic.  So   y is a basis of M.

On the other hand, if  Y = \ya: a £ A\ is a maximal set of disjoint elements of

M, and if 0 / x e K is such that x A ya= 0 for all  a £ A, then  Y U \\xr\\ is a dis-

joint set in  M fot some  r efit.   Thus  x does not exist.  So   Y is a maximal set of

disjoint elements of  K.  Since the convex /-submodule of  K generated by an ele-

ment of  M is totally ordered exactly when the convex /-submodule of M generated

by it is totally ordered, Y is a basis of M if and only if it is a basis of K.

For an /-module  MR,  TR (zM) will denote the rooted po-set of R-values of M

[20].   It is known [7] that an /-module  M has a finite basis with  n elements if and

only if rz(M) has exactly 22 roots.  Since there is a one-to-one correspondence be-

tween  the roots of TR  and the minimal  prime submodules of M, and since the sets

of minimal  prime subgroups and submodules coincide, M has a basis containing  n

elements exactly when TR  has  72 roots.   This fact gives the following corollary.

Corollary 2.12.   Let M  be an i-f-module over the directed po-ring  R.   Then-

VRiM) has exactly n roots if and only if r„(E) has exactly n roots.

Let M be an /-group, and let diM) be its Z-injective hull.   There is a lattice

isomorphism between the lattice of convex /-subgroups of M, £(zM), and the lattice

of convex /-subgroups of diM) given by:   N £ £(M) corresponds to the convex
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/-subgroup of d(M) generated by  ZV, and  ZV ££(d(M)) corresponds to  ZV O M.  With

respect to this correspondence, the value sets of  M and  d(M) ate isomorphic.

That the R-value sets of ZM and E(MR) ate not always isomorphic for an (totally

ordered torsion-free) /-/-module  MR  is shown by the following example.

Example 2.13.   Let  R = Q[[x]] be the formal power series ring with coefficients

in  Q and exponents in  Z  .   Order  R   lexicographically with the constant term dom-

inating.  Thus  R = !2°°=0a.x!': a. e Q! and R + = H^a.x': a^ > o! U ¡0!.  The units

of  R  are the elements with nonzero constant term.   Every element of  R  is of the

form x u,  u a unit or zero.   The quotient field  F of  R  is  IS"!0      a.x1: n > 0, a. £n 2 =—72    2 —     '      i

Q!.   It is a totally ordered field if its positive cone is defined by  E    = j£°°__  a.x':

a      > 0!.— 72

Let ZM = RR.  Then  E(MR) = FR, so ZM is an /-/-module.  The convex /-sub-

modules of ZM are

R D xR D x2R D ■■ ■ ,

and the convex /-submodules of E are

E 2 ■ ■ ■ 2 x~2r 2 x~lR 2 R 2 xR 2 x2r 2 ■ ■ ■ ■ ■

Thus r„(/M)SZ+ and Yß(E)QeZ.

3.   /-/-modules.   In this section we show that part of Anderson's characteriza-

tion of a unital qf-ting [l] characterizes the torsion-free /-/-modules over an essen-

tially positive directed po-ring.  Using this characterization we show that a totally

ordered domain has torsion-free /-/-modules if and only if it is a right Ore domain.

We also show that every torsion-free /-module over a torsion-free irredundant /-ring

R  is an /-/-module if and only if  R  is a qf-ting.  In addition, we examine some

properties of the class of torsion-free /-/-modules, and we show that the /-/-prop-

erty is a local property over a right noetherean ring.

Let  zM be a po-module over the po-ring  R, and let  ZV be an R-module contain-

ing  M.  Define

N+ = \x £ N: xD+ Ç M+ fot some  D £ Rv¡.

Notice that if R  contains an essential right ideal  D fot which  D    =0, then  ZV    =

N.  When  R = Z,  ZV    consists of those elements  x of N  such  that   nx   £   ZM +

for some positive integer n.

Lemma 3.1.

(a) ZV++ZV+Ç N.

(b) N+R + CN+.

(c) // R  is essentially positive, then N+ D - N+ = Z(NR).

(d) If R  is essentially positive and if M  is a distributive l-module, then M

ÇN + n M = \x £ M: x~ £ Z(MR)\.
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Proof.   The first statement is an immediate consequence of the fact that  R7

is closed under intersection.

For (b), take x e N+, a e R +, and D £ Rv  such that xD+C Al+.  Let / =

(D : a).  Then  / e R7, and ixa)l+ = x(al+) Ç xD + Ç M+.  Hence xzz e N+.

If x e Z(Af), then  xD = 0  for some  D e Rv; so, clearly, x, - x £ N  . Converse-

ly, if x, - x £ N  , then xD  , - xF    C Al    for some  D, F £ RÑ.  Therefore,

x(D n F)+C M+ n- M + = 0,  % e Z(/V), and ¿V+n - /V+ = Z(/V).

Finally, if x £ M with  X- e 2(M), then  xD+= (x+- x~)D+= x+D+C Al + for

some  D £ R*.   Thus  x£N+nM.   On the other hand, if x £ N+ Cl M and xD+C Al +

for some  D £ R7, then  x'z/= (xzz7)- = 0 for all  d £ D+.   So  x~ £ Z(M).

Proposition 3.2.   Let M be a distributive l-module over the essentially posi-

tive po-ring R, and let N be a torsion-free  R-module containing  M.   Then  N   =

\x £ N : xD   CM    for some D £ R   \ is a partial order on N, and (N, N) is a po-

module extension of (M, M  ).   If N  is an essential extension of M, then

(a) N  is semiclosed.

(b) The greatest lower bound (least upper bound) of two elements of M  is also

their greatest lower bound (least upper bound) in N.

(c) N     is the largest partial order P  of N for which (N, P) is a po-module

extension of (M, M  ).

(d) N+ ={x £ N:x(N:x)+CM+\.

Proof.   By 3.1, (A/, N'A is a po-module extension of (zM, Ml.  Suppose that N

is an essential extension of  M.   Let  x e M and y £ N with y > x, 0.  Since  N is

an essential extension of M, ÍM : y) £ Rv.  If d £ ÍM : y)  , then yd > ixd)   = x d.

Therefore, (y - xAiM : y)   C M  , so  y - x    e N  .  Thus  x    is the least upper

bound of x and  0  in  N, and we have (b).  A similar argument gives (a).

Suppose that   P  is a partial order on  N for which  P fl M = M     and  PR    C P.

If y e P, then yiM : y)+C PR+ O M Ç P O AI = M +.  Thus y £ N+ and PC N+.

Therefore (c) is true.

The last statement is obvious.

Proposition 3.3.   Let  M  be a distributive torsion-free l-module over the essen-

tially positive po-ring  R, and let  NR  be an essential extension of MR.   If (N, P)

is a distributive l-module extension of (M, M  ), then P = N  .

Proof.   By 3.2(c) we only have to show that  N   C P.  Take  x £ N+ and let  D

= (Al : x) O (M : x  ).  (All lattice operations are with respect to  P.)  If x t P, then

x~ fl 0, and  (xd)~ = x~d / 0 for some  d £ D+, i.e. xd £ M ft N+ = Al+ and (xd)~ /

0.   Thus  x £ P, and   N* CP.

Notice that 3.3 says that  N    is the only partial order  P  of  N for which

(N, P) can be a distributive /-module extension of  (Al, M).
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Theorem 3.4.   Let  M  be a torsion-free right f-module over the essentially

positive directed po-ring  R.   Then the injective hull  E of M  is an f-module

extension of M  if and only if for all x e E and, for all d     d7 £ R    for which xd.

£ M,

(xdr)+ A (xd2)~ = 0.

When this is the case the lattice order of E  is uniquely determined by that of M.

Proof.   First note that this condition is equivalent to:  If cp is a homomorphism

of  ZM onto a totally ordered R-module and x £ E, then  </>(x(/M : x) A Ç t£(zM)+ or

- c/>(x(ZM :x)A Ç c/>(zM) .   For if this latter condition is satisfied and d., d2 £

(M:x) , then

cS[(xa'I)+ A (xd2)~] = Uxdl)+ A cf(xd2)~ = 0,

fot arbitrary  cp.  Therefore, (xd J   A (xd2)~ = 0, since  ZM  is a subdirect product of

totally ordered R-modules.  Conversely, suppose that the condition in the theorem

is satisfied and c/SUaíj) > 0,  cf>(xd¿) < 0.  Then 0[(xa'1) + A (xd2)~] = UxdA + A

cp(xd2)~ = cp(%dA. A - c/>(^z/2) > 0, which contradicts the fact that  (xdA.    A (xd2)~

= 0.

If E is an /-module extension of  M, then clearly  (xd.)    A (xd )~ = x+d.   A

x~d2 = 0.  Conversely, suppose that the condition holds.  By 3.2,  (E, E ) is a po-

module extension of  (M, I J,   Let  x £ E, and consider the correspondence   h:

(M:x)+R —. E given by ^¡^dr. —» S^=1(x¿.)+r¿.  Suppose that  1 dr. = 0.   Let cp : M

—► 0(zM) be any homomorphism onto a totally ordered R-module.   If 0(x(zM : r)  > C

c/)(zM)  , then

o = cpf^xd^ = x>h) v = 0[Zk>v}

and similarly, if - r/>(x(/M : x) ) C c/S(M)  , then

Since  ZM is a subdirect product of totally ordered R-modules, S (xd) r. = 0, and

thus   h is a well-defined function.  Clearly, it is an R-homomorphism.  Since  E is

an injective  R-module, b can be extended to an R-homomorphism g defined on R^.

Let  y = g(l).   Then  h(dr)= g(dr) = ydr for all  d £ (M : x)    and  r £ R, so ydr =

(xd)\.  Since  Z(E) = 0,  yd = (xd)+ fot all d £ (M : x)*.  We claim that y = x.

Since  y(/M : x)    C ZM   , y  is in  E  .   Also, (y - x)d = (xd) + - xd > 0 for all  d £

(M:x)+, so y- x £ E+. Suppose that z £ E with z > JO, x!.  If 0 < d £ (M : x) n (ZM : z),

then  zd > (xd)   = yd, so  z - y £ E  .  Therefore  y = x  , and   E  is an /-module. Note

that  x d = (xd)+ for all  d £ (M : x)+.
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All that remains is to show that E is an /-module.  Take x £ E, a £ R  , and

let  C = \b £ R : ab  £ (M : x)\.  Then  C e R7, and if b £ C+, (x+a)b = (xab)+ =

(xa)+b.  Thus  [x+a - (xa)+]C + = 0, and hence x a = (xd) .   Therefore  £ is a dis-

tributive /-module, and, hence it is an /-module.

Note that without the assumption that  R  is directed, Theorem 3.4 becomes

E is a distributive l-module extension of M if and only if (xd A A (xd2)~ =

0 for all x £ £ and for all d    d2 £ R    such that xd. e Al.

Corollary 3.5. Let M be a torsion-free f-module over the po-ring R. Then M

is an i-f-module if either

(a) R   is commutative, essentially positive, and directed, or

(b) R  is an f-ring and a semiprime right Goldie ring.

Proof,   (a) If x £ E(M) and d., d2, d e (Al : x)  , then

[(xd^ A (xd2)~]d = (xd^y A (xd2d)~ = (xd)+dr A (xd)~d2 = 0.

Thus   [(xdx)+ A (xd2Y](M : x)+ = 0, so (xzz'1) + A (xd2)~ = 0.

(b) Let x £ E(M), d , d2 £ (M: x)  , and d £ (M : x)    with d regular.  There are

elements  a, b, c, e e R   , with  a and c regular, such that  d^da = db and  d2dc =

de.  Therefore,

(xd^da)* A (xd2dc)~ = (xdb)+ A ixde)~ = (xz^ A (xz^e = 0;

so ixd ) da A (xdA)~dc = 0.  Let  s and t be positive regular elements of R such

that as = ct.  Then

[ixd.)    A (xdA~]das = ixd.) das A ixd )~dct = 0.

But das is regular.  Therefore dasR   is an essential right ideal of R, and (xd )

A (xd2)~ = 0.

Note that any commutative, semiprime, directed po-ring, in which the square

of every element is positive, is an example of a po-ring satisfying the conditions

of 3.5(a).  An archimedean semiprime /-ring is, of course, such a po-ring.

The equivalence of (1) and (2) in the next corollary is a generalization of the

fact that a semiprime /-ring  R  with the maximum condition on polars (i.e., P(P)

is finite) is a right qf-ting if and only if it is a right Goldie ring [l, Theorem 6.1].

Corollary 3.6.   The following statements are equivalent for an irredundant

torsion-free f-ring  R.

(1) P  is a qf-ring.

(2) Each component of the irredundant representation of R  is a totally ordered

right Ore domain.

(3) Every torsion-free f-module over R  is an i-f-module.
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Proof. That (1) implies (2) has already been observed in the proof of 2.9, and

that (3) implies (1) follows from the fact that Q (= E(R)) is an /-module extension

of RR  if and only if it is an /-ring extension of R.

Let ZM be a torsion-free /-module over R.  Assuming (2), we have (see the

proof of 2.9):  R Ç TTR0  and M Ç IIMa Ç IIEa = E(zM), where  Ra is a totally ordered

right Ore domain, and  E    is the  Ra- (R-)injective hull of the torsion-free   Ra-

(R-)/-module M . By 3.5, each Ea is an /-module extension of ZMa(over  Ra, hence

over R). Thus  E(zM) is an /-module extension of ZM, and (2) implies (3).

An interesting example of a torsion-free /-/-module may be obtained as follows.

Let  R  be a semiprime right qf-ting with maximal right quotient ring  Q.  Suppose

that A is an /-submodule of QR, and let l' = E(lR) C Q.  Then I   = eQ fot some

idempotent e of Q.  Consequently, S = HomR(lR, IR) = \q £ Qe: ql C A(, and  T =

HomR(lR, IR) = eQ.  Thus  S and  T can be made into /-rings in a natural way.

Now S    is an essential submodule of Ts [lO, p. 97], and  CA is a torsion-free /-

module [21, Theorem 3.25].  If  <¡S is essential in  ST, then   çA is an /-/-module.

There are /-/-modules that are not torsion-free.  For instance, over a quasi-

Frobenius /-ring  R  each unital module can be made into an /-module.   If  R  is

totally ordered, but not a division ring, then it has no torsion-free modules [21, p.

114].  It is not hard to see that if M is any /-/-module over a directed essentially

positive po-ring, then ZM/Z2(zM) is a torsion-free /-/-module, where  Z2(/M) = C1C10

is the torsion submodule of  ZM.

We now present an example of a totally ordered, archimedean, torsion-free /-

module, over a unital essentially positive /-ring, that is not an /-/-module, but

whose injective hull is an /-module extension.

Example 3.7.  Let R = l(f °): a, b, c £ Q\, and let R + = ((| °): a, b, c £ Q+\.

Then  R is an essentially positive unital /-ring.  Let M = í(°  jj) : a £ Q!, and let

M   = \(a  Q): a £ Q  !.  Then MR  is a simple R-module and a totally ordered torsion-

free /-module.  But E(MR) = ¡(°  °) : a, A3 £ Q! cannot be made into an /-module

extension of ZM (use 3.4).

More generally, if R  is any essentially positive sub-po-ring of the canonical-

ly ordered matrix ring   D    (n> 1,  D a totally ordered division ring), such that

Q(R) = Dn, then 3-12 implies that R has no torsion-free /-/-module  (D    has no non-

trivial /-modules).  Any /-subring R of D    with Q(R) = D    is essentially positive.

Proposition 3.8. Let M be a torsion-free i-f-module over an essentially posi-

tive po-ring  R.

(a) Every l-submodule of M  is an i-f-module.

(b) If N is a closed convex l-submodule of M, then  ZM/ZV  is an i-f-module.

Proof.   Let E = E(zMR).  If ZV is an /-submodule of ZM, then  E(N) = Cl£ ZV is

an /-submodule of E by 2.1(b).  Thus  ZV is an /-/-module.  If ZV is a closed convex
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/-submodule of  M, then  E. = E(N) is a convex /-submodule of  £ by 2.1, and  N =

E. Pi Al.  Therefore, M/N —► £/£.  is a mononomorphism of /-modules. Since E =

£j © £2  as R-modules, E/E,   is an injective R-module.   But  M/N  is an /-sub-

module of E/E     so M/N is an ¿-/-module by (a).  In fact, E/El = E(M/N).

Using the notation of (b), note that  E    has two partial orders.   One comes

from  E/E ,, and one is inherited from  E.   (£2  is not uniquely determined by  N,

though Ej  is.) Let P be the partial order of E2 coming from  E/Ev  Then P =

ixeE2:x+£.>0l contains  £ 2 n £ .  The following example shows that, in

general, this containment is proper.  Let  R = Z,  A1 = Z©Z,  £ = QffiQ,  A/=Z  ©

0,  £j = Q © 0, and £2 = (1, - 1)Q.  Then P = (l, - l)Q+ and £., D £+= |0|. Thus

(E2, P) is not a sublattice of  E. If, however,  £ = lex Ej, i.e. Al = lex N (see 3.14),

then P = E   C\ E .  For then, x £ P and x + E l > 0 implies x > 0.  This is the case

if Al  is totally ordered.

It is easy to see that a finite direct sum of ¿-/-modules (over any po-ring) is

an ¿-/-module.

Corollary 3.9.   Let  R  be an essentially positive po-ring, and let \M   : a £ A\

be a collection of torsion-free f-modules.   The following are equivalent.

(a) Ala is an i-f-module for each a £ A.

(b) nAia is an i-f-module.

(c) S © Ala is Z272 i-f-module.

Proof,   (b) implies (c) and (c) implies (a) by 3.8(a).   Let  Ea= E(Ma).   Then (a)

implies that  n£a is an ¿-/-module, so IlMa is an ¿-/-module, again  by 3.8(a).

Corollary 3.10.   The inverse limit of torsion-free i-f-modules over an essentially

positive po-ring is an i-f-module.

Proof.   Let  (ÍAla: a e Ai, \faßi a> ß\) be an inverse limit system of /-modules.

Then  Al = H272a) e IlAla: faß™a = 772,3 whenever  a> ß\ is the inverse limit of this

system, and  Al  is an /-submodule of 0 Ala_.  Thus  Al  is an ¿-/-module if each  M

is, by 3.9 and 3.8.

Corollary 3.11.   Let  M be a torsion-free f-module over an essentially positive

directed po-ring  P.   Then Al  is an i-f-module if and only if every torsion-free

homomorphic image of M  is an i-f-module.

Proof.   This follows immediately from 3.8(b).

Proposition 3.12.   Let  R  be an essentially positive po-ring with Z(R) = 0, and

let S be a directed (in its canonical order) right quotient ring of R.   Suppose that

M  is a torsion-free f-module over R.   Then  M  is an i-f-module if and only if it is

contained in a torsion-free i-f-module over S.  In fact, E(MR)  is an f-module over S

and an injective S-module.
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Proof.   Let  £ = E(MR) be an /-module extension of Al.   By [23, Theorem 3 and

Proposition 10], £ is a g-module, where  Q  is the maximal right quotient ring of

R.  If x A y = 0 in  E,  q £ Q+, and D £ Rv with  qD C R, then xqD+ C E+, so xzj e

£+.  Also, if d £ D+, then (x<? A yV = xqd A yd = 0, so xq A y = 0.  Thus  £ is a

distributive /-module over  2-   Since  S is directed (and  E^  is torsion-free)  E^ is

an /-module.   But any 5-essential extension of  E is also an R-essential extension

of £, so £5 is injective.

Now suppose that  Al is an R-submodule of a torsion-free injective /-module

Ks.  Since E(KR) is an S-module, it is an S-essential extension of K, so K is

R-injective.  By 3.8, Al  is an ¿-/-module.

Theorem 3.13.   A totally ordered domain has a nonzero torsion-free i-f-module

if and only if it is a right Ore domain.

Proof.   Let  Al be a torsion-free ¿-/-module over the totally ordered domain  R,

and let 0 < x £ Al.   Then  P —» xR  is an /-module homomorphism, so  R/r(x) = xR.

Since Al  is torsion-free, r(x) is not an essential right ideal of  R.   Let  0 / J be a

right ideal such that  / f"l r(x) = 0, and take  0 < y £ J.   Then  yR  is isomorphic to

an /-submodule of Al, so it is an ¿-/-module.   But yR = R  as /-modules, so   RR  is

an ¿-/-module.   Therefore, E(RR) satisfies the condition of Theorem 3.4, and so  R

is a right Ore domain, by [l, 3.1 and 5.2].

Theorem   3.13 is not true for an arbitrary /-ring with  Z(P) = 0, i.e. a torsion-

free /-ring can have a torsion-free ¿-/-module without being a qf-ting.  In particular,

let  R be an irredundant semiprime /-ring, and let  Al  be a torsion-free /-module

over  R.   Let  R C II Ra and  Al C IIM^ be the decompositions of  R  and  Al.   Then  Al

is an ¿-/-module if and only if Ala = 0 for each  a for which  Ra is not a right Ore

domain.

Proposition 3.14 (see [4, p. 239]).  Let  K be a torsion-free f-module over an

essentially positive po-ring, and let M  be an essential l-submodule of K.  Suppose

that  N  is a convex l-submodule of M, and let  K. = ClKN.

(a) // Al = lex N, then K = lex K

(b) // K = lex K j, then M = lex C1M N.

(c) Suppose that  K = E(M) and K = lex Ky   If K2  is any R-complement of K^

in  K, then K2  is a totally ordered submodule of K, and

K+ = \y + z £ Kj © K2: z > 0,  or z = 0 and y > 0i.

Proof,   (a) Suppose that y e k\ky and x £ Ky  Then (y - x)+ / 0.   Assume

that  (y - x)~ / 0, also.   There exists 0 < d £ (Al : y) C\ (Al : x) = D  such  that

iy~x)~d/ 0. So (y-x)+D+C/V, since N contains all the nonunits of Al  [5, p. 111].

Therefore  (y - x)+ e Ky Similarly, (y - x)~ 6 Ky  Thus  y-ieii,  and y £ K

So  (y - xY~ = 0 and y > x.  Since   Kl  is prime in   K by 2.1(c), K = lex K .
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(b) If x £ ZM+\C1M N, then x £ K+\kv since  Kj n ZM = C1M N.  Therefore x >

C1M N.  Clearly, C1M ZV  is prime in  M.

(c) The remarks following 3.8 show that  AC  is totally  ordered.   Since   AC =

lex ACj, we clearly have  AC   = !y + z£AC1©AC2:z>0orz = 0 and y > 0!.

We show next that the ¿-/-property   is a local property.

Theorem 3.15.  Suppose that  R  is a right noetherian, essentially positive,

directed po-ring, and let M  be a subdirect product of totally ordered torsion-free

f-modules.   Then M  is an i-f-module if and only if CR(g) is an i-f-module for each

g £M.

Proof.   Suppose that M is a subdirect product of the family {A4   : a £ A\ of

totally ordered torsion-free /-modules.   We may assume that  ZM    = ZM/ZV    for each  a

£ A.  Therefore, if x + Na £ Ma, then  CR(x + ZVa) = (CR(x) + Na)/Na.  If CR(x) is

an /-/-module,  then so is (CR(x) + Na)/N  , by 3.11. Now suppose that M is an

/-/-module locally, i.e. CR(g) is an /-/-module for each g  £ zM.   The preceding re-

marks show that each  M    is also an /-/-module locally.   If each  ZM    is an /-/-

module, then M is an /-/-module by 3.9 and 3.8.  So, without loss of generality, we

may assume that  ZM  is totally ordered.

Let x £ E(zM) = E and let JAVa: a £ A\ = \CR(xd) : d £(/M:x)+!.  If Ea= E(N J

C E, then  Eais an /-module extension of ZV a by hypothesis.  Since  ZM  is totally

ordered, \Na: a £ A} is totally ordered by inclusion, and so is the family \E   • a

£ A\.  Thus ZV = (J Na is a submodule of El = \j Ea.  Since  R  is noetherian, and

since   Ej  is the direct limit of the  Ea,  E.   is an injective R-module ([3, p. 17]

and [10, p. 53]).  Clearly, E ^  is an /-module extension of ZV  with positive cone

U Ea, and it is the injective hull of N.

Now x(M : x)+ C N Ç E ^ so x e E  , since E x is closed in E.  If d , d2 e R  ,

then  (xz/j)     A (xa^)- = x d^A x~d2 = 0.  But then  ZM is an /-/-module, by 3.4.

The converse follows from 3.8.

Corollary 3.16.   Let R  be a right noetherian, essentially positive, directed

po-ring,  and let  M  be a subdirect product of totally ordered torsion-free R-modules.

If M  is a finitely-valued f-module, then  M  is an i-f-module if and only if CR(g) is

an i-f-module for every special element g  of M.

Proof.   If g £ ZM, then  CR(g) = CR(g ") © - - - © CR(gn), where each g. is

special [20]. Now use  3.14.

Note that the proof of 3.15 is valid if, instead of assuming that  R  is noether-

ian,  one assumes  that  M has the maximum condition on convex /-submodules.

We consider next the Hahn product of strict ¿-/-modules. Let Y be a rooted

po-set, and suppose that for each p £ Y, M is an /-module over the po-ring R.

Suppose further that  AM     is totally ordered if p is not a minimal element of Y.
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For v £ ITzVl     (R-module product) define the support (supp) of v =\p £ Y : v(p) /Q\.

It is well known ([7] or [24]) that

V(Y, M  ) = \v £ IIM   :   supp v has the maximum condition!P P        rr

is an /-group when provided with the positive cone

V+ = \v £ V: v(p) > 0 whenever p is a maximal element of supp v\ U [0!.

An /-module ZM is called strict if it satisfies the following condition: (x, r) £

M x R and xr = 0 implies x = 0 or r = 0. Note that if R has a strict /-module,

then  R  is a po-domain, i.e. a, b £ R     and  ab = 0 implies  a = 0 or  b = 0.

Proposition 3.17. Suppose that R is directed and each M is strict. Then V

= V(Y, M )  is an f-module over R.

Proof.   Since (vr)(p) = v(p)r fot all  v £ II ZM   ,  r £ R, and  p £ Y,  supp vr C

supp v.   Thus   V is an R-module.   If v £ V  ,  p is a maximal element of supp f,

and  0 < r £ R   , then   (vr) (p) = tz(p)r > 0, since  ZM     is strict.  So   V is an /-module

over R.  If P is a maximal chain of Y, then  V„=\v £ V : supp f C P\ = V(P, ZM )

as /-modules, and   V is a subdirect product of the   V„.   Thus   V is an /-module

provided each  Vp is an /-module.  So we may  assume that  Y is totally ordered.

Let  0 / v £ V,  0 < r £ R  , and let  a  be the maximal element of supp v.  Note

that supp v = supp vr, and v(q) < 0 if and only if  (vr)(q) < 0, since  M    is strict.

Therefore, v r = (vr)  .  So   V is a distributive /-module over  R.   Hence it is an /-

module.

Proposition 3.18.   Let  R  be an essentially positive directed po-ring, and let

M     be an i-f-module for each p  in the rooted po-set Y.   Suppose further that M

is totally ordered if p  is not a minimal element of Y.  If each  E    - E(M  ) is

strict, then  V(Y, E p) = E(V(Y, Ep)) and V(Y, Mp)  is an i-f-module.

Proof.   Since  II E    is an injective module,   V(Y, E  ) C II E^  has an injective
P ' P   -        P '

hull E(V(Y, E )) = E contained in I1E      Let w £ E and 0 / d £ R    such that

wd £ V(Y, E ).  Suppose that p x < p2 < • • ■  is a chain in supp w.  Since p{ is not

a minimal element of  Y fot  i > 1, w(p .) > 0 or  w(p .) < 0.   Thus  p . £ supp wd fot

i > 1.   This is impossible, since  supp wd has the maximum condition.  So  w £

V(Y, Ep) and  E(V(Y, Ep)) = V(Y, Ep).  Since   V(Y, Mp) is an /-submodule of

V(Y, Ep),  V(Y, Mp) is an /-/-module.

If  R  is commutative, then  E is strict provided  ZM  is, but we do not know if

this is true for any  R.   The po-ring  R  in 3.18 need not be a domain.  Diem [8] has

given the following example of a commutative /-domain  that is  not a domain:   R =

Qa © Qb as /-groups and a2 = b2 = ab = ba = a.  We remark that the essential

ideals of R  are those ideals that contain  Qa + Zqb fot some  0 / q £ Q.   Thus   R
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is essentially positive.   As a ring  R = Qa © Q(a - b), so  Qzz is a strict /-/-module

over  R.

We close  this section with a remark about extending homomorphisms.

Proposition 3.19.   Let  N and K be distributive l-modules over the essentially

positive po-ring R, and suppose that M is an essential l-submodule of K.  If f £

HomR(AI, N)  is an l-homomorphism and if N  is torsion-free, then any g £

Hora„(/(, N) extending f is an l-homomorphism,  and g is unique.

Proof.   Since  N is torsion-free and  M is essential in   K,  g  is unique.   If x £

K and d £ (M : x)  , then

[g(x+)]d = g(x+d) = g[ixd)+] = f[ixd)+] = [fixd)]+ = [gixd)]+ = [(gx) + U

So g(x+) = (gx)+.

Corollary 3.20.   Lei   R  be an essentially positive po-ring, and let  M be an i-

f-module over R.   Then any l-homomorphism from M  into a torsion-free injective

f-module  N  has a unique extension to an l-homomorphism from  E(M) to N.

4.  Relative injective /-modules.   Ribenboim [19] has observed that there are

no injectives in the category of unital po-modules over a po-domain.   Consequently,

he defined and studied a certain type of relative injectivity.   Let  C  be a category

whose objects are sets, and let   Ka be an infinite cardinal number.   An object  £

of C. is called   H -injective if whenever  C is a subobject of A  in  C and catd(A)

< Ha, then every morphism  C —► £  can be extended to a morphism  A —► £.

Weinberg [25] has recently given a characterization of the   Xa-injectives in the

category of /-groups.   In this section we show that his characterization (and his

methods) holds in the category of torsion-free /-modules over an irredundant semi-

prime right qf-ting.

Definition 4.1.   An /-group  Al  is an almost-77a-group if, for each pair of subsets

X and  Y of M such that X < Y and card(X U Y) < Ha, there exists an a in Al

such that  X < a < Y.

Definition 4.2 (Weinberg [25]). An element y in an /-group Al is said to split

b from a if y > a , y A a~ = 0, and (b - y) + A y = 0. Al is self-splitting if each

ordered pair of elements of Al is split by some element in  Al.

The cardinal number   Ka is called regular provided   U <X.: i £ /! has cardinal-

ity less than   Na whenever  / and each  X. have cardinality less than   X .

Theorem 4.3 (Weinberg [25]).   Let  Ka be a regular cardinal number, and let  M

be an l-group.   The following are equivalent.

(a) Al  is   Ha-injective.

(b) M is a divisible, self-splitting, almost-rja-group in which any two pairwise

disjoint subsets of cardinality less than   Xa have disjoint upper bounds.
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Now let  MR  be an /-module.   We will show, with not too many restrictions on

R, that Weinberg's four conditions are necessary for  zVl  to be an   Na-injective /-

module.  The converse is much harder and we only have it for the case that  R  is

an irredundant semiprime qf-ting.

Lemma 4.4. Let M be a torsion-free i-f-module over the directed po-ring R,

let (l be the category of torsion-free j-modules over R. If M is K -injective in

C, then so is  E = E(M„).

Proof.  Suppose that N £ C with card(/V) < Na.  Let  N'  be an Z-submodule of

N, and let / be a homomorphism from  N'  into  E.   Then  N" = f~  (Al)  is an essen-

tial /-submodule of N .  We have the following diagram:

zV"     C       N'    C

/

N

sg

M      C       £

where  g comes from the fact that  M is   Ka-injective.  Since  N" Ç ketig - /), since

N"   is essential in  A/', and since  Al  is torsion-free, N' C ketig - /).  Thus  f(N') Ç

M, and g is an extension of /.

Corollary 4.5. Let M be a torsion-free i-f-module over the directed po-ring R.

If Ka > card(R) and if M is K -injective in the category of torsion-free f-modules

over R, then M = EÍMR).

Proof.   Take  x e E  and let  N l = xR^.  It is known that the sublattice of  E

generated by  N.   is a subgroup, and is given by

UNJ v        ' N       z;        ij 1
7=1    t=l

If r e R+, then  L(N Jr Ç L(N A, since  £ is an /-module.   Thus   L(N J is an /-sub-

module of  E, since   R  is directed.  Clearly, card(L(/V  )) <  K .   In the proof of 4.4,

let  N' = N = L(Nl),  N" = L(N {) C\ Al, and let  / be the inclusion map from  zV'   to

£.   Then /(L(/Vj))Ç Al, so x e Al.

Lemma 4.6.   Let  R  be a directed po-domain which has a strict totally ordered

module  K.   Then any f-module  M can be embedded in an f-module which contains,

¡or each a in Al, an element y  that splits b from a ¡or every  b  in  M.

Proof.   M can be embedded in a product of a family of totally ordered modules

ÍAL : i £ l\.  Let  N. = M © K as R-modules with positive cone defined by  N+ =

\(m, k): k > 0, or k = 0 and  222 > 0|.  Define  y £ U N. by y(i) = 0 if a+(i) = 0, and
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y(i) = (0, kA) if a+(i) > 0, where  kQ is a fixed nonzero positive element of  AC.

Proposition 4.7. Let  R  be a directed po-domain which has a strict totally

ordered module  M, and let   X    be a cardinal number greater than card(R).   If M  is

an   X -injective f-module, then  M  is self-splitting and each pair of pairwise dis-

joint subsets of ZM  of cardinality less than   X    have disjoint upper bounds.

Proof.   Let  a, b £ M, and let  A  be the /-submodule of ZM  generated by  a  and

b.  By 4.6, A  is imbeddable in an /-module   C containing an element y which splits

b from  a.  Let B be the /-submodule of  C generated by A  and y.  Then card(ß) <

Xa, and the injection of A  into  /M can be extended to a homomorphism  cp from  B

into  ZM, since   ZM is   X   -injective.   Clearly, cS(y) splits  b from a.  Thus  ZM  is self-

splitting.

Let  A     and  A     be pairwise disjoint subsets of ZM  such that card(A   ) +

card(A  ) < X .  Embed ZM in a product of totally ordered R-modules  Zvl —► II M..  As

in the proof of 4.6, let ZV. be the lexicographic extension of M. by  AC. Define t.

in N = UN., tot /'= 1, 2, by t.(i) = (O, k,) if 77.(A .) / 0 and Z.(/)= 0 if 77.(A .) =
1 ' '      '     J     j '      0 2/ j 27

0.  Then  /, A z   = 0 and t. > A ..  Let  L be the /-submodule of N generated by A

L> A2, and let P be the /-submodule of N generated by L  and \t {, 12\.  Then

card(P) < Xa, and the injection of L into zM can be extended to a homomorphism

cp from  P  into  M.  Thus  c/>(z j) A </>(/2) = 0, and  cpU ■) > A ••

A totally ordered set T is said to be dense if for all a < b in T there exists

x £ T such that a < x < A>. If ZM is a totally ordered module over a po-ring R, then

Q ®z M  is a dense totally  ordered R-module containing  ZM.

Lemma 4.8.   Let  M  be a totally ordered module over the po-ring R, and suppose

that  X and  Y are subsets of M such that  X < Y.   Then  M can be embedded in  a

totally ordered module N  containing an element a satisfying  X < a < Y.   Moreover,

if R  is right noetherian and M  is torsion-free, then such an  N may be found which

is torsion-free.

Proof.   By the preceding remark we may assume that  ZM  is dense.  Suppose

that no element of  ZM lies between   X and   Y.  Then either  X is nonempty and has

no last element or   Y is nonempty and has no first element.  Suppose, for example,

that  X  is nonempty and has no last element.   For x £ X, let  A    -\z £ X : z > x\.

Since   X has no last element, [A^ : x £ X\ has the finite intersection property.

Therefore, there is an ultrafilter &  on  X containing [A    : x £ X\.

For each h £ Mx let  Z(h) = \x £ X : h(x) = o!.  Let  I = \f £ Mx : Z(f) £ t%\.

Then   I is a prime submodule of ZM   .   Embed  M in  MX/I via the map m —* (rn) +

A, where   (zt2>(x) = m for all  x £ X.   If  e £ MX is the identity on  X, i.e. e(x) = x

for all  x £ X, then   (x) + A < e <  (Y) + I.

Suppose that zM  is torsion-free and  R  is right noetherian.   Let  / £ Mx and  D

£ Rv   such that fd C A.  Since  R  is noetherian, D = d {R^ +... + d R+.   Clearly,
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Z(f) Ç H {Z(fdt) :i=l,--.,n\. Conversely, if (fd.)(x) = 0 for  1 < i < n, then f(x)D

= 0.   Thus  f(x) = 0, since  M is torsion-free.  So  Z(f) = II \Z(fd.) : i = 1, • • • , n\.

Hence   Z(f) £ & and f £ I.

Proposition 4.9. Let M be an X  -injective ¡-module over the directed po-ring

R, and suppose X   > card(R).   Then M  is an almost-r¡a-module.

Proof.   Suppose that X and  Y are subsets of Al, each of which has cardinality

less than   X , and  X < Y.  Assume  Al is embedded in the product  IIAl., where each

Al. is totally ordered.   Let N. be a totally ordered module containing  M. and an

element  t. such that 77 .(X) < t. < tt.(Y).   Let  t £ U N. = K be defined by  /(/) = t..
7 ; -    7   -      7 7 ' ' ■   1

Finally, let  A  be the Z-submodule of Al generated by  X U Y, and let  B be the /-

submodule of  K generated by A   and  t.  Then card(B) < Ka, and the injection of A

into  M can be extended to  B.   Thus the image of /  in  Al  lies between  X and   Y.

Suppose that  R  is right noetherian (and directed), and  Al  is a subdirect pro-

duct of totally ordered torsion-free R-modules.  If AI  is  Xa-injective in the cate-

gory of torsion-free /-modules over  P, then  Al  is an almost-27a-module.  The proof

is the same as that of 4.9.  Of course, if Al is a torsion-free /-module over an

essentially positive po-ring  R, then Al  is Xa-injective in the category of R-/-modules

if and only  if it is Na-injective in the category of torsion-free R-/-modules.   For

then the torsion  submodule, Cl Cl^ 0 = Z (A), of each /-module  A  is a convex /-

submodule; so an /-module homomorphism  A —► Al  induces a torsion-free /-module

homomorphism A/Z (A) —► Al.

For the remainder of this section Xa will be a regular cardinal number.

Theorem 4.11.   Let  R  be a totally ordered right Ore domain, and let  M be a

torsion-free ¡-module over R.  If Xa > card(R), then M  is Ka-injective in the cate-

gory of torsion-free ¡-modules over R  if and only if it is injective in the category

of R-modules and Ha-injective in the category of l-groups.

Proof.  If Al is Na-injective, then 4.5, 4.7, 4.9, and 4.3 imply that A1R  is in-

jective and that  Al  is an Xa-injective /-group.

Conversely, if MR  is torsion-free and injective, then  Al is a vector lattice

over  D, where  D  is the totally ordered right quotient division ring of R  (see 3.12).

Thus we  may assume that  R = D.  Now  copy the proof of 4.3 given in [24] for the

case that  R = Q.

Corollary 4.12.   Let  R  be an irredundant semiprime right qf-ring, and let M

be a torsion-free f-module over R.  Suppose that X    > card(P).   Then M  is X   -in-

jective in the category of (torsion-free) f-modules over R  if and only if M  is an

injective  R-module and an Ka-injective l-group.

Proof.   Let R Ç IIRA Ç I1DA = Q be the decomposition of R (see 2.7).  If M is

either Xa-injective or  R-injective, then  M= U E^, where   E\   is an /-module over
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R(R\) and an injective  R- (R^-)module (3.6, 4.5, and the proof of 2.9).   By the

usual argument, it is easily seen that  ZM  is Xa-injective if and only if each  EA is

X  -injective.

Now Ex is an Xa-injective /-module over R if and only if it is an Xa-injec-

tive /-module over R\. For suppose that E% is Xa-injective with respect to R.

Let A be an /-submodule of the RA-/-module B (card(ß) < Xft), and let f : A—* E be

a map in the category of RA-/-modules. Since RA is a homomorphic image of R, A

and B ate naturally /-modules over R, and then / is an R-homomorphism. Let g :

B —» E\ be an R-extension of /. Then g is clearly an R^-extension of /; so EA

is Xa-injective over  R^.

On the other hand, suppose that EA is Xa-injective over RA.  Let A be an /-

submodule of the torsion-free R-/-module  ß   (card(B) < Xa), and let f: A —» E  be a

map in the category of R-/-modules.   By 3.20, we may assume that  A  and  B  are

injective  R-modules.   Thus  A  and  B (and  EA) are Q-modules (see 3.12), and / is

a Q-map.   Let g : B —► EA be the RA-extension of /.   Then  g  is, in fact, a (¿-exten-

sion of /, hence an R-extension.  So   E.   is Xa-injective over  R.

In summary, we have zM is   R-Xa-injective if and only if ZM = II £\, where  EA

is   RA-Xa-injective.   But  EA  is RA-Xa-injective if and only if it is Z-Xa-injective,

by Theorem 4.11.   Thus  ZM  is R-Xa-injective exactly when it is an injective

R-module and an  X^-injective /-group.

Note that there are no injectives in the category of torsion-free R-/-modules.

For any nonzero torsion-free injective R-/-module gives rise to a nonzero torsion-

free injective RA-/-module for some À, and there are none. There are quasi-injec-

tives, however. In particular, if R is any semiprime qf-ting and / is a homomor-

phism from the /-submodule ZM of QR into QR, then / may be extended to E(ZM) C

Q, by 3.20, and thus it can be extended to Q, since E(ZM) is a summand of Q. So

QR  is a quasi-injective R-/-module.

The next corollary is an immediate  consequence of Weinberg 's theorem

(Theorem 4.3) and 4.12.

Corollary 4.13.   The following statements are equivalent for a torsion-free f-

module  M  over an irredundant semiprime right qf-ring  R  (card(R) < X ).

(a) ZM  is   Ha-injective.

(b) M is an injective R-module, and a self-splitting almost-q -module in which

any two pairwise disjoint subsets of cardinality less than X have disjoint upper

bounds.

Finally, we remark that there are enough  Xa-injectives for embedding purposes

when   R  is an irredundant semiprime right qf-ting.   The proof is the same as that

given by Weinberg in [25] for  R = Z.  We can reduce to the case where   R  is a to-

tally ordered division ring.   Then the idea is to enlarge the given vector lattice  M,
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successively, via vector lattices in which every pair of elements of M is split,

every pair of disjoint subsets of M of small cardinality have disjoint upper bounds,

and in which there is an element between every pair of subsets of M of small car-

dinality, one of which is smaller than the other.  By repeating this procedure induc-

tively one eventually  gets a vector lattice having the properties of 4.3(b).

5.  Remarks on an Hahn embedding theorem for /-modules. Let  M be a torsion-

free /-module over the irredundant semiprime right qf-ting  R, and let  R Ç II P^ C

Fl D\ = Q and  Al Ç II A1\ C II £^ = E be the representations of  R  and  Al, respective-

ly.   Let I\   be the  D\-value  set of  E\.   For each lower submodule  Alae V\, let

Ala be the convex /-submodule of E^ that covers it. Since the proof of the Hahn

embedding theorem for /-groups [7] is valid for a vector lattice over a totally

ordered division ring, £\  is D^-value embedded in the Hahn product   V^ = ^(1"^, Ma/M^).

Thus the /-module  MR  is embedded in the product of the  V\.  Let T be the cardi-

nal sum of the  V\.   Then the map (v\) —► v, via) = t>A(a) embeds the Q-/-module

Il V^ onto the Hahn product  V(r, Ma/M^> = V.  (V is a Hahn product as a Q-f-

module, i.e. V Q    ÇV: Suppose 0 < v £ V and 0 < q = (q^) £ Q.  Let a be a

maximal element in the support of vq,  a £ V .  Then  a is a maximal element in

the support of v, and (vq)(a) = v(a)(q^) = v(a)q   > 0.)

If Al has only a finite number of nonzero components, in particular, if R  is a

semiprime right Goldie /-ring, then  F is the Q-value set of  E(A1), but in general  V

is only contained in the latter.   If a component  R\   of  R  is archimedean, in parti-

cular, if R  is archimedean, then the  Al /Ala for  ae V\   ate D\-submodules of the

reals.  In this case  V^ is isomorphic to the value set of Al^.
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